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Transaction Processing in Databases
Databases execute transactions according to the ACID paradigma
(Atomicity, Consistency, Isolation, Durability).
Each transaction i starts with a begin bi and then continues with a 
(possible empty) partially ordered sequence of read ri(X) and write
wi(X) operations (X and Y denote arbitrary data elements). 
Transactions terminate either with an abort ai or commit ci operation.
A transaction that terminates with an abort does not lead to any
changes in the database (→atomicity, all or nothing). If a 
transaction commits, then all its changes have to be stored
persistently (→ durability).
However, from the user‘s perspective, each transaction consists of 
SQL statements (e.g., BEGIN, SELECT, INSERT, UPDATE, 
DELETE, COMMIT, ROLLBACK). These high level operations are
automatically mapped to the above described elementary
operations.
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Consistency and Isolation

Each committed transaction moves the database from a consistent
state to the next consistent state.

T1 T2

As long as the database executes transactions in a serial fashion, 
then transaction isolation is automatically guaranteed.

However, obviously, that is not very efficient as the resources
dedicated to the database can typically not be fully used in this way.

We therefore want to be able to execute transactions in parallel, 
without violating the ACID guarantees of the database.

T3
t

T4

Consistent States
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Executing Transactions in Parallel

Blindly executing transactions in parallel can yield unexpected results (the above
shown schedule of operations suffers from the so called lost update problem).

The lost update phenomenon occurs whenever two transactions, while
attempting to modify a data item, both read the item’s old value before either of 
them writes the item’s new value. This is just one example of what can go wrong
– there are many other possiblities (e.g., inconsistent retrieval).

Why did things go wrong? Intuitive idea: no serial execution of the two
transactions (either T1,T2 or T2,T1) would lead to the same result (e.g., the
observed and written values by the transactions) → the schedule is not
serialisable.

T1

T2

T1: X := X + 100; Y := Y + 100;

T2: X := X * 2

t b1 b2 r1(X) r2(X) w2(X) c2 w2(X) r2(Y) w2(Y) c2
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Concurrency Control based on Conflicts
We need a concurrency control component in the database which assures
that any concurrent execution of transactions leads to a schedule that is
somehow equivalent to a serial execution. But how to define equivalence?

If we closely inspect the interactions between the operations of different 
transactions, then we can observe that operations on the same data item
may conflict.

Two operations are defined to conflict if, in general, the computational effect 
of their execution depends on the order in which they are processed. The 
computational effect of the two operations consists of both the value 
returned by each operation (if any) and the final value of the data item(s) 
they access.

r1(X) r2(X) → no conflict, r1(X) w2(X) → conflict!, w1(X) w2(X) → conflict!

A schedule is conflict serialisable, if it orders conflicting operations of 
committed transactions equally to some serial schedule. 
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Enforcing Conflict Serialisability
Idea: delay certain incoming operations so that the resulting
schedule is conflict serialisable.

Is that enough for real world applications? No, furthermore, e.g., we
would like to avoid cascading aborts (transactions that have to be
aborted because they read values produced by a concurrent
transaction that aborts, hence they rely on values that never existed
in the database).

How to achieve this? → Use two phase locking (2PL). Each
operation has to obtain a lock first. Only when the lock is granted, 
the operation may be executed. In case of deadlocks one must abort
transactions (as many as needed).

