
©Gustavo Alonso. IKS. ETH Zürich 1Low level caching

Data Striping
The idea behind data striping is
to distribute data among
several disks so that it can be
accessed in parallel
Data striping takes place at a
low system level (it is not user
driven) and should be
distinguished from data
partitions in databases (which
are user or application driven)
Reasons for striping:

increase disk bandwidth by
concurrently retrieving the
data from several disks
decrease seek time (all
disks do the seek in
parallel)
handle several disk request
in parallel

Data striping is implemented in
disk arrays or RAID systems

data blocks

disk controller
one I/O stream

disk controller

©Gustavo Alonso. IKS. ETH Zürich 2Low level caching

Fine vs coarse grain striping
FINE GRAIN

Fine grained disk arrays use
small data blocks so that all
requests are serviced using all
the disks at the same time
The idea is to maximize the
disk bandwidth (data transfer)
The penalty for positioning the
disk heads for every request is
sequential, i.e., it must be paid
for every request since
requests are dealt with
sequentially and all disks are
used for every request
Only one logical I/O request

can be serviced at a time

COARSE GRAIN
Coarse grain disk arrays use
large data blocks so that:

small request can be
serviced in parallel since
they will access only a few
disks
large request can still
benefit from high transfer
rates by using many disks

For small requests, the seek
penalty is not sequential since
several disks are used at the
same time

©Gustavo Alonso. IKS. ETH Zürich 3Low level caching

Fault tolerance
Disk arrays have the problem of using many independent disks:

probability of having a failure is the probability of any of the
disks failing
if probability of a disk failing is P, the probability of a failure in a
disk array with N disks is NxP

Failures in disk arrays are dealt with by using redundancy and/or
mirroring:

parity information is used to both detect and correct disk errors
mirroring is based on replication of data blocks

The striping and parity depends on the block size:
bit-interleaved: each block is one bit, e.g., a byte can be stored in
8 disks. Parity is then on a per byte basis
block interleaved: each block contain several bytes (up to kbytes).
Parity is on a per block basis

The combination of parity and striping unit gives raise to the
different RAID levels

©Gustavo Alonso. IKS. ETH Zürich 4Low level caching

RAID level 0
A RAID level 0 strips the data
across the disks but without
adding any redundancy
The data is divided into blocks
(of arbitrary size) and the
blocks uniformly distributed
across the disks
I/O bandwidth is greatly
improved (N times that of a
single disk) for both reading
and writing by using multiple
disk channels in parallel
A failure in one of the drives
makes the entire RAID
unavailable (no fault tolerance)
Easily implemented in software
No constraints on the number
of disks

A B C D
E F G H
I J K L
M N O P

data blocks

A
E
I
M

B
F
J
N

C
G
K
O

D
H
L
P

disk controller

©Gustavo Alonso. IKS. ETH Zürich 5Low level caching

RAID level 1
Bit interleaved
Fault tolerance by mirroring (no
parity)
Read operations are performed
on the copy that offers the
smallest seek time
Two read operations can be
performed in parallel. Writes
are sequential
50 % of the disk capacity is
used for redundancy purposes.
I/O bandwidth is only half of
RAID level 0 (N/2)
Recovery from failures is
trivial
Requires at least two disks (and
twice as many as RAID level 0)
It can handle multiple disk
failures (as long as they are not
on a mirrored pair)

A B C D
E F G H
I J K L
M N O P

bits

A
C
E
G

B
D
F
H

disk controller

A
C
E
G

B
D
F
H

redundant data
data

...

©Gustavo Alonso. IKS. ETH Zürich 6Low level caching

RAID level 2
Bit interleaved
Fault tolerance by mirroring
based on Hamming codes
Hamming codes implement
parity for overlapping
segments of data. They
require less space than full
mirroring but must be
implemented in hardware
Recovery is more complex
(depends on the parity of
several segments)
I/O bandwidth is (N - log
N), with log N being the
number of disks needed for
storing the parity
It can handle multiple disk
failures (depending on the
failures)

A B C D
E F G H
I J K L
M N O P

bits

A
D
G
J

B
E
H
K

C
F
I
L

disk controller

f(A,B)
f(D,E)
f(G,H)
f(J,K)

f(B,C)
f(E,F)
f(H,I)
f(K,L)

parity data
data

©Gustavo Alonso. IKS. ETH Zürich 7Low level caching

RAID level 3
Bit interleaved
There is a disk devoted to
store the bit-wise parity of the
other disks
I/O bandwidth much better
than levels 1 and 2 (N - 1).
It can only handle one request
at a time (no parallelism)
Recovery is relatively simple
(use parity to restore the data)
Tolerates one disk failure
This is fine grain stripping
(adequate for applications that
use large files, e.g., multimedia)

