Security and Privacy in a Ubiquitous World

Clemens H. Cap University of Rostock clemens.cap@computer.org

Smart Labels

Object Identity Interaction Type Interaction Circumstances

Object Location & Orientation Time of interaction Additional parameters

Absolute:	eg. Geographical coordinates
Relative:	eg. To known object
Semantic:	eg. Contextual interpretation
Absolute:	eg. UTC
Relative:	eg. Simultaneously, After
Semantic:	eg. Contextual interpretation
Environment:	eg. Temperature
Object proper	ties: eg. Size, Ownership
Object dynam	ics: eg. History

Read only fields Writeable fields Associative fields Sensor fields

<SUITCASE>
bought-by: Clemens Cap
bought-at: Kaufhof
loaction: 49° 33' 22'', 23° 23', 34''
location: Rostock
location: Car with license plate HRO-XC7
content: 1 blue jeans, 5 shirts, ...
value: 500.- USD

</SUITCASE>

We shall assume

- Every object carries a label
- High density of readers

Realistic assumption?

- Costs
- Standards & Interoperability
- Benefits

We shall assume

- Every object carries a label
- High density of readers

Realistic assumption?

- CostsStandards & Interoperability
- Benefits

Capacitive coupling

- No copper coils
- Printed antenna
- Defect tolerance
- Motorola Bistatix

Polymer based logic

- Easier process
- Promising examples
- Infineon / Erlangen / Ulm

Economies of Scales

We shall assume

- Every object carries a label
- High density of readers

Realistic assumption?

- Costs
- Standards & Interoperability
- Benefits

Example

If my shoes leave my house without my umbrella and there is a forecast for rain, then inform me accordingly

- Language to describe intended behaviour of system
- Logic to reason about behaviour of the system
- Implementation straight forward
- Limited control on garbage collection via resource destruction

So what is the story?

- A family tragedy ?
- A policeman on his daily tour ?
- A mafia boss caught on his daily tour ?
- A medical doctor called in for an emergency ?
- A taxi driver at work ?
- • •

Lessons learned so far

- **Lesson 1:** Raw sensor data is practically meaningless
- Lesson 2: Derivation of semantics is (very) difficult Additional info may be required
- **Lesson 3:** Mining in raw sensor data can be misleading
- **Lesson 4:** Must protect raw sensor data

Technical Approaches (1)

No security

- Everyone can read / write / access label
- Attack: Buy compatible reader / label

Password protection

- Password used to read / write / access label
- Structure: Several passwords & access areas
- Attack: Crack password (but: blocking mechanism) [but: DOS attack] {but: reader auth}
- Attack: Replay password
- Attack: Sniff the password (but: encrypt it) [but: replay attack]

Technical Approaches (2)

Rolling code system

- Get a new password every time
- Synchronize time of generating device
- Synchronize state of generating device But: out-of-synch, state replication

(SecureID token)

(car alarm)

Challenge response

- Reader provides a challenge
- Label calculates a response
- Attack: Man-in-the-middle (but: reader must provide proper challenge)

Overall Situation

Requirements

Processor must be implemented as a

- distributed
- multiparty protocol
- between sensors (and maybe computing nodes)
- with input privacy
- and resilience against cheating participants

Basic result (Yao; Chaum et al; Goldreich et al.)

• can be done if not too many cheaters are present

Example for equality of owner of shoes and umbrella

Some observations (user interviews in the FASME project)

Observation 1: The privacy & most security issues are mainly in our minds and hence must be treated accordingly

Observation 2: Privacy must be enforced by technology, not by regulations

Observation 3: Privacy must be visible to the user

Observation 4: User must be able to check what is stored about him