Normally, implementations use strict 2PL: the locks of a transaction
Ti are all released together (after the execution of either ci or ai).
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Improving Concurrency
If we only use one kind of lock, then concurrency may be lowered: 
e.g., different readers of the same element may block each other.
To improve concurrency, one typically defines different types of 
locks (read and write locks correlating to the attempted operations) 
and a compatibility matrix.
Still, things are not optimal: for every data element touched in the
database by a transaction a lock has to be aquired. E.g., a 
sequentical scan on a huge table may lead to a lock request for
each tuple. Solution: use dynamic lock escalation by locking
elements on a higher level (e.g., lock disk blocks or the full table). 
This leads to less locking operations. Big disadvantage: we now
may lock too many elements and concurrency is lowered.
Other solution: allow different (lower) degrees of isolation for
transactions that ask for it.
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Extended ANSI SQL Isolation Levels
Based on “Phenomenas” P0-P3:

P0: Dirty Write → It is possible to update a value that 
was already updated by a concurrent, uncommitted 
transaction.
P1: Dirty Read → Reading a value that was updated by 
a concurrent, uncommitted transaction.
P2: Fuzzy Read (non-repeatable read) → Reading a 
value twice gives different results, because of a 
concurrent update inbetween.
P3: Phantom Read → Using the same selection criteria 
on a table twice gives different sets of results: a 
concurrent updater deleted or inserted elements.
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Extended ANSI SQL Isolation Levels

ANSI Isolation Level SERIALIZABLE
!=

Definition in serializability theory
(e.g., conflict serializability)
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Snapshot Isolation (SI)
Multiversion Concurrency Control Mechanism

Used in PostgreSQL, Oracle and SQL Server 2005

Readers never conflict with writers ↔ unlike traditional 
DBMS (e.g., IBM DB2)!

Does not guarantee „real“ serializability

But: ANSI “serializability” fulfilled
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Snapshot Isolation - Basic Idea:
Every transaction reads from its own snapshot (copy) of the database (will 
be created when the transaction starts).

Writes are collected into a writeset (WS), not visible to concurrent 
transactions. Two transactions are considered to be concurrent if one starts 
(takes a snapshot) while the other is in progress.

T1

Snapshot

WS: X := 1, Y := 2

T2

Snapshot

WS: Z := 300

t

T2 does not see the changes of T1 
on the data items X and Y.
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Snapshot Isolation – Conflict Resolution:
At the commit time of a transaction its writeset WS is compared to those of 
concurrent committed transactions. If there is no conflict (overlapping), then the WS 
can be applied to stable storage and is visible to transactions that begin afterwards.  

However, if there is a conflict with the WS of a concurrent, already committed 
transaction, then the transaction must be aborted. → “First Committer Wins Rule“

Apply collected writeset
at COMMIT time

T4

Snapshot

WS: X := 1, Y := 2

Snapshot

WS: X := 300

t

T5

ABORT, there is a 
conflict with T4 (both
wrote into data item X).
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Example Transactions in SI Database

The symbols B, C and A refer to the begin, commit and abort of a transaction
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Example Transactions in SI Database (II)

The long running transaction T1 is of type read-only, i.e., its writeset is empty: WS1 = {}. 
T1 will never conflict with any other other transaction. Updates from concurrent updaters 
(like T2, T3, T4 and T6) are invisible to T1. T2 will update the database element X, it does 
not conflict with any other concurrent transaction. T3 updates Y, it does not see the 
changes made by T2 on X, since it started while T2 was still running. T4 updates X and Y. 
Conforming to the first-committer-wins rule it cannot commit, since its writeset overlaps 
with that from T3 and T3 committed while T4 was running. The transaction manager has 
therefore to abort T4 when the user tries to commit. T5 is read-only and sees the changes 
made by T2 and T3. T6 can successfully update Y. Due to the fact that T4 did not commit, 
the overlapping writesets of T6 and T4 do not impose a conflict.
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Does SI offer Serializability?
It avoids the phenomenas P0-P3:
→ ANSI SERIALIZABLE isolation level conform.
…but ANSI SERIALIZABLE is not the same as defined in 
traditional serializability theory (conflict serializability).
Example:
T1: b1 r1(X) w1(Y) c1

T2: b2 r2(Y) w2(X) c2 

Schedule: b1 b2 r1(X) r2(Y) w1(Y) w2(X) c1 c2 

Not conflict equivalent to a serial history, but can 
happen with Snapshot Isolation.
We will come back to that topic later on.
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Implementation of SI in real Systems (I)
Of course, making a copy of the database and managing 
and comparing (possibly huge) writesets for every 
transaction is not that efficient…
E.g., assume a database size of 4GB and a target 
troughput of 100 concurrent transactions (each having a 
writeset of 100KB).

