
 1

Providing Service in a Changing Ubiquitous
Computing Environment

Simon Schubiger-Banz, Sergio Maffioletti, Beat Hirsbrunner, Amine Tafat Bouzid *

IIUF -- Institute for Informatics
University of Fribourg
 Chemin du Musée 3

1700 Fribourg, Switzerland
*{Simon.Scubiger|Sergio.Maffioletti|Beat.Hirsbrunner|Amine.Tafat.Bouzid}@unifr.ch

Abstract

Ubiquitous computing (UbiComp) is a highly dynamic and heterogeneous environment. These aspects
increase the complexity of the development of UbiComp applications. We are currently working on an
UbiComp middleware that aims at shielding the application developer from these aspects. This paper
presents the design criteria for an UbiComp middleware as well as its classifiers that interface an
application with a changing context (the logical and physical environment). The applications based on
our middleware state their resource requirements not in terms of specific instances but through concepts
that are part of the application's ontology. Classifiers that also provide the information to perform context
dependent service instantiation in a process called “addressing by concept” give concept semantics.

Keywords : Ubiquitous Computing, Middleware, Interactive Environment, Addressing by Concept, Knowledge
Representation, Classifier System, Resource Classification, Ontology.

1 Introduction

Research in ubiquitous computing (UbiComp) is
towards the development of an application
environment able to deal with the mobility and
interactions of both users and devices. The vision
of UbiComp relies on the presence of
environments enriched by computers embedded
in everyday objects (blackboards, table, walls,
etc.) and by sensors able to acquire information
from the context. An UbiComp application is
described by a set of services and is realized by
the interaction between a group of devices called
a federation. Every service may be associated to a
specific device that supplies its implementation.
UbiComp applications usually depend on
resources provided by the context. Therefore,
describing these resources is an important issue.
The classical approach is standardizing interfaces
for resource access and selection. Unfortunately,
standardization is slow, usually involves several
compromises and the resulting specifications are
seldom open enough to allow innovation.
Instead of enforcing a standardized view for the
application, we propose a middleware that
decouples the high-level concepts (abstractions)
from the instances implemented by each context.

The concept “nearest printer” [1] for instance may
be used no matter how a context supplies the
corresponding implementation.
Every UbiComp application relying on our
middleware will provide its own view of the
world through ontology. Ontology is basically a
collection of concepts an application depends on.
This means that an application expresses its
resource requirements in terms of its concepts
instead of addressing specific resources directly
for example by an URL.

2 Interactive Environments

It is an important requirement for UbiComp
applications to provide an environment in which
specialized computing instruments1 can be
accommodated and integrated into existing
application contexts. Interactive environments are
introduced to formalize the base execution level
for the abstraction layers UbiComp applications
will rely on. They model physical regions of the
world enriched by computing instruments.

1 With “computing instrument” we refer to both devices and sensors.
It identifies the abstract idea of computers integrated in our everyday
environment.

 2

They have a large number of hardware and
software components that need to cooperate; they
tend to be highly dynamic and require
reconfiguration and resource management on the
fly as their components and inhabitants change
and as they adjust their operation to suit the
learned presence of their user.
Intelligent Environments defined in the Metaglue
[6] project are an example.

3 Common Middleware

The few existing integrated multi-device
computer environments today tend to be highly
specialized and based on application-specific
software. Applications developed for interactive
environments should be able to interconnect and
manage large numbers of disparate hardware and
software components.
They should operate in real-time; dynamically
add and remove components to a running system
without interrupting its operation; control
allocation of resources; and provide a means to
capture persistent state information.
In order to model applications in this domain we
need to define a common design methodology
based on new paradigms independents from the
technology. We are investigating a model to
abstract the main components of an UbiComp
system in order to formalize the development of
Interactive Environment applications.
Thank to these abstractions our middleware will
present a uniform access abstraction for different
ubiquitous devices, allowing them to interact and
cooperate. This allows us to write applications
scaling both on services offered and on devices
composing the system.
Existing projects like Oxygen [5], Nexus [3],
Beach [7] and Metaglue [6] address the main
functionalities of a UbiComp middleware but do
not consider higher level service classification, so
applications can not rely on a suitable abstraction
layer for describing their functionalities.
Our approach allows applications to define their
own ontology for the resources they may offer
and require. These high level concepts will be
instantiated with implementations depending on
each application context. This allows both the
application and the instruments to use a high-level
service description for interaction. In such a way
each computing instrument is also able to roam

from one application context to another (even if
the other is using another ontology) without
changing its service description.