A B C D
E F G H
I J K L
M N O P

bits

A
E
I
M

B
F
J
N

C
G
K
O

D
H
L
P

disk controller

XOR(a,b,
c,d)
XOR(e,f,
g,h)
XOR(i,j,
k,l)

XOR(m,n,
o,p)

©Gustavo Alonso. IKS. ETH Zürich 8Low level caching

RAID level 4
Block interleaved (blocks of
arbitrary size, the size is
called the striping unit)
There is a disk devoted to
store the block-wise parity of
the other disks
Write operations are sequential
(all of them need to update the
parity disk)
Read operations can be done in
parallel when on different
blocks
Parity disk is not used in read
operations (limiting bandwidth)
Tolerates one disk failure
This is coarse grain stripping
(adequate for standard
databases with few update
operations)

A B C D
E F G H
I J K L
M N O P

data blocks

A
E
I
M

B
F
J
N

C
G
K
O

D
H
L
P

disk controller

XOR(a,b,
c,d)
XOR(e,f,
g,h)
XOR(i,j,
k,l)

XOR(m,n,
o,p)

©Gustavo Alonso. IKS. ETH Zürich 9Low level caching

XOR(m,n,
o,p)

RAID level 5
Block interleaved (blocks of
arbitrary size, the size is
called the striping unit)
The block-wise parity is
uniformly distributed across all
disks
Write operations can be done
in parallel
Read operations can be done in
parallel when on different
blocks
Tolerates one disk failure,
recovery is somewhat complex
Overall good performance
Small writes can be quite
inefficient (because they
require to read other blocks to
complete the parity)
Most popular approach (also in
software)

A B C D
E F G H
I J K L
M N O P

data blocks

E
I
M

J
N O

L
P

disk controller

XOR(a,b,
c,d)

XOR(e,f,
g,h)

XOR(i,j,
k,l)

A
G
C

F
B

K
H
D

©Gustavo Alonso. IKS. ETH Zürich 10Low level caching

Comparison of RAID levels

RAID level 1
(mirrored)

RAID level 2
(Hamming codes)

RAID level 3
(parity disk)

RAID level 4
(parity disk)

RAID level 5
(rotated parity)

Compare for small and large write and read operations ...

Bi
t

in
te

rl
ea

ve
d

Bl
oc

k
in

te
rl

ea
ve

d

©Gustavo Alonso. IKS. ETH Zürich 11Low level caching

RAID level 10
RAID level 10 uses a RAID
level 0 controller to strip the
data. Each striping unit is then
mirrored by a RAID level 1
controller
Same fault tolerance as RAID
level 1
Requires at least 4 disks
I/O bandwidth can be slightly
better than level 1 because the
level 1 controllers have less
disks to manage

A B C D
E F G H
I J K L
M N O P

bits

A
C
E
G

B
D
F
H

RAID level 0
disk controller

A
C
E
G

B
D
F
H

RAID level 1
disk controller

RAID level 1
disk controller

©Gustavo Alonso. IKS. ETH Zürich 12Low level caching

A
E
I
M

B
F
J
N

XOR(a,b)

XOR(e,f)

XOR(i,j)

XOR(m
,n)

RAID level 53
It has the wrong name (it
should be 30)
RAID level 53 uses a level 0
controller to stripe the data
and then gives each striping
unit to a level 3 controller
Same fault tolerance as RAID
level 3

A B C D
E F G H
I J K L
M N O P

bits

RAID level 0
disk controller

RAID level 3
disk controller

RAID level 3
disk controller

C
G
K
O

D
H
L
P

XOR(c,d)

XOR(g,h)

XOR(k,l)

XOR(o
,p)

©Gustavo Alonso. IKS. ETH Zürich 13Low level caching

RAID level 0 + 1
A B C D
E F G H
I J K L
M N O P

bits

A
C
E
G

B
D
F
H

RAID level 1
disk controller

A
C
E
G

B
D
F
H

RAID level 0
disk controller

RAID level 0
disk controller

RAID 0 + 1 uses a level 1
controller for mirroring the
data and level 0 controllers for
striping the mirrored disks
Worse failure behavior that
level 10
It can execute reads in parallel
(unlike level 10)