Real SI implementations use an incremential variant of 
Snapshot Isolation, using

different versions of the same data row (to simulate 
snapshots).
row level (tuple) locks (to detect write-write conflicts 
between concurrent transactions).
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Implementation of SI in real Systems (II)
Snapshots are implemented by having multiple versions (hence, multi 
version concurrency control) of the same data item (e.g., data rows). A 
transaction that modifies a row generates automatically a new version of this 
row (which is only visible to transactions that begin (i.e., take a snapshot) 
after this transaction has committed).
For every transaction the DB has to decide which version of a data item is 
„visible“ (e.g, a long running transaction (like T2 below) can see a very old 
version of a row, even though the row was updated many times by other 
concurrent transactions).

T1
Snapshot

WS: X := 1

t

T2 (reads X)

Snapshot

X == 0

T3
Snapshot

WS: X := 5

T4 (reads X)
Snapshot

XT3: 5

XT1: 1
Xmin: 0
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Implementation of SI in real Systems (III)
Incrementally checking writesets: row-level locks.
A row-level lock on a row is automatically acquired when the row is 
updated (or deleted or marked for update). The lock is held until the 
transaction commits or rolls back. Row-level locks do not affect data 
querying (of any version of the row); they block writers to the same 
row only. To acquire a row-level lock on a row without actually 
modifying the row, the user has to select the row with SELECT FOR 
UPDATE. Once a particular row-level lock is acquired, the 
transaction may update the row multiple times without fear of 
conflicts.
PostgreSQL does not remember any information about modified 
rows in memory, so it has no limit to the number of rows locked at 
one time. However, locking a row may cause a disk write if buffer 
space is low.
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Implementation of SI in real Systems (IV)
Oracle and PostgreSQL offer two variants of Snapshot Isolation: 
SERIALIZABLE (as described so far) and READ COMMITTED (the default 
isolation level in both products)
READ COMMITTED: the main difference to SERIALIZABLE is the 
implementation of the snapshot: a transaction running in this isolation mode 
gets a new snapshot for every issued SQL statement (every statement sees 
the latest committed values (generated versions) of the database).

Snapshot t

T2 (READ COMMITTED)

Snapshots

T3 (SERIALIZABLE) Make writeset visible at 
COMMIT time

Make writeset visible
at COMMIT time
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SI with Isolation Level SERIALIZABLE
When a transaction T2 running in isolation level SERIALIZABLE 
tries to modify a row (i.e., tries to generate a new version of the row) 
that was modified by a concurrent transaction T1 which has already 
committed, then the update operation of T2 fails (therefore, not the 
first committer, but rather the first updater wins).
→ PostgreSQL then also aborts the whole transaction T2.
→ Oracle is more flexible: it allows the user to proceed with other 
operations in T2.
If T1 is concurrent but not committed yet (i.e., it holds a row level 
lock), then both products behave the same: they block transaction 
T2 until T1 commits or aborts.
- If T1 commits, then the same things happen as described above.
- If T1 aborts, then the update operation of T2 can proceed.
The blocking of a transaction due to a potential update conflict is of 
course not unproblematic: it can lead to deadlocks, which must be 
resolved by the database (by aborting some of the involved 
transactions).
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SI with Isolation Level READ COMMITTED
READ COMMITTED is a slightly less strict isolation level. It is the 
default isolation level for both Oracle and PostgreSQL.
A new snapshot is taken for every issued SQL statement (every 
statement sees the latest committed values).
The handling of conflicting operations is different than in 
SERIALIZABLE mode: if a transaction T2 running in READ 
COMMITTED mode tries to update a row which was already 
updated by a concurrent transaction T1, then T2 gets blocked until 
T1 has either committed or aborted.
- If T1 aborts, no problem, T2 can proceed.
- If T1 commits, then T2's update statement gets re-evaluated again,  
since the updated row possibly does not match a used selection 
predicate anymore.
READ COMMITTED avoids phenomena P0 and P1, but is 
vulnerable to P2 and P3 (fuzzy read and phantom).
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SERIALIZABLE

