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Data Striping
The idea behind data striping is 
to distribute data among 
several disks so that it can be 
accessed in parallel
Data striping takes place at a 
low system level (it is not user 
driven) and should be 
distinguished from data 
partitions in databases (which 
are user or application driven)
Reasons for striping:

increase disk bandwidth by 
concurrently retrieving the 
data from several disks
decrease seek time (all 
disks do the seek in 
parallel)
handle several disk request 
in parallel

Data striping is implemented in 
disk arrays or RAID systems

data blocks

disk controller
one I/O stream

disk controller
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Fine vs coarse grain striping
FINE GRAIN

Fine grained disk arrays use 
small data blocks so that all 
requests are serviced using all 
the disks at the same time
The idea is to maximize the 
disk bandwidth (data transfer)
The penalty for positioning the 
disk heads for every request is 
sequential, i.e., it must be paid 
for every request since 
requests are dealt with 
sequentially and all disks are 
used for every request
Only one logical I/O request 

can be serviced at a time

COARSE GRAIN
Coarse grain disk arrays use 
large data blocks so that:

small request can be 
serviced in parallel since 
they will access only a few 
disks
large request can still 
benefit from high transfer 
rates by using many disks

For small requests, the seek 
penalty is not sequential since 
several disks are used at the 
same time
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Fault tolerance
Disk arrays have the problem of using many independent disks:

probability of having a failure is the probability of any of the
disks failing
if probability of a disk failing is P, the probability of a failure in a 
disk array with N disks is NxP

Failures in disk arrays are dealt with by using redundancy and/or 
mirroring:

parity information is used to both detect and correct disk errors
mirroring is based on replication of data blocks

The striping and parity depends on the block size:
bit-interleaved: each block is one bit, e.g., a byte can be stored in 
8 disks. Parity is then on a per byte basis
block interleaved: each block contain several bytes (up to kbytes). 
Parity is on a per block basis

The combination of parity and striping unit gives raise to the 
different RAID levels
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RAID level 0
A RAID level 0 strips the data 
across the disks but without 
adding any redundancy
The data is divided into blocks 
(of arbitrary size) and the 
blocks uniformly distributed 
across the disks
I/O bandwidth is greatly 
improved (N times that of a 
single disk) for both reading 
and writing by using multiple 
disk channels in parallel
A failure in one of the drives 
makes the entire RAID 
unavailable (no fault tolerance)
Easily implemented in software
No constraints on the number 
of disks
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RAID level 1
Bit interleaved
Fault tolerance by mirroring (no 
parity)
Read operations are performed 
on the copy that offers the 
smallest seek time
Two read operations can be 
performed in parallel. Writes 
are sequential
50 % of the disk capacity is 
used for redundancy purposes. 
I/O bandwidth is only half of 
RAID level 0 (N/2)
Recovery from failures is 
trivial
Requires at least two disks (and 
twice as many as RAID level 0)
It can handle multiple disk 
failures (as long as they are not 
on a mirrored pair)
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RAID level 2
Bit interleaved
Fault tolerance by mirroring 
based on Hamming codes
Hamming codes implement 
parity for overlapping 
segments of data. They 
require less space than full 
mirroring but must be 
implemented in hardware
Recovery is more complex 
(depends on the parity of 
several segments)
I/O bandwidth is (N - log 
N), with log N being the 
number of disks needed for 
storing the parity
It can handle multiple disk 
failures (depending on the 
failures)
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RAID level 3
Bit interleaved
There is a disk devoted to 
store the bit-wise parity of the 
other disks
I/O bandwidth much better 
than levels 1 and 2 (N - 1).
It can only handle one request 
at a time (no parallelism)
Recovery is relatively simple 
(use parity to restore the data) 
Tolerates one disk failure
This is fine grain stripping 
(adequate for applications that 
use large files, e.g., multimedia)
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RAID level 4
Block interleaved (blocks of 
arbitrary size, the size is 
called the striping unit)
There is a disk devoted to 
store the block-wise parity of 
the other disks
Write operations are sequential 
(all of them need to update the 
parity disk)
Read operations can be done in 
parallel when on different 
blocks
Parity disk is not used in read 
operations (limiting bandwidth)
Tolerates one disk failure
This is coarse grain stripping 
(adequate for standard 
databases with few update 
operations)
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XOR(m,n,
o,p) 

