
20.01.2006

Quorums

Christian Plattner, Gustavo Alonso
Exercises for Verteilte Systeme WS05/06
Swiss Federal Institute of Technology (ETH), Zürich
{plattner,alonso}@inf.ethz.ch

220.01.2006 Christian Plattner

Setting: A Replicated Database (Wide-Area)
Zürich London

Basel Frankfurt

Glasgow

BonnLiestal

Bahnhofstrasse

We assume full replication (all sites contain the same data)

320.01.2006 Christian Plattner

System Model

A replicated database consists of a group of n sites which communicate by
exchanging messages.
Here we assume full replication, each site has a copy of the full database.
Clients interact with the database by issuing transactions.
Transactions are partially ordered sets of read and write operations
Transactions are executed atomically, i.e., a transaction either commits or
aborts.
Typically, one distinguishes between two kinds of transactions:
→ Read-Only Transactions (also called Queries, consist only of read
operations)
→ Update Transactions (read and write operations)
A client submits a transaction to one of the sites in the system, the local
site, the rest of the sites are called the remote sites.

420.01.2006 Christian Plattner

Problem: Synchronization and Consistency
(a)

Zürich London

Basel Frankfurt

Glasgow

BonnLiestal

Bahnhofstrasse

2. Account X has
changed!

3. OK, I am
updating X

3. OK, I am
updating X

3. OK, I am
updating X

1. EC Cash
withdrawal from

Account X.

520.01.2006 Christian Plattner

Problem: Synchronization and Consistency
(b)

Zürich London

Basel Frankfurt

Glasgow

BonnLiestal

Bahnhofstrasse

No problem, There
are $30 on Account X

Withdraw $20
from Account X.

Withdraw $20
from Account X.

No problem, there are
$30 on Account X

620.01.2006 Christian Plattner

Problem: Site Failures…
Zürich London

Basel Frankfurt

Glasgow

BonnLiestal

Bahnhofstrasse

Doesn‘t matter. I will
contact Basel.

Somebody pressed
the wrong button =(

720.01.2006 Christian Plattner

Problem: …and Recovery
Zürich London

Basel Frankfurt

Glasgow

BonnLiestal

Bahnhofstrasse

→ Site Zürich has to be updated to the freshest state
otherwise clients should not be allowed to use it.

Correct Data?

That answer looks
strange…

820.01.2006 Christian Plattner

Problem: Communication Failures
Zürich London

Basel Frankfurt

Glasgow

BonnLiestal

Bahnhofstrasse

Zürich is down!

I don‘t believe
this…

London is down!

No, Frankfurt is
down!

920.01.2006 Christian Plattner

Problem: Network Partitions
Zürich London

Basel Frankfurt

Glasgow

BonnLiestal

Bahnhofstrasse

→ Partitions must not process transactions independently!

I can decide
together with

Basel…

Let‘s ignore
Basel and
Frankfurt!

Withdraw all
money from
Account X.

Withdraw all
money from
Account X.

1020.01.2006 Christian Plattner

Replicated Databases

Advantages:

More powerful (more CPUs, disks, etc. that can process requests
in parallel)

Clients can access the „nearest“ site (latency).

Improved fault-tolerance.

Disadvantages:

Sites have to be constantly synchronized. Consistency has to be
guaranteed (e.g., conflicts between transactions).

Sites may fail and have to be properly recovered once they come
up again.

We have to deal with network partitions.

1120.01.2006 Christian Plattner

ROWA - Read-One Write-All

The protocol belongs to the synchronous/update everywhere category.

Assume all sites contain the same data (Full Replication).

Each site uses traditional 2-Phase Locking (2PL).

Read operations are performed locally.

Write operations are performed at all sites (using a distributed
locking protocol).

Also, we assume that there are no communication failures.

This protocol guarantees that every site will behave as if there were
only one database. The execution of transactions is serializable
(correct) and all reads access the latest version of a data element.

1220.01.2006 Christian Plattner

ROWA - Read-One Write-All (II)

This simple protocol illustrates the main idea behind
replication, but it needs to be extended in order to cope
with realistic environments:

Sites may fail, which reduces the availability (once a
single site fails, no site can be updated anymore).

Sites eventually have to properly recover (a recently
restarted site may not have the latest updates).

1320.01.2006 Christian Plattner

Handling Site Failures: ROWAA
An approach which tolerates site failures:

Read-One Write-All-Available.
Again, we assume that there are no communication failures. The

protocol could then be implemented as follows:

Read Operations: Read from any site. If a site is down, try another
site.

Write operations: Write to all sites. If any site rejects the write (e.g.
there is a conflict), abort the transaction. Sites that do not respond
are ignored („missing sites“).

