
© F. Mattern, ETH Zürich 1

Jini
Kurzfassung als Kapitel für die Vorlesung
„Verteilte Systeme“

Friedemann Mattern
(unter Nutzung von Teilen von Andreas Zeidler und Roger Kehr)

F. Ma. 2

Infrastructure (“middleware”) for dynamic,
cooperative, spontaneously networked systems

facilitates realization of distributed applications

JiniJini

© F. Mattern, ETH Zürich 2

F. Ma. 3

Infrastructure (“middleware”) for dynamic,
cooperative, spontaneously networked systems

facilitates realization of distributed applications

Jini

• framework of APIs with useful
functions / services

• helper services (discovery, lookup,...)
• suite of standard protocols and
conventions

F. Ma. 4

Infrastructure (“middleware”) for dynamic,
cooperative, spontaneously networked systems

facilitates realization of distributed applications

Jini

• services, devices, … find each other
automatically (“plug and play”)

• dynamically added / removed components
• changing communication relationships
• mobility

© F. Mattern, ETH Zürich 3

F. Ma. 5

Jini

Infrastructure (“middleware”) for dynamic,
cooperative, spontaneously networked systems

facilitates realization of distributed applications

Based on Java and implemented in Java
may use RMI (Remote Method Invocation)
typed (object-oriented) communication structure
requires JVM / bytecode everywhere
code shipping

F. Ma. 6

Jini

Strictly service-oriented
everything is a service (hardware / software / user)
Jini system is a federation of services
mobile proxy objects for service access

Infrastructure (“middleware”) for dynamic,
cooperative, spontaneously networked systems

facilitates realization of distributed applications

Based on Java and implemented in Java
may use RMI (Remote Method Invocation)
typed (object-oriented) communication structure
requires JVM / bytecode everywhere
code shipping

© F. Mattern, ETH Zürich 4

F. Ma. 7

(Almost) everything is a service
e.g. persistent storage, software filter, …

Jini’s run-time infrastructure offers mechanisms
for adding, removing, finding, and using services
Services are defined by interfaces and provide
their functionality via their interfaces

services are characterized by their type and their
attributes (e.g. “600 dpi”, “version 21.1”)

Services (and service users) “spontaneously”
form a system (“federation”)

Service Paradigm

F. Ma. 8

Jini: Global Architecture

Lookup Service (LUS)
main registry entity and brokerage
service for services and clients
maintains information about
available services

Services
specified by Java interfaces
register together with proxy objects
and attributes at the LUS

Clients
know the Java interfaces of the services,
but not their implementation
find services via the LUS
use services via proxy objects

Lookup
Service

ClientClientClient ServiceServiceService

© F. Mattern, ETH Zürich 5

F. Ma. 10

Network Centric

Jini is centered around the network
“the network is the computer”

Network = hardware and software infrastructure
includes helper services

View is “network to which devices are connected to”,
not “devices that get networked”

network always exists, devices and services are transient
Set of networked devices is dynamic

components and communication relations come and go
Jini supports dynamic networks and adaptive systems

adding and removing components should only minimally affect
other components

F. Ma. 11

Spontaneous Networking

Objects in an open, distributed, dynamic world
find each other and form a transitory community

cooperation, service usage, …

Typical scenario: client wakes up (device is
switched on, plugged in, …) and asks for services
in its vicinity
Finding each other and establishing a connection
should be fast, easy, and automatic

© F. Mattern, ETH Zürich 6

F. Ma. 14

Some Fallacies of Common
Distributed Computing Systems

The idealistic view…
the network is reliable
latency is zero
bandwidth is infinite
the network is secure
the topology is stable
there is a single administrator

…isn’t true in reality
Jini addresses some of these issues
at least it does not hide or ignore them

F. Ma. 15

Bird’s-Eye View on Jini

Jini consists of a number of APIs
Is an extension to the Java
platform dealing with
distributed computing
Is an abstraction layer between
the application and the
underlying infrastructure
(network, OS)

Jini is a kind of “middleware”

Network

Operating system

Java technology

Jini technologyJini technology

Applications Services

© F. Mattern, ETH Zürich 7

F. Ma. 16

Jini’s Use of Java

Jini requires JVM (as bytecode interpreter)
homogeneity in a heterogeneous world
is this realistic?