4 UBIDEV: The Software Abstraction

Any computing instruments should be able to
communicate with any other instrument no matter
of its origin or manufacturing.
The concept UBIDEV has been introduced to
describe the computing instruments abstraction in
an application context where different devices
have to interact with each other supplying a group
of coordinated services. Thanks to this abstraction
we can define a generic interaction scheme for
UbiComp applications.
The idea behind UBIDEV is to provide a common
framework, which allow existing computing
instruments to cooperate and carry out their
particular information, data and processing tasks.
UBIDEV presents an abstract reference model to
describe computing instruments interactions. It
divides the functions into distinct yet connected
layers. The model is divided in five levels of
interaction whose functionalities are similar to
those of the Open System Interconnect (OSI) [4]
model.

UBIDEV Layers

The UBIDEV layers have been conceived to
specify the sequence of interaction each
computing instrument has to follow when
belonging to a specific application context.

• The medium layer is concerned with all the

physical communication capabilities of the
device. It specifies the medium used by the
device in order to exchange information with
the application. The heterogeneity of devices
and networks asks for an integrated, seamless
communication framework.

• The data management layer takes care of all

constrains in a communication abstraction
(error-free transfer, logical to physical address
mapping, etc.). This layer should ensure reliable
communication connections when instruments
communicate within an application context and
across two different application contexts.

 3

• The federation management layer allows
session establishment in the application context
between the device and the existing federation.
This layer supplies the suitable abstraction for
describing software entities able to roam from
one application context to another.

• The service layer describes how services may

be loaded, discarded and organized. It also
allows the devices to specify and classify the
services they are able to supply to the
application. According to the specifications in
this layer the middleware may choose to
delegate to a specific device one or more
services according with its capabilities.

• The application layer represents the user level

abstraction; it is concerned with the user
interface for the specific application context.

5 Ontologies and Concepts

UbiComp applications as well as the different
UBIDEV layers express their resource
requirements in terms of concepts that are
matched with services available in the current
application context.
For that purpose, each application describes its
view of the world by ontology. Figure 1 gives an
overview of the interaction of the different parts.

Figure 1: An overview of the relations between application,
ontology, services and devices. An application states its
requirements in terms of concepts. Concepts are organized in
ontology. Classifiers analyse the context and store the device and
service classification in a catalogue. The catalogue is used to
associate concepts with services during concept instantiation.

The following informal definition of ontology
will be used throughout this paper that is more
directed towards a usage for UBIDEV:

Definition 1 An ontology is an agreed
vocabulary of common terms and their meaning
within a context of communicating entities.

In a more practical sense, entities that agree with
an ontology, will use the same terms for making
assertions and queries with respect to the same
meanings of the terms.
This definition opens several questions that are
addressed in the following sections. According to
definition 1, an ontology is a vocabulary of terms.
A concept has a semantic that is given by a
classifier. Classifiers are usually built on top of
existing services; for example a c-compiler is a
good classifier for resources representing c-
programs. This means that a classifier will
associate the concept “c-program” to a resource if
it can be compiled by a c-compiler. The semantic
of the concept “c-program” is given implicitly by
the c-compiler used for the classification by the
classifier. One may read this implicit definition of
the concept “c-program” as “a resource is an
instance of the concept c-program if and only if a
compilation with a c-compiler is successful.”
A resource is said to be an instance of a concept if
a classifier associated that concept with the
resource in question.