Committing a transaction: Check that all missing sites are still
down, if not, abort the transaction. Check that all other sites are still
OK, if not, abort the transaction. Otherwise the transaction can
commit.

1420.01.2006 Christian Plattner

Problem: Communication Failures

The ROWA(A) approaches do not work if the system has to deal
with communication failures → but this is a must for real systems.
Communication failures can happen in different ways:

Sites seem to be down, but actually just the communication layer
is temporarely down.

The network between the sites is partitioned, only partial
communication is possible.

Example: The network gets partitioned in to equal parts of sites:
Then both subsets can operate at their own (they both think that the
other machines are down) → overall database state can get
inconsistent (overdrawing of bank accounts etc. possible).

1520.01.2006 Christian Plattner

Quorums

Quorums are sets of sites which have certain properties
regarding inter-sections of different quorums.

Can be used to handle the so far discussed problems
(site failures, recovery, communication failures and
network partitions).

Can reduce the number of copies involved in updating
data.

Costs of reads and writes can be balanced.

1620.01.2006 Christian Plattner

Definition: Quorum Systems

Let S = {S1, S2, …} be a set of sites. A quorum system Q is a set of
subsets of S with pair-wise non-null intersection. Each element
of Q is called a quorum.

Example: We have four sites, S1, S2, S3 and S4. A possible quorum
system then consists of these three quorums: {S1, S2, S3 }, {S2, S3,
S4} and {S1, S4}. There are many other possible quorum systems for
these four sites!

For replication purposes, two different kinds of quorums are defined,
read and write quorums:

Any read quorum (rq) must overlap with any write quorum

Any two write quorums (wq) must overlap

1720.01.2006 Christian Plattner

Quorum System Types

Voting quorums (weighted majority, hierarchical)

Grid quorums

Tree quorums

…we just look at some of them.

1820.01.2006 Christian Plattner

Weighted Majority (Quorum Consensus)

Uses voting to reach consensus
Each site has an assigned weight (number of votes).
Quorums are defined so that number of needed votes exceeds half
of the total (→ majority).
Let n be the sum of all assigned weights.
Read and write quorums must then fulfill these constraints:

2 * |wq| > n and |rq| + |wq| > n

Minimum quorum sizes that work:

⎥⎥
⎤

⎢⎢
⎡=

2
n|rq|+⎥⎦

⎥
⎢⎣
⎢= 1

2
n|wq|

1920.01.2006 Christian Plattner

Algorithm for Quorum Consenus

Each site uses versions to tag data items.

Reads: contact sites until a read quorum is reached. Then use the
data item with the highest version number.
Writes: contact sites until a write quorum is reached. Get the
highest version number of the data item to be written. Increase the
version number and write the data item to all members in the
quorum.

Recovery is already included!
But reads are now more expensive than in ROWA approaches…
Dynamic reconfiguration (changing assigned votes, adding new
machines) not easy, must be done in an atomic step (hard to solve
when having to deal with communication failures).

2020.01.2006 Christian Plattner

Hierarchical Quorum Consensus

A generalization of Majority Quorum. Idea: organizing the sites into a
hierarchy.

This hierarchy is represented as a complete tree where physical
sites appear at the leaves of the tree.

At each level (starting at the root level) of the tree, a majority of tree
nodes must be chosen.

For each node chosen at level i, a majority of nodes at level i+1
must be chosen.

11 44 6655 77 99883322

level 1level 1

level 2level 2

level 0level 0

2120.01.2006 Christian Plattner

Grid Quorums: Rectangular Grid

A read quorum consists of an element of each column (|rq| = c)

A write quorum requires an entire column and one element from
each of the remaining columns (|wq| = r + c - 1)

If the grid is a square → SQUARE grid: |rq| = √n |wq| = 2 * √n -1

Write Quorum Read Quorum
1 2 3 4

5 6 7 8

9 10 11 12

n sites are organized in a grid of
size r x c (r rows and c columns)

n = r x c

2220.01.2006 Christian Plattner

11

44 6655

77 101088

3322

99

Another Grid Quorum: Triangle

Sites are arranged in d rows such that row i (i > 1) has i elements.
→ number of sites must be 1 or 3 or 6 or 10 or 15 …

The quorum size is always d.

A write quorum is the union of one complete row and one element
from every row below the full row.

A read quorum can be either one element from each row or a write
quorum.

2320.01.2006 Christian Plattner

Write Quorum Read Quorum

Tree Quorums: A Basic One

1

3 4

9 10 11 12 13

2

5 6 7 8

Sites are organized in a complete tree of an odd degree.

Each node has d children → not any amount of sites possible.

A write quorum consists of the root of the tree, a majority of its children, a
majority of the children of each children, etc.