But: devices that are not “Jini-enabled” or that do
not have a JVM can be managed by a software
proxy which resides somewhere in the net

run protocols
for discovery and
join; have a JVM

F. Ma. 17

Jini Infrastructure

Main components are:
lookup service as repository / naming service / trader
protocols based on TCP/UDP/IP

discovery & join, lookup of services
proxy objects

transferred from service to clients
represent the service locally at the client

Goal: spontaneous networking and formation of
federations without prior knowledge of local
network environment
Problem: How do service providers and clients
learn about their local environments?

© F. Mattern, ETH Zürich 8

F. Ma. 18

Lookup Service (LUS)

Main component of every Jini federation
Repository of services
Similar to RMI registry or naming services of other
middleware architectures
Functions as a “help-desk” for services and clients

registration of services (services advertise themselves)
distribution of services (clients lookup and find services)

Has mechanisms to bring together services and
clients

F. Ma. 19

Lookup Service

Client

Lookup
service

Service

-

registerlo
ok

up

use

Jini-
Federation

© F. Mattern, ETH Zürich 9

F. Ma. 20

Example

Lookup service

Office
application

Printer
proxy arbitrary protocol

Communication between
application and printer via
functional calls of the proxy

Printer
proxy

Printer
proxy

F. Ma. 21

Lookup Service

Uses Java RMI for communication
objects („proxies“) can migrate through the net

Not only name/address of a service is stored (as in
traditional naming services), but also

set of attributes
e.g.: printer(color: true, dpi: 600, ...)

proxies, which may be complex classes
e.g. user interfaces

Further possibilities:
increase robustness by running redundant lookup services
responsibility can be distributed to a number of (logically
separated) lookup services

© F. Mattern, ETH Zürich 10

F. Ma. 22

Discovery: Finding a LUS

Goal: Find a lookup service (without knowing
anything about the network) to

advertise (register) a service
find (look up) an existing service

Discovery protocol:
multicast to well-known address/port
lookup service replies with a serialized object (its proxy)

communication with LUS via this proxy

F. Ma. 23

Discovery
Where is
the lookup
service?

Lookup Service

???

Lookup Service
That’s me!!!

Multicast Request

Reply

Communication

Lookup Service
Lookup ServiceLookup Service

ProxyProxy

Lookup-Service

ProxyProxy

© F. Mattern, ETH Zürich 11

F. Ma. 24

Multicast Discovery Protocol

No information about the host network needed
Active search for lookup services
Discovery request uses multicast UDP packets

multicast address for discovery is 224.0.1.85
default port number of lookup services is 4160
recommended time-to-live is 15
usually does not cross subnet boundaries

Discovery reply is establishment of a TCP connection
port for reply is included in multicast request packet

F. Ma. 25

Join: Registering a Service

Assumption: Service provider already has a proxy
of the lookup service (discovery)
It uses this proxy to register its service
Gives to the lookup service

its service proxy
attributes that further describe the service

Service provider can now be found and used in
this Jini federation

© F. Mattern, ETH Zürich 12

F. Ma. 26

...

Lookup Service

Service database in LUS

Join

Lookup ServiceLookup Service

ProxyProxy

Entry 1 Entry 2 Entry n...
Service
proxy

Entry1Entry2 Entry n...
Service
proxy

Registration

Service

Registration

F. Ma. 27

Join: More Features

To join, a service supplies:
its proxy
its ServiceID (if previously assigned; “universally unique identifier”)
set of attributes
(possibly empty) set of specific lookup services to join

Service waits a random amount of time after start-up
prevents packet storm after restarting a network segment

Registration with a lookup service is bound to a lease
service has to renew its lease periodically

© F. Mattern, ETH Zürich 13

F. Ma. 28

Lookup: Searching Services

Client creates query for lookup service
in the form of a “service template”
matching by registration number of service and/or service type
and/or attributes possible
attributes: only exact matching possible (no “larger-than”, ...)
wildcards possible („null“)

Via its proxy at the client, the lookup service returns zero,
one or more matches (i.e., server proxies)
Selection of several matches usually done by client

Client uses service by calling functions of the service proxy
Any “private” protocol between service proxy and service
provider is possible

F. Ma. 29

...