6 Semantics of Concepts

In order to give meaning to a concept, terms
either state explicitly the relation of that concept
with other concepts or meaning is implicitly given
by classifiers2. Classifiers are services3 that given
a resource and an ontology, output concepts of
that ontology. This basically means that a
classifier associates one or more concepts it
knows about with a resource, therefore marking
the resource as an instance of these concepts.

2 The use of classifiers in the knowledge representation domain is
not new. For example the LOOM System [2] includes a classifier but
for a different reason and there is only one single classifier in
contrast to the multiple classifier approach presented here.
3 Classifiers are considered a special kind of resources; these are
JAVA classes in the current prototype that implement the “Classifier”
interface.

 4

Figure 2: An example of a classifier

Figure 2 gives an example of a classifier that
classifies different pages description languages.
The classifier takes an ontology and a resource as
input. The input ontology is either a superset of
the classifiers ontology or contains concepts that
are equivalent with the classifiers concepts. The
classifier outputs zero or more concepts of the
input ontology that the resource is an instance of.
The classifier limits its output to concepts defined
in the input ontology because other concepts,
even if known to the classifier, will not make any
sense for the application providing the input
ontology4. In the example depicted in figure 2, the
printer is an instance of the concepts
“Interpreter”, “PCL” and “PostScript” but not
“ESC P”. Classifiers have their own ontology,
usually the domain they are able to classify.
Classifications of resources are stored and used as
a cache when an instance of a concept is
requested. The process of requesting an instance
of a concept is called “addressing by concept”
because the instance is referred to by a concept
instead of specific resource identification such as
a memory address, a name or an URL.
Addressing by concept occurs at different points
in the middleware and the applications.
Even the lowest UBIDEV layers use classifiers
and addressing by concept. For example a PDA
equipped with an IrDA, a Bluetooth and an
Ethernet interface will continually classify its
environment by sending polling packets on these
interfaces. If a connection over one of these
interfaces can be established, the corresponding
concepts like the medium and the data layer can
be instantiated.
This process continues, classifying for example
the protocols used over the Ethernet interface and

4 An applicat ion can only refer to concept of its own ontology; only
for these concepts the application has classifiers and therefore a
semantic. Concepts outside the ontology of the application thus do
not have a meaning for the application.

can go up to instantiating high level concepts such
as “Nearest Printer”, “Blackboard” in the service
layer and “Word Processor” in the application
layer.

7 Conclusion

In this paper we have presented the general idea
of a middleware that provides the basic
functionalities for modelling interactive
environment applications.
The notion of UBIDEV has been designed for
answering the need to provide a unified vision of
the different computing functionalities issuing
from convergence between information and
communication technologies.

References

[1] Alan Kaminskz. Jini Print Service Design.
http://developer.jini.org/exchange/users/jpgwg/JiniPrin
tService/design20000215/index.html, Februarz 2000

[2] David Brill, Loom Reference Manual, Version 2.0 .
University of Southern California, December 1993.

[3] Fritz, Hohl and Uwe Kubach and Alexander
Leonhardi and Kurt Rothermel. Next Century
Challenges: Nexus – An Open Global Infrastructure
for Spacial Aware Applications. ACM, 1999.

[4] J.D. Day and H. Zimmermann. The OSI Reference
Model. Volume 71, pages 1334-1340. IEEE,
December 1983.

[5] Laboratory for Computer Science and Artificial
Intelligence Lab. MIT Project Oxygen.
http:// www.oxygen.lcs.mit.edu/, June 2000.

[6] Michael H. Coen and Brenton A. Philips and
Nimrod Warshawshy and Luke Weisman and Stephen
Peters and Peter Finin. Meeting the Conputational
Needs for Intelligent Environments: The Metaglue
System. Submitted to MANSE99, 1999.

[7] Norbert A. Streitz and Jörg Geissler and Torsten
Holmer. Roomware for Cooperative Buildings:
Integrated Design of Architectural Spaces and
Information Spaces. In N. A. Streitz, S. Konomi, H. J.
Burkhardt, editor, LNCS 1370, Proceedings of the
First International Workshop on Cooperative
Buildings, pages 4-21, Darmstadt, February 1998.

