Collaborative Augmented Reality

Mark Billinghurst

mark.billinghurst@hitlabnz.org

HIT Lab, University of Washington

HIT Lab (NZ), University of Canterbury

Outline

- Introduction
- Tangible AR
- Face to Face Collaboration
- Hybrid Interfaces
- Remote Collaboration
- Advertisement
- Conclusions

Invisible Interfaces

The View from 1968

Video Conferencing
lack of spatial cues
limited participants
2D collaboration
separation from real world

The View from 1979

Face to face Conferencing

Show MR Lab Video

Video 1

Collaborative Augmented Reality

• Attributes:

- Virtuality
- Augmentation
- Cooperation
- Independence
- Individuality

- Seamless Interaction
- Natural Communication

Central Claim

Augmented Reality techniques can be used to provide spatial cues that significantly enhance face-to-face and remote collaboration on threedimensional tasks.

AR Demo

Show AR Demo

ARToolKit Tracking

ARToolKit - Computer vision based tracking libraries

Tangible AR

Tangible Interfaces (Ishii 97)

 Create digital shadows for physical objects Foreground graspable UI -terraVision Background ambient interfaces - pinwheels

Lessons from Tangible Interfaces

- Physical objects make us smart
 Norman's "Things that Make Us Smart"
 encode affordances, constraints
- Objects aid collaboration
 establish shared meaning
- Objects increase understanding
 serve as cognitive artifacts

Limitations

 Difficult to change object properties can't tell state of digital data Limited display capabilities pinwheels = 1D, projection screen = 2D dependent on physical display surface Separation between object and display TerraVision

Back to the Real World

AR overcomes limitation of TUIs
 enhance display possibilities
 merge task/display space
 provide public and private views

TUI + AR = Tangible AR Apply TUI methods to AR interface design

Tangible Augmented Reality

- Tangible Augmented Reality is a design concept that integrates TUI and AR.
 - Virtual objects are seamlessly coupled to physical world.
 - Physical object affordances are used for the interaction.
 - The form of objects encourages spatial manipulation.
 - Multi-handed and multi user interactions are possible.

Tangible AR Interaction Techniques

- Use of natural physical object manipulations to control virtual objects
- VOMAR Demo
 - Catalog book:
 - Turn over the page
 - Paddle operation:

-Push, shake, incline, hit, scoop

Show VOMAR Video

Video 2

Collaborative AR Interfaces

Face to Face Collaboration

WebSpace, Shared Space, Table Top Demo, Interface Comparison, AR Interface Comparison

Remote Collaboration

SharedView, RTAS, Wearable Info Space, WearCom, AR Conferencing, BlockParty

Transitional Interfaces

MagicBook

• Hybrid Interfaces AR PRISM, GI2VIS

Face to Face Collaboration

Table Top Demo

Goal

- create compelling collaborative AR interface usable by novices
- Exhibit content
 - matching card game
 - face to face collaboration
 - physical interaction

Table Top Demo

Video 3

Results

- 2,500 3,000 users
- Observations
 - no problems with the interface
 - only needed basic instructions
 - physical objects easy to manipulate
 - spontaneous collaboration
- Subject survey (157 people)
 - Users felt they could easily play with other people and interact with objects
- Improvements
 - reduce lag, improve image quality, better HMD

Interface Comparison

- Compare two person collaboration in:
 Face to Face, AR, Projection Display
- Task
 - Urban design logic puzzle
 - Arrange 9 building to satisfy 10 rules in 7 minutes

Subjects

- Within subjects study (counter-balanced)
- Pilot 8 pairs grade school children
- Full 12+2 pairs of college students

Face to Face Condition

Moving Model Buildings

AR Condition

Cards with AR Models SVGA AR Display (800x600) Video see-through AR

Projection Condition

Measured Results

- Performance
 - AR collaboration slower than FtF + Projection

Communication

- Pointing/Picking gesture behaviors same in AR as FtF
- Deictic speech patterns same in AR as FtF
 - Both significantly different than Projection condition

Subjective

- FtF easier to work together and understand
- FtF easier to see non-verbal cues
 - Subjects felt no difference between AR and Proj.
- Interaction in AR easier than Proj. and same as FtF

Interview Comments

"AR's biggest limit was lack of peripheral vision. The interaction was natural, it was just difficult to see. In the projection condition you could see everything but the interaction was tough"

Face to Face

Subjects focused on task space
 gestures easy to see, gaze difficult

Projection display

Interaction difficult (8/14)

- not mouse-like, invasion of space

• AR display – "working solo together"

Lack of peripheral cues = "tunnel vision" (10/14 pairs)