©Gustavo Alonso. IKS. ETH Zürich 14Low level caching

Small writes: read-write-modify
In several RAID levels, small
writes are a problem because
they modify the parity but may
not touch all the data
fragments that define the
parity
Thus, small writes in these
cases require to read all the
data fragments that are
needed for the parity even if
they have nothing to do with
the write operation itself
The read-write-modify
approach requires to read the
data to modify before writing
it. With the old data and the
new data, the new parity can be
computed without having to
read all the fragments
This allows to perform writes
in parallel (depends on RAID
level)

data block parity block

new data block (write)

XOR

1
1

1

2
2

©Gustavo Alonso. IKS. ETH Zürich 15Low level caching

Small writes: regenerate-write
An alternative is to read all
data blocks needed for
calculating the parity and then
to regenerate the parity with
the new data block
With regenerate write, small
writes use all the disks and can
be performed only one at a
time

data block parity block

new data block (write)

XOR

1
1

1

2
1

1

©Gustavo Alonso. IKS. ETH Zürich 16Low level caching

More on caching

main
memory

L2 cache

L1 cache

CPU registers

pages
(~4 KB)

L2 cache line (16-128 bytes)

L1 cache line (16-32 bytes)

disk

disk
controller

server

OS

File server

client

OS

application

Internal
caching
within
one node

©Gustavo Alonso. IKS. ETH Zürich 17Low level caching

Multi-level caching
Since disks are comparatively slow, disk controllers (particularly in
RAID systems), provide a cache. With sufficient locality of access,
this cache greatly speeds up access to the disk (and also facilitates
writing, which can be done to the cache rather than to the disk
directly)
The same idea is applied at every level in the system. If the disks
are accessed through a server, the server will cache data at both
the operating system and the application (file server) level. The
client will also cache data at the operating system and the
application level (and might also cache data in its local disk)
In a multilevel caching system, the closer to the hardware the cache
is, the less effective the cache:

the reason is that locality is determined by the application, which
is doing its own caching. Any further optimizations are done by
the OS at the client machine, then by the file server, then the
OS at the file server, etc.
this can be rephrased as follows: the further the cache from the
source of locality, the less effective it will be
corollary: caching at the lower levels helps with multi-application
access patterns not with application access patterns

©Gustavo Alonso. IKS. ETH Zürich 18Low level caching

Caches in parallel architectures
When applications running on a
multiprocessor machine are
independent of each other,
caching makes sure each
application gets the data it
needs
When the application is a
parallel application, chances are
that each thread of execution
may not be entirely independent
of each other: they will need to
access the same data
Under such circumstances,
caching results in replication of
data blocks at different
locations
Like in any replication protocol,
maintaining the coherency
(consistency) of the copies is
the main problem of cache
based systems

cache

registers

cache

registers

main
memory

symmetric
multiprocessors

disk

Node 1

application

Node 2

application

cluster

©Gustavo Alonso. IKS. ETH Zürich 19Low level caching

Sessions and transactions
Session (or snapshot)
semantics

modifications to a data
block are visible only on the
node with the copy being
modified. The other nodes
do not see the changes
changes become visible once
the data block is released
(e.g., file is closed) but
nodes must actively read
the data block to observe
the changes
nodes that do not read the
data block again, will still
see the old values
this is a last writer wins
strategy

Andrew File System uses these
semantics

Transaction semantics:
based on bracketing the
operations with a BOT and
EOT
any changes to a data block
are not visible until EOT is
executed
changes are propagated to
all nodes upon transaction
termination

Typical of database systems

Both approaches do not
maintain consistency, it is the
application developer who has
to make sure things work
properly

©Gustavo Alonso. IKS. ETH Zürich 20Low level caching

Tokens and leases
Token based caching

in order to modify the local
copy of a data block, a node
needs the token
as long as a node has the
token, it can freely modify
the data block
if nobody is holding the
token on that data block,
any node can read the data
block
when a node requests the
token, copies in other
caches are invalidated
problems arise if the token
is lost (the node holding it
fails or is disconnected
from the rest of the
system)

Lease based caching
a lease is identical to a
token but it has an
expiration time
the lease (permission to
write) is given only for a
limited amount of time
after the time expires, the
lease must be renewed
this prevents problems with
failures