Lookup Service

Service database in LUS

Entry1Entry2 Entry n...
ServiceService
proxyproxy

Entry1Entry2 Entry n...
ServiceService
proxyproxy

Lookup

Lookup Service

ProxyProxy Lookup
?

?
?

proprietary

proprietary

protocol

protocol

Client

Entry1Entry2 Entry n...
ServiceService
proxyproxy

© F. Mattern, ETH Zürich 14

F. Ma. 31

Proxies

Proxy object is stored in the lookup service upon
registration

serialized object
implements one or more service interfaces

Upon request, stored object is sent to the client
as a local proxy of the service

client communicates with service implementation via
its proxy: client invokes methods of the proxy object
proxy implementation hidden from client

F. Ma. 32

Smart Proxies

Parts of or whole functionality may be executed by the
proxy at the client
When dealing with large volumes of data, it usually
makes sense to preprocess parts of or all the data

e.g.: compressing video data before transfer

Partition of service functionality depends on service
implementer’s choice

client needs appropriate resources

ClientClient ServiceService

ProxyProxy Communication

ClientClient ServiceService

ProxyProxy Comm ication

© F. Mattern, ETH Zürich 15

F. Ma. 33

Leases

Leases are contracts between two parties
Leases introduce a notion of time

resource usage is restricted to a certain time frame

Repeatedly express interest in some resource:
I’m still interested in X

renew lease periodically
lease renewal can be denied

I don’t need X anymore
cancel lease or let it expire
lease grantor can use X for something else

F. Ma. 35

Distributed Events

Objects on one JVM can register interest in certain
events of another object on a different JVM
“Publisher/subscriber” model

Subscriber Event
source

1. Registration

2. Event occurs

3. Send notification

© F. Mattern, ETH Zürich 16

F. Ma. 36

Distributed Events – Example

Example: printer is plugged in
printer registers itself with local lookup service

Maintenance application wants to update software
Lookup-Service

Maintenance
application

Any protocol

Proxy,
attributes

Proxy,
attributes

Proxy,
attributes

F. Ma. 37

Maintenance application is run on demand, search for
printers is “outsourced”

“sensor service” looks for certain services
on behalf of the maintenance application
application registers for
events showing the arrival
of certain types of printers
sensor observes the
lookup service
notifies application as soon
as matching printer arrives
via distributed events

Lookup-Service

Maintenance
application

Sensor
service

Tell me about the arrival
of new printers of type x!

Distributed Events – Example

© F. Mattern, ETH Zürich 17

F. Ma. 38

Example: printer arrives, registers with lookup service
printer performs
discovery and join
sensor finds new
printer in lookup
service
checks if there
is an event registration
for this type of printer
notifies all
interested objects
maintenance
application retrieves
printer proxy and
updates software

Lookup-Service

Maintenance
application

A new printer arrived.
I have to notify all
interested objects!

Notification

Sensor
service

Proxy,
attributes

Proxy,
attributes

Distributed Events – Example

F. Ma. 39

Jini Issues and Problem Areas

Security
important especially in dynamic environments
services use other services on behalf of the user

principals, delegation
Simply rely on Java security?

Scalability
does Jini scale to a global level?

Java centric
Similar, non-Java-based systems

UPnP, Bluetooth SDP, SLP, HAVi, Salutation, e-speak, HP Chai,...
open, Internet-scale infrastructures (e.g., Web services)

