

Model Summary

• Multiple *threads*

Distributed Computing Group

- Sometimes called *processes*
- Single shared *memory*
- Objects live in memory
- Unpredictable asynchronous delays

Roger Wattenhofer

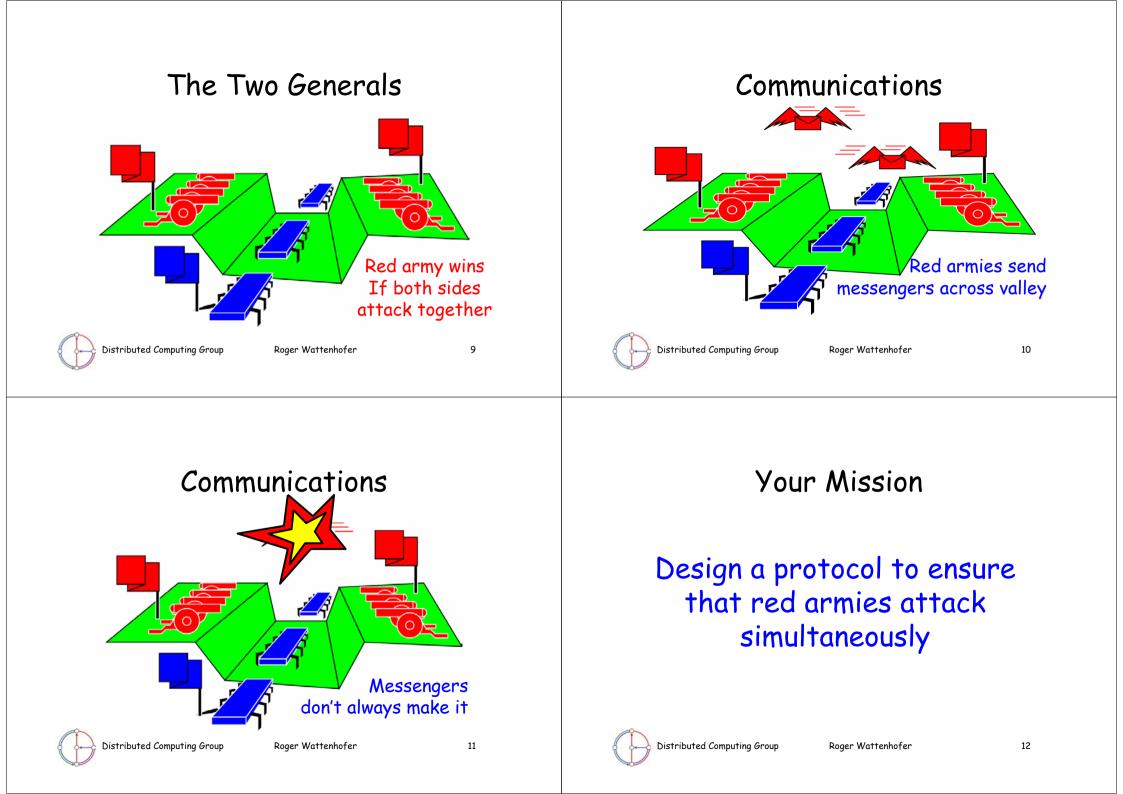
Road Map

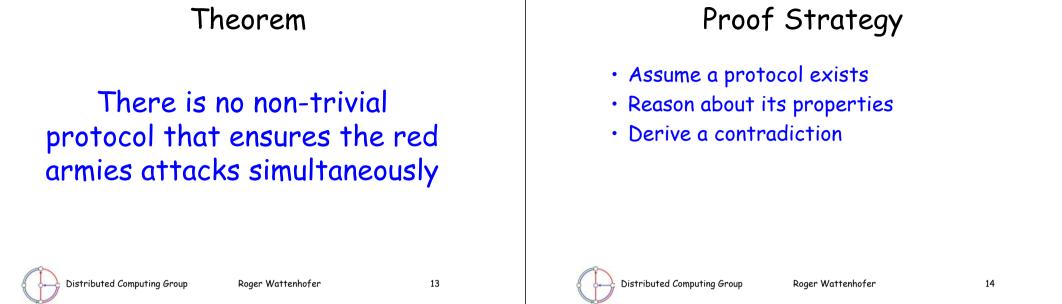
- We are going to focus on principles
 - Start with idealized models
 - Look at a simplistic problem
 - Emphasize correctness over pragmatism
 - "Correctness may be theoretical, but incorrectness has practical impact"

Distributed Computing Group Roger Wattenhofer 5	Distributed Computing Group Roger Wattenhofer 6
You may ask yourself	Fundamentalism
I'm no theory weenie - why all the theorems and proofs?	 Distributed & concurrent systems are hard Failures Concurrency

7

• Easier to go from theory to practice than vice-versa