Tokens and leases can be used
at different granularities
(files, blocks, or user defined)

©Gustavo Alonso. IKS. ETH Zürich 21Low level caching

Parallel Cache Management in Oracle
Oracle has a shared disk architecture where nodes can locally cache
data blocks from the disk
The management of cached blocks is done through Parallel Cache
Management locks (PCM locks):

PCM locks cover any type of data block on disk (data, index, undo,
etc.)
PCM locks can be set at different block granularities (one or
multiple blocks)
A PCM lock allows only one node to modify a block
After modification, any node wanting to read or modify the data
block (i.e., wanting to set a PCM lock on it) must wait until the
data block is written to disk
communication across nodes occurs in terms of pings: a ping
occurs every time a block must be written to disk before another
node can read it
locking and pinging are not related!! (if the data is properly
partitioned, few pings will occur)

How to deal with PCM locks is critical to obtain good performance

©Gustavo Alonso. IKS. ETH Zürich 22Low level caching

How PCM locks work
When a node wants a block
(module ORACLE determines
which blocks to access), it
requests a PCM lock on the
block (through the module LCK)
The integrated distributed lock
manager creates or allocates
the lock as needed
If LCK needs to lock a block
that has been locked by
another node in exclusive mode,
it does a ping on the remote
node (the LMD module within
the IDLM will contact the
remote LMD module of the
remote IDLM)
Once the block is written to
disk, it can be read from the
disk (module ORACLE) and a
lock set (module LCK)

Buffer cache

LCK ORACLE

Integrated
distributed
lock manag.

LMDLMD

buffer cache

LCK ORACLE

Integrated
distributed
lock manag.

LMDLMD

node 1 node 2

©Gustavo Alonso. IKS. ETH Zürich 23Low level caching

Two types of PCM lock
Releasable

releasable locks are locks that
are dynamically allocated as
needed and released when the
block is no longer used
to obtain a releasable lock, the
lock must be first created,
then obtained (more overhead)
the advantage is that locks are
not kept on data blocks if
nobody is using them and nodes
can start much faster
Releasable locks can be hashed
for faster performance

Fixed
fixed locks are allocated at the
start in the form of a hash
table (the blocks are hashed to
the locks). Upon creation, they
are set to a null value
fixed locks are kept until some
other node makes a ping when
they will be released and set to
a null value (but the entry in
the hash table remains)
fixed locks are de-allocated
only at shutdown

©Gustavo Alonso. IKS. ETH Zürich 24Low level caching

PCM locks and files
The number of blocks covered
by a PCM lock is determined by
the user:

saying how many PCM locks
correspond to that file
(block-lock distribution
done automatically)
by default: releasable locks
with one PCM lock per block
several files can share PCM
locks (be mapped to the
same hash table of PCM
locks)
A PCM lock can cover blocks
in different files

Locks do not directly map to
blocks !!! (because blocks are
hashed, they can be mapped
anywhere in the hash table)

GC_FILES_TO_LOCKS=“A,B:44”

Assume A and B
are 2 files with
44 blocks. We
assign 44 locks

32333435
36373839
40414243
44 1 2 3
4 5 6 7
8 9 10 11

32333435
36373839
40414243
44 1 2 3

28293031

Y
X 2 blocks per lock

1 block per lock
Locks 12-27 are not used

©Gustavo Alonso. IKS. ETH Zürich 25Low level caching

More examples of lock assignment
Assume A and B
are 2 files with
16 blocks each

File A

GC_FILES_TO_LOCKS = “1-2=4”
4 locks for the 2 files, blocks are hashed to the locks

File B

lock 1
lock 2
lock 3
lock 4

Useful if the files are used together as in
•if A is modified, B must also be modified
•A and B are always used to construct a bigger data table

However, no guarantee that the contents of the blocks under
The same lock are actually correlated (see previous example).
This means one might not be able to write A and B in parallel

©Gustavo Alonso. IKS. ETH Zürich 26Low level caching

Correlated tables and files
Two or more files that are
actually correlated is a common
occurrence in parallel
databases:

star schema: with a central
table with all the important
data and many auxiliary
tables providing the
necessary details
vertically partitioned
tables: where the data is
obviously correlated