Not Possible 

Not Possible 

Not Possible

Not Possible

Yes 

Transaction 

Yes 

No 

No

No

Yes

Yes 

Yes 

No 

Yes

READ COMMITTED

Not Possible 

Not Possible 

Possible

Possible 

Yes 

Statement 

Yes 

No 

No

No

Yes

Yes 

No 

No 

No

Comparison Chart for PostgreSQL

Dirty write 

Dirty read 

Non-repeatable read 

Phantoms 

Compliant with ANSI/ISO SQL 92 

Read snapshot time 

Row-level locking 

Readers block writers 

Writers block readers 

Different-row writers block writers 

Same-row writers block writers 

Waits for blocking transaction 

Subject to "can't serialize access" error 

Error after blocking transaction aborts 

Error after blocking transaction commits 
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The Remaining Problem: Serializability
Isolation level SERIALIZABLE avoids the four common phenomenas, but
that is not enough: because readers in SI based databases do not lock data, 
regardless of transaction isolation level, data read by one transaction can be
overwritten by another concurrent transaction.

In other words, if a row is returned by SELECT it doesn't mean that the row
is still current at the instant it is returned (i.e., sometime after the current
query began). The row might have been modified or deleted by an already-
committed transaction that committed after this one started. Even if the row
is still valid "now", it could be changed or deleted before the current
transaction does a commit or rollback. 

We therefore need sometimes to explicitly lock data to be sure that no other
transaction can concurrently modify it. This is very important if we port
applications from databases where locks are set for all reads!
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Application based Referential Integrity

A wants to add a child node to a parent (first checks if parent exists)
B wants to delete a parent (first checks to see if there are no childs)
Using SI, both can proceed in parallel, the writesets do not overlap.
The result is inconsistent: there is a child entry without a parent entry.
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Application based Referential Integrity (II)

The read issued by transaction A does not prevent transaction B 
from deleting the parent row, and transaction B's query for child rows
does not prevent transaction A from inserting child rows.

This scenario leaves a child row in the database with no 
corresponding parent row. This result occurs even if both A and B 
are SERIALIZABLE transactions, because neither transaction
prevents the other from making changes in the data it reads to check 
consistency.

As this example shows, sometimes you must take steps to ensure
that the data read by one transaction is not concurrently written by
another. This requires a greater degree of transaction isolation than
defined by SQL92 SERIALIZABLE mode. 
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General Solutions
„Pseudo writes“: Update values which we do not want to be concurrently
modified by reading and immediatelly writing them back. The touched rows
now belong to our writeset (we hold row level locks), and so concurrent
updates will be detected by the database. Problem: inefficient (imagine we
want to make sure that 9000 rows of a table do not get modified, then we
have to overwrite 9000 rows with the original content…)
SELECT FOR UPDATE: Better solution, we just mark the rows that we do 
not want to get concurrently modified (actually we just acquire row level
locks), even if we did not change the contents of the rows. The effect is the
same: concurrent updates are not possible, they lead to a conflict.
Table level Locking: SELECT FOR UPDATE has some overhead. If we
want to lock like 90% of a table, it is perhaps more efficient to lock the whole
table. Disadvantages: we also block transactions that are going to work on 
the other 10%, even though there is absolutely no conflict. Be careful: table
level locking does not put the whole table in our writeset (no row level locks
are acquired), it just blocks other transactions during a certain period of 
time. 
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Solving the Referential Integrity Problem
Transaction A could make use of SELECT FOR UPDATE to query 
and lock the parent row and thereby prevent transaction B from 
deleting the row.