RAID level 5
Block interleaved (blocks of 
arbitrary size, the size is 
called the striping unit)
The block-wise parity is 
uniformly distributed across all 
disks
Write operations can be done 
in parallel
Read operations can be done in 
parallel when on different 
blocks
Tolerates one disk failure, 
recovery is somewhat complex
Overall good performance
Small writes can be quite 
inefficient (because they 
require to read other blocks to 
complete the parity)
Most popular approach (also in 
software)
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Comparison of RAID levels

RAID level 1 
(mirrored)

RAID level 2 
(Hamming codes)

RAID level 3 
(parity disk)

RAID level 4 
(parity disk)

RAID level 5 
(rotated parity)

Compare for small and large write and read operations ...
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RAID level 10
RAID level 10 uses a RAID 
level 0 controller to strip the 
data. Each striping unit is then 
mirrored by a RAID level 1 
controller
Same fault tolerance as RAID 
level 1
Requires at least 4 disks
I/O bandwidth can be slightly 
better than level 1 because the 
level 1 controllers have less 
disks to manage
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RAID level 53
It has the wrong name (it 
should be 30)
RAID level 53 uses a level 0 
controller to stripe the data 
and then gives each striping 
unit to a level  3 controller
Same fault tolerance as RAID 
level 3
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RAID level 0 + 1
A B C D
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RAID 0 + 1 uses a level 1 
controller for mirroring the 
data and level 0 controllers for 
striping the mirrored disks
Worse failure behavior that 
level 10
It can execute reads in parallel 
(unlike level 10)
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Small writes: read-write-modify
In several RAID levels, small 
writes are a problem because 
they modify the parity but may 
not touch all the data 
fragments that define the 
parity
Thus, small writes in these 
cases require to read all the 
data fragments that are 
needed for the parity even if 
they have nothing to do with 
the write operation itself
The read-write-modify 
approach requires to read the 
data to modify before writing 
it. With the old data and the 
new data, the new parity can be 
computed without having to 
read all the fragments
This allows to perform writes 
in parallel (depends on RAID 
level)

data block parity block

new data block (write)
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1
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Small writes: regenerate-write
An alternative is to read all 
data blocks needed for 
calculating the parity and then 
to regenerate the parity with 
the new data block
With regenerate write, small 
writes use all the disks and can 
be performed only one at a 
time

data block parity block

new data block (write)
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More on caching

main
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L1 cache line (16-32 bytes)
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application
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caching
within 
one node



©Gustavo Alonso. IKS. ETH Zürich 17Low level caching

Multi-level caching
Since disks are comparatively slow, disk controllers (particularly in 
RAID systems), provide a cache. With sufficient locality of access, 
this cache greatly speeds up access to the disk (and also facilitates 
writing, which can be done to the cache rather than to the disk 
directly)
The same idea is applied at every level in the system. If the disks 
are accessed through a server, the server will cache data at both 
the operating system and the application (file server) level. The 
client will also cache data at the operating system and the 
application level (and might also cache data in its local disk)
In a multilevel caching system, the closer to the hardware the cache 
is, the less effective the cache:

the reason is that locality is determined by the application, which 
is doing its own caching. Any further optimizations are done by 
the OS at the client machine, then by the file server, then the 
OS at the file server, etc.
this can be rephrased as follows: the further the cache from the
source of locality, the less effective it will be
corollary: caching at the lower levels helps with multi-application 
access patterns not with application access patterns
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Caches in parallel architectures
When applications running on a 
multiprocessor machine are 
independent of each other, 
caching makes sure each 
application gets the data it 
needs
When the application is a 
parallel application, chances are 
that each thread of execution 
may not be entirely independent 
of each other: they will need to 
access the same data
Under such circumstances, 
caching results in replication of 
data blocks at different 
locations
Like in any replication protocol, 
maintaining the coherency 
(consistency) of the copies is 
the main problem of cache 
based systems

cache

registers

cache

registers

main
memory

symmetric
multiprocessors

disk

Node 1

application

Node 2

application

cluster
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Sessions and transactions
Session (or snapshot) 
semantics

modifications to a data 
block are visible only on the 
node with the copy being 
modified. The other nodes 
do not see the changes
changes become visible once 
the data block is released 
(e.g., file is closed) but 
nodes must actively read 
the data block to observe 
the changes
nodes that do not read the 
data block again, will still 
see the old values
this is a last writer wins 
strategy

Andrew File System uses these 
semantics 

Transaction semantics:
based on bracketing the 
operations with a BOT and 
EOT
any changes to a data block 
are not visible until EOT is 
executed
changes are propagated to 
all nodes upon transaction 
termination