AR Pad

Handheld AR Display
 LCD screen
 SpaceOrb
 Camera
 Peripheral awareness

Support for Collaboration

Virtual Viewpoint Visualization

AR Pad Video

Hybrid Interfaces

The Data Center of the Future

Combine AR with other tools

- Use the most appropriate tools for any given task
 Manipulate 2D text or images on a Tablet PC or PDA
 Manipulate 3D objects in 3D space
- Use the most appropriate displays
 - size, resolution, stereopsis
 - privacy vs sharing

Augmented Conferencing

• EMMIE [Butz99]

Conferencing assisted by multiple computing devices

Beyond the Desktop Metaphor

- Managing 3D space and multiple 2D/3D Displays
- Drag and drop between dimensionalities
- Multiple users --> privacy management
- Using interaction devices provided by participating computers
 - keyboards
 - 2D mice
 - pens
 - displays

MagicMeeting Video

Video 5

Holger Regenbrecht Daimler-Chrysler, Ulm

Multi-scale Collaboration

Remote Collaboration

AR Conferencing

Moves conferencing from the desktop to the workspace

AR Conferencing Video

Video 6

Pilot Study

- How does AR conferencing differ ?
- Task
 - discussing images
 - 12 pairs of subjects
- Conditions
 - audio only (AC)
 - video conferencing (VC)
 - mixed reality conferencing (MR)

Results

Subjective Results

- AR conferencing can increase presence
- AR conferencing can improve communication
- AR more difficult to use than audio/video
 - Difficult to see everything
 - Communication asymmetries

Confounding Factors

- task not strictly conversation
- HMD limited field of view, resolution
- only two users

Virtual Viewpoint Generation

3D Live Video

3D Live System

Lessons Learned

 Face to face collaboration AR preferred over immersive VR AR facilitates seamless/natural communication Remote Collaboration AR spatial cues can enhance communication AR conferencing improves video conferencing AR supports transitional interfaces

A Word from our Sponsors

Come to Seattle

ISWC 2002

International Symposium on Wearable Computers Seattle, Washington, USA

Oct 7th - Tutorials/Workshops Oct 8th-10th – Paper Presentations

Demos, Fashion show, Gadget show

http://iswc.tinmith.net/

Come to New Zealand

PostDoc Jobs !

• HIT Lab (New Zealand) Christchurch, New Zealand 2 positions (1-5 years) Computer graphics 3D interface design Interactive Experiences EE hardware design

MagicBook Hardware + Software

Conclusion + Future Work

Conclusions

- AR techniques can be used to develop fundamentally different collaborative interfaces
 - Provide spatial audio and visual cues
 - Removes separation between task and communication space
 - Hybrid user interfaces
 - Transitions users between reality and virtual reality

Future Work

- High Fidelity Remote AR Conferencing
 - Fully 3D virtual video views

Effect of Display Characteristics on Collaboration

- Differing Displays
 - Stereo vs. non-stereo, See-through vs. non see-through
- Differing Delays
 - 100 ms, 300 ms, etc cf. Video conferencing
- Hybrid Interfaces
 - Moving data between displays, using legacy applications
- Rigorous Evaluation Studies
- Additional Metrics
 - Cognitive measures, shared understanding

More Information

HIT Lab. New Zealand
 http://www.hitlabnz.org/

ARToolKit

http://www.hitl.washington.edu/artoolkit/

Email

Mark Billinghurst

- mark.billinghurst@hitlabnz.org

Thanks

- People
 - HIT Lab Staff and Students
 - Hirokazu Kato
 - Hiroshima City University
 - Ivan Poupyrev
 - Sony CSL
 - Kiyoshi Kiyokawa
 - Communication Research Laboratory, Tokyo
- Company
 - Chevron, Lockheed Martin, British Telecom, US Navy

Transitional Interfaces

Milgram's Continuum (1994)

Transitions

- Interfaces of the future will need to support transitions along the RV continuum
- Augmented Reality is preferred for:
 co-located collaboration
- Immersive Virtual Reality is preferred for:
 experiencing world immersively (egocentric)
 sharing views
 remote collaboration

MagicBook Metaphor

MagicBook Video

Video 8

Technology

 Reality No technology Augmented Reality Camera – tracking Switch – fly in Virtual Reality Compass – tracking Press pad – move Switch – fly out

Collaboration in the MagicBook

Egocentric

Collaboration

Collaboration on multiple levels:
 Physical Object
 AR Object
 Immersive Virtual Space

- Egocentric + exocentric collaboration
 multiple multi-scale users
- Independent Views
 Privacy, role division, scalability