Another possible approach could be to work in READ COMMITTED 
mode: Transaction B could prevent Transaction A from gaining 
access to the parent row by reversing the order of its processing 
steps:
Transaction B first deletes the parent row, and then rolls back if its 
subsequent query detects the presence of corresponding rows in the 
child table. However, working with guarantees based on the order of 
statements is not recommended, it makes things very hard to 
understand, especially if there are many involved transaction 
patterns.
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And DBMS based Referential Integrity?
# BEGIN TRANSACTION ISOLATION LEVEL SERIALIZABLE;

BEGIN

# SELECT * from products ;

product_no | name

------------+-------

1 | Apfel

(1 row)

( Our snapshot was generated and we see the „Apfel“ product)

( Now a concurrent transaction deletes the Apfel product and commits)

# SELECT * from products ;

product_no | name

------------+--------

1 | Apfel

(1 row)

( We still see the „Apfel“, since it is included in our (old) snapshot)

( Now let‘s try and add an order for „Apfel“)

# INSERT INTO orders VALUES (1, 1);

ERROR:  could not serialize access due to concurrent update

CONTEXT:  SQL statement "SELECT 1 FROM ONLY "public"."products" x WHERE "product_no" = $1 FOR UPDATE OF x“

Based on example tables from the PostgreSQL
documentation:

CREATE TABLE products

(product_no integer PRIMARY KEY, name text);

CREATE TABLE orders

(order_id integer PRIMARY KEY,

product_no integer REFERENCES products
(product_no)); 

What happened here? It seems that PostgreSQL was 
very careful: since there is a referential integrity
constraint involved in our „INSERT“ statement, it
decided to execute (in the background) a SELECT 
(combined with FOR UPDATE) to make sure that the
corresponding product exists and that nobody else will 
concurrently delete the product. However, that has 
already happened, and so the SELECT FOR UPDATE 
fails and therefore PostgreSQL decides to not execute
the INSERT statement.
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Explicit Table Locking
Instead of using row level locks, we can also lock full tables. Tables can be locked in 
different modes. Only one transaction at a time can hold a lock on a table using one 
of the two here described modes:

LOCK TABLE EXCLUSIVE (Oracle: SHARE ROW EXCLUSIVE) 
This mode allows only concurrent readers, i.e., only reads from the table can proceed 
in parallel with a transaction holding this lock mode.

Be careful: Oracle allows SELECT FOR UPDATE statements from concurrent 
transactions, PostgreSQL not!
→ Porting applications can be difficult.

LOCK TABLE ACCESS EXCLUSIVE (Oracle: EXCLUSIVE)
This mode guarantees that the holder is the only transaction accessing the table in 
any way. This is also the default lock mode for LOCK TABLE statements that do not 
specify a mode explicitly.

Transactions that write into a table (or do a SELECT FOR UPDATE) automatically 
acquire a special shared table lock that can be held by many concurrent updaters, 
however, these shared table level locks will conflict with the the above two kinds 
locks. See the documentation for details.
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Using Explicit Locking with SERIALIZABLE
An explicit lock obtained in a serializable transaction guarantees that no other
transactions can modify the locked table concurrently, but if the snapshot seen by the
transaction predates obtaining the lock, it may predate some now-committed changes
in the table. A serializable transaction's snapshot is actually frozen at the start 
of its first query or data-modification command (SELECT, INSERT, UPDATE, or
DELETE).

BEGIN B (SERIALIZABLE)

CHECK CHILDS (→SNAPSHOT)

DELETE PARENT ROW

COMMIT

BEGIN A (SERIALIZABLE)

SELECT SOMETHING (→SNAPSHOT)

(transaction is doing some other work)

(transaction is doing some other work)

LOCK TABLE WITH PARENT ROW

LOCK TABLE WITH CHILD ROW

CHECK PARENT

INSERT CHILD

COMMIT
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Using Explicit Locking (II)
It is possible to obtain explicit locks before the snapshot is frozen.