Typical of database systems

Both approaches do not 
maintain consistency, it is the 
application developer who has 
to make sure things work 
properly
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Tokens and leases
Token based caching

in order to modify the local 
copy of a data block, a node 
needs the token
as long as a node has the 
token, it can freely modify 
the data block
if nobody is holding the 
token on that data block, 
any node can read the data 
block
when a node requests the 
token, copies in other 
caches are invalidated
problems arise if the token 
is lost (the node holding it 
fails or is disconnected 
from the rest of the 
system)

Lease based caching
a lease is identical to a 
token but it has an 
expiration time
the lease (permission to 
write) is given only for a 
limited amount of time
after the time expires, the 
lease must be renewed
this prevents problems with 
failures

Tokens and leases can be used 
at different granularities 
(files, blocks, or user defined)
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Parallel Cache Management in Oracle
Oracle has a shared disk architecture where nodes can locally cache 
data blocks from the disk
The management of cached blocks is done through Parallel Cache 
Management locks (PCM locks):

PCM locks cover any type of data block on disk (data, index, undo, 
etc.)
PCM locks can be set at different block granularities (one or 
multiple blocks)
A PCM lock allows only one node to modify a block
After modification, any node wanting to read or modify the data 
block (i.e., wanting to set a PCM lock on it) must wait until the 
data block is written to disk
communication across nodes occurs in terms of pings: a ping 
occurs every time a block must be written to disk before another
node can read it
locking and pinging are not related!! (if the data is properly 
partitioned, few pings will occur)

How to deal with PCM locks is critical to obtain good performance
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How PCM locks work
When a node wants a block 
(module ORACLE determines 
which blocks to access), it 
requests a PCM lock on the 
block (through the module LCK)
The integrated distributed lock 
manager creates or allocates 
the lock as needed
If LCK needs to lock a block 
that has been locked by 
another node in exclusive mode, 
it does a ping on the remote 
node (the LMD module within 
the IDLM will contact the 
remote LMD module of the 
remote IDLM)
Once the block is written to 
disk, it can be read from the 
disk (module ORACLE) and a 
lock set (module LCK)

Buffer cache

LCK ORACLE

Integrated
distributed
lock manag.

LMDLMD

buffer cache

LCK ORACLE

Integrated
distributed
lock manag.

LMDLMD

node 1 node 2
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Two types of PCM lock
Releasable

releasable locks are locks that 
are dynamically allocated as 
needed and released when the 
block is no longer used
to obtain a releasable lock, the 
lock must be first created, 
then obtained (more overhead)
the advantage is that locks are 
not kept on data blocks if 
nobody is using them and nodes 
can start much faster
Releasable locks can be hashed 
for faster performance

Fixed
fixed locks are allocated at the 
start in the form of a hash 
table (the blocks are hashed to 
the locks). Upon creation, they 
are set to a null value
fixed locks are kept until some 
other node makes a ping when 
they will be released and set to 
a null value (but the entry in 
the hash table remains)
fixed locks are de-allocated 
only at shutdown
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PCM locks and files
The number of blocks covered 
by a PCM lock is determined by 
the user:

saying how many PCM locks 
correspond to that file 
(block-lock distribution 
done automatically)
by default: releasable locks 
with one PCM lock per block
several files can share PCM 
locks (be mapped to the 
same hash table of PCM 
locks)
A PCM lock can cover blocks 
in different files

Locks do not directly map to 
blocks !!! (because blocks are 
hashed, they can be mapped 
anywhere in the hash table)

GC_FILES_TO_LOCKS=“A,B:44”

Assume A and B 
are 2 files with 
44 blocks. We
assign 44 locks

32333435
36373839
40414243
44 1 2 3
4 5 6 7
8 9 10 11

32333435
36373839
40414243
44 1 2 3

28293031

Y
X 2 blocks per lock

1 block per lock
Locks 12-27 are not used
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More examples of lock assignment
Assume A and B 
are 2 files with 
16 blocks each

File A

GC_FILES_TO_LOCKS = “1-2=4”
4 locks for the 2 files, blocks are hashed to the locks

File B

lock 1
lock 2
lock 3
lock 4

Useful if the files are used together as in 
•if A is modified, B must also be modified
•A and B are always used to construct a bigger data table