A read quorum consists of the root of the tree. If the root is unavailable, the
read quorum consists of a majority of its children, and so recursively.

2420.01.2006 Christian Plattner

Performance: Scalability

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

1

4

7

10

13

16

19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
Rowaa

0 0 , 1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 6 0 , 7 0 , 8 0 , 9 1

1

4

7

10

13

16

19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2 0Majority

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

1

4

7

10

13

16

19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Grid

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

1

4

7

10

13

16

19

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Tree

Linear
scalability

Acceptable
scalability

Scaleout

% updates

replicas
Good scalability
with high
update rates

Almost null
scalability
with high
query rates

2520.01.2006 Christian Plattner

Availability

To be fair, some of the quorum protocols were designed for
availability and not for scalability purposes

However, there is a tight trade-off between availability and scalability
[Naor98]:

For scalability: the smaller the quorum, the better

For availability: the larger the quorum, the better

2620.01.2006 Christian Plattner

1,0E-13
1,0E-12
1,0E-11
1,0E-10
1,0E-09
1,0E-08
1,0E-07
1,0E-06
1,0E-05
1,0E-04
1,0E-03
1,0E-02
1,0E-01
1,0E+00

1 2 3 4 5 6 7 8 9 10 11 12 13

n

ROWAA

Majority

Grid

Tree

Availability: Comparison
Replicas

Availability

2720.01.2006 Christian Plattner

Performance: Communication Overhead

Replication requires coordination among the replicas involving
exchange of messages.

This traffic has an impact on the overall scalability (i.e., if the system
gets faster by adding more sites):

CPU cycles are lost handling messages

Network bandwidth may become a bottleneck

Transaction throughput is a key aspect:
#of mssgs/s = TPS * #of mssgs/txn

The message overhead is divided into overhead per read or write
operation and overhead per transaction. The latter overhead is due
to the use of distributed atomic commit protocol and update
propagation.

2820.01.2006 Christian Plattner

Communication Overhead: Comparison

Message Overhead Point-to-Point

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 17 19

Number of Nodes

N
um

be
r o

f M
sg

 p
er

 T
xn Rowaa, w=0

Majority, w=0
Tree(3), w=0
Grid, w=0
Rowaa, w=1
Majority, w=1
Tree(3), w=1
Grid, w=1

2920.01.2006 Christian Plattner

Communication Overhead: Comparison

Message Overhead Multicast

0

2

4

6

8

10

12

14

16

18

20

1 3 5 7 9 11 13 15 17 19

Number of Nodes

N
um

be
r o

f M
sg

 p
er

 T
xn

Rowaa, w=0
Majority, w=0
Tree(3), w=0
Grid, w=0
Rowaa, w=1
Majority, w=1
Tree(3), w=1
Grid, w=1

3020.01.2006 Christian Plattner

Literature And References

R. Jiménez-Peris, M. Patiño-Martínez, G. Alonso and B.
Kemme. Are Quorums an Alternative for Data
Replication? ACM Transactions on Database Systems,
2003.
http://portal.acm.org/citation.cfm?doid=937598.937601

Naor, M. and Wool, A. The load, capacity, and
availability of quorum systems. SIAM J. Comput. 27, 2
(Apr.), 423–447. 1998
http://epubs.siam.org/sam-bin/dbq/article/28123

20.01.2006

Paper Exercise

3220.01.2006 Christian Plattner

Question 1:

In the majority quorum system, every replica (site) has one vote. This
implies that every replica has the same priority. In real systems it is
necessary to create replicas with higher priority, in case that these replicas
are located in more powerful or robust machines (→ weighted majority
quorum). Write and read quorums still need majority votes to proceed.
Users can assign different priorities to each replica according to their needs.
Please list all the possible write/read quorums for the largest weighted
majority quorum system based on the sites (with weights) in the following
figure:

A (4) B (2) C (2)

F(3)E (1) G (1)

D (2)

H (4)

3320.01.2006 Christian Plattner

Question 2:

Compared to quorum systems, ROWAA approaches are simpler, more
flexible and efficient. However, ROWAA has a fatal flaw if the network
suddenly gets partitioned.

How can one solve the problem by integrating some of the quorum concepts
into the ROWAA approach?

What are the advantages and disadvantages of the new system?

3420.01.2006 Christian Plattner

Question 3:

Assume again that we have a replicated database setup with 4 fully
replicated sites. Each of the sites holds the customers of a bank, the bank is
present in 4 different countries (and each site is positionied in the
headquarter of one of the countries).

If the network gets partitioned in a way that each site is disconnected from
any other site, then the so far proposed protcols cannot help, at least 3 sites
have to stop processing updates.

Please describe a way in how the problem can be solved on the application
layer, so that every site can at least continue to process some updates.