Then one is sure that:

Nobody modifies the table concurrently

We see the latest produced values (not the case on the previous page!)

BEGIN B (SERIALIZABLE)

CHECK CHILDS (BLOCKED)

(CONTINUES, →SNAPSHOT)

…

BEGIN A (SERIALIZABLE)

LOCK TABLE WITH PARENT ROW

LOCK TABLE WITH CHILD ROWS

SELECT SOMETHING (→SNAPSHOT)

(transaction is doing some other work)

CHECK PARENT

INSERT CHILD

COMMIT
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SELECT FOR UPDATE with NOWAIT 
(Oracle specific)

Example:
SELECT * FROM items WHERE i_price = 10 FOR UPDATE NOWAIT

With this SELECT we lock all the rows in the items table having a price of 
10 bucks. The FOR UPDATE tells Oracle to lock each row as it processes
it. Note that this statement does not actually update any data. The row level
locks are removed when we commit or roll back.
The NOWAIT keyword specifies that we do not want the statement to wait
until a concurrent transaction already holding a conflicting lock either
commits or aborts.
This means that if the statement detects that the table or any row in the
result set is locked it will return an error code and not wait for the lock to be
removed. 
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Want to try it out?

Log in concurrently (with two sessions) on your PostgreSQL DB.

To get a feeling for READ COMMITTED and SERIALIZABLE, do the
following:

Try to execute two concurrent transactions that work on the same
data row, so that one of them gets blocked until the first one has 
committed.

Try to achieve (a) that the blocked transaction can continue, and (b), 
in a second try, that it is aborted when the first transaction commits.

Also, try put the two transactions in a DEADLOCK condition.
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Introduction to the Mandatory Exercise III
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Task Description

Your task: Implementation of a Distributed Database.
In other words: implement a ROWA based middleware in Java 
that handles transactions over a set of fully replicated
PostgreSQL databases. Construct a benchmark application that
shows the performance of your implementation.

DB1 DB2 DB3 DB4

ROWA Middleware

Benchmark
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Middleware Details

The Middleware offers a simple interface that can be
used by clients (e.g., the benchmark) to execute
transactions.

Transactions are executed by the Middleware over a set
of JDBC connections to the databases.

Read operations have to be performed on one database, 
updates have to be sent to all databases.

Since we use PostgreSQL databases, you can use the
2PC features of PostgreSQL to easily implement
distributed commits.
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Benchmark Details

We use a 2-factorial benchmark:

we use different loads (they differ in the read/write fraction)
we use different numbers of databases

Output of the benchmark can, e.g., be presented with the jfreechart
library (use either Swing, SWT or a HTML page to present the
results).

For each experiment, the benchmark software initializes a set of 
middleware objects (also confguring each with the number of 
databases to use) and then sends transactions in parallel to the
middleware (and measures response times). Use a maximum (!) of 
10 worker threads that send transactions to the middleware objects.
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Setup

Each student has 30 databases (each on a separate 
machine). Please DO NOT open more than 10 
PostgreSQL connections concurrently to the same
machine (each machine has a limit of about 1000 
concurrent connections, please be fair).
These PostgreSQL databases can be accessed from all 
networks at ETH (otherwise use VPN).
Since you work in groups, it does not matter which of the
databases available to your group you use.
No, it is not necessary to assign special accounts and 
passwords (see material on the website).
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Administrative Things

The exercise should be solved in groups (2-4 people), 
divide the task (benchmark (load generation, graph
generation), middleware, database setup).

Presentation in two weeks (in the IFW computer rooms
during the lecture on friday).

Details (Eclipse template project etc.) will be posted soon
on http://www.inf.ethz.ch/personal/plattner/vs