However, no guarantee that the contents of the blocks under 
The same lock are actually correlated (see previous example). 
This means one might not be able to write A and B in parallel
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Correlated tables and files
Two or more files that are 
actually correlated is a common 
occurrence in parallel 
databases:

star schema: with a central 
table with all the important 
data and many auxiliary 
tables providing the 
necessary details
vertically partitioned 
tables: where the data is 
obviously correlated

In these cases, it does not 
make much sense to access the 
auxiliary tables by themselves, 
they are only accessed (if at 
all) as a result of a search on 
the main table
Associating the locks for both 
is an advantage:

less locks are needed

A B C
1
2
3
4
5

10
11
12
13

6
7
8
9

A D
1
2
3
4
5

10
11
12
13

6
7
8
9

vertical partitioning
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WARNING: the blocks are not
aligned with the data. Same principle
as in multilevel caching



©Gustavo Alonso. IKS. ETH Zürich 27Low level caching

More examples of lock assignment
Assume A and B 
are 2 files with 
16 blocks each

File A

File B

GC_FILES_TO_LOCKS = “1-2=4!8”
4 locks for the 2 files, blocks under one lock 
must be contiguous

lock 1
lock 2
lock 3
lock 4

Useful for operations that will modify or scan long ranges:
•in principle, both files can be modified in parallel 

Alignment is not guaranteed: if a file does not have a multiple 
of the size of continuous blocks, some locks will lock more 
blocks than others
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More examples of lock assignment
Assume A and B 
are 2 files with 
16 blocks each

File A

File B

GC_FILES_TO_LOCKS = “1-2=4!4EACH”
4 locks for each of the 2 files, blocks under one 
lock must be contiguous

lock 1
lock 2

lock 5
lock 6

Useful for operations that will modify or scan medium size 
ranges:

•in principle, both files can be modified in parallel
Alignment is not guaranteed: if a file does not have a multiple 
of the size of continuous blocks, some locks will lock more 
blocks than others

lock 3
lock 4

lock 7
lock 8
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The curse of parallel writes

CPU

MEMORY

DISK

MEMORY

CPU
UPDATE prices
FROM ListA

NETWORK

client

1
2

3

4

5

NETWORK

ListA

3

UPDATE prices
FROM ListA4

4 4

5
Parallel writes pose a serious 
problem for disk caching 
independently of the locking 
granularity:

data and disk blocks are not 
aligned
there is no clear way to 
partition the load for 
function shipping and 
execution in parallel

This demonstrates the same 
principle:

caching at the lower levels 
helps with multi-application 
access patterns not with 
application access patterns. 
In this case, the cache 
helps to execute different 
functions in parallel, it 
makes it very difficult to 
parallelize the updates of a 
single function
only solution is to physically 
partition the table
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More examples of lock assignment

Assume A and B 
are 2 files with 
16 blocks each

File A

File B

GC_FILES_TO_LOCKS = “1=4:2=0”
4 locks for file A, no pre-allocated locks for file B

In file A, the locks contain several blocks but the blocks are 
not consecutive. In file B, the locks are not pre-allocated. 
They are allocated on demand at the rate of one lock per block

lock 1
lock 2
lock 3
lock 4
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Why releasable locks?
Releasable locks are at the finest granularity level
Maintaining a hash table at the block granularity level for a file (a 
table) is very expensive since it may require tens of thousand of 
entries; thus, fixed locks tend to be on multiple blocks
When a PCM lock cover multiple blocks, it might introduce false 
conflicts between update operations (updates to actually different 
blocks but that covered by a single lock and, therefore, cannot be 
modified concurrently)
With releasable locks:

false conflicts are minimized
no ping is necessary if nobody is holding the lock (useful for 

tables with a lot of update traffic)
there is a clear overhead per block access (lock must be created, 

set and the released)
Releasable locks are there for those cases where fixed locks do not 
work well


	Data Striping
	Fine vs coarse grain striping
	Fault tolerance
	RAID level 0
	RAID level 1
	RAID level 2
	RAID level 3
	RAID level 4
	RAID level 5
	Comparison of RAID levels
	RAID level 10
	RAID level 53
	RAID level 0 + 1
	Small writes: read-write-modify
	Small writes: regenerate-write
	More on caching
	Multi-level caching
	Caches in parallel architectures
	Sessions and transactions
	Tokens and leases
	Parallel Cache Management in Oracle
	How PCM locks work
	Two types of PCM lock
	PCM locks and files
	More examples of lock assignment
	Correlated tables and files
	More examples of lock assignment
	More examples of lock assignment
	The curse of parallel writes
	More examples of lock assignment
	Why releasable locks?