In these cases, it does not
make much sense to access the
auxiliary tables by themselves,
they are only accessed (if at
all) as a result of a search on
the main table
Associating the locks for both
is an advantage:

less locks are needed

A B C
1
2
3
4
5

10
11
12
13

6
7
8
9

A D
1
2
3
4
5

10
11
12
13

6
7
8
9

vertical partitioning

bl
oc

k
bl

oc
k

b l
oc

k b l
oc

k
b l

oc
k

WARNING: the blocks are not
aligned with the data. Same principle
as in multilevel caching

©Gustavo Alonso. IKS. ETH Zürich 27Low level caching

More examples of lock assignment
Assume A and B
are 2 files with
16 blocks each

File A

File B

GC_FILES_TO_LOCKS = “1-2=4!8”
4 locks for the 2 files, blocks under one lock
must be contiguous

lock 1
lock 2
lock 3
lock 4

Useful for operations that will modify or scan long ranges:
•in principle, both files can be modified in parallel

Alignment is not guaranteed: if a file does not have a multiple
of the size of continuous blocks, some locks will lock more
blocks than others

©Gustavo Alonso. IKS. ETH Zürich 28Low level caching

More examples of lock assignment
Assume A and B
are 2 files with
16 blocks each

File A

File B

GC_FILES_TO_LOCKS = “1-2=4!4EACH”
4 locks for each of the 2 files, blocks under one
lock must be contiguous

lock 1
lock 2

lock 5
lock 6

Useful for operations that will modify or scan medium size
ranges:

•in principle, both files can be modified in parallel
Alignment is not guaranteed: if a file does not have a multiple
of the size of continuous blocks, some locks will lock more
blocks than others

lock 3
lock 4

lock 7
lock 8

©Gustavo Alonso. IKS. ETH Zürich 29Low level caching

The curse of parallel writes

CPU

MEMORY

DISK

MEMORY

CPU
UPDATE prices
FROM ListA

NETWORK

client

1
2

3

4

5

NETWORK

ListA

3

UPDATE prices
FROM ListA4

4 4

5
Parallel writes pose a serious
problem for disk caching
independently of the locking
granularity:

data and disk blocks are not
aligned
there is no clear way to
partition the load for
function shipping and
execution in parallel

This demonstrates the same
principle:

caching at the lower levels
helps with multi-application
access patterns not with
application access patterns.
In this case, the cache
helps to execute different
functions in parallel, it
makes it very difficult to
parallelize the updates of a
single function
only solution is to physically
partition the table

©Gustavo Alonso. IKS. ETH Zürich 30Low level caching

More examples of lock assignment

Assume A and B
are 2 files with
16 blocks each

File A

File B

GC_FILES_TO_LOCKS = “1=4:2=0”
4 locks for file A, no pre-allocated locks for file B

In file A, the locks contain several blocks but the blocks are
not consecutive. In file B, the locks are not pre-allocated.
They are allocated on demand at the rate of one lock per block

lock 1
lock 2
lock 3
lock 4

©Gustavo Alonso. IKS. ETH Zürich 31Low level caching

Why releasable locks?
Releasable locks are at the finest granularity level
Maintaining a hash table at the block granularity level for a file (a
table) is very expensive since it may require tens of thousand of
entries; thus, fixed locks tend to be on multiple blocks
When a PCM lock cover multiple blocks, it might introduce false
conflicts between update operations (updates to actually different
blocks but that covered by a single lock and, therefore, cannot be
modified concurrently)
With releasable locks:

false conflicts are minimized
no ping is necessary if nobody is holding the lock (useful for

tables with a lot of update traffic)
there is a clear overhead per block access (lock must be created,

set and the released)
Releasable locks are there for those cases where fixed locks do not
work well

	Data Striping
	Fine vs coarse grain striping
	Fault tolerance
	RAID level 0
	RAID level 1
	RAID level 2
	RAID level 3
	RAID level 4
	RAID level 5
	Comparison of RAID levels
	RAID level 10
	RAID level 53
	RAID level 0 + 1
	Small writes: read-write-modify
	Small writes: regenerate-write
	More on caching
	Multi-level caching
	Caches in parallel architectures
	Sessions and transactions
	Tokens and leases
	Parallel Cache Management in Oracle
	How PCM locks work
	Two types of PCM lock
	PCM locks and files
	More examples of lock assignment
	Correlated tables and files
	More examples of lock assignment
	More examples of lock assignment
	The curse of parallel writes
	More examples of lock assignment
	Why releasable locks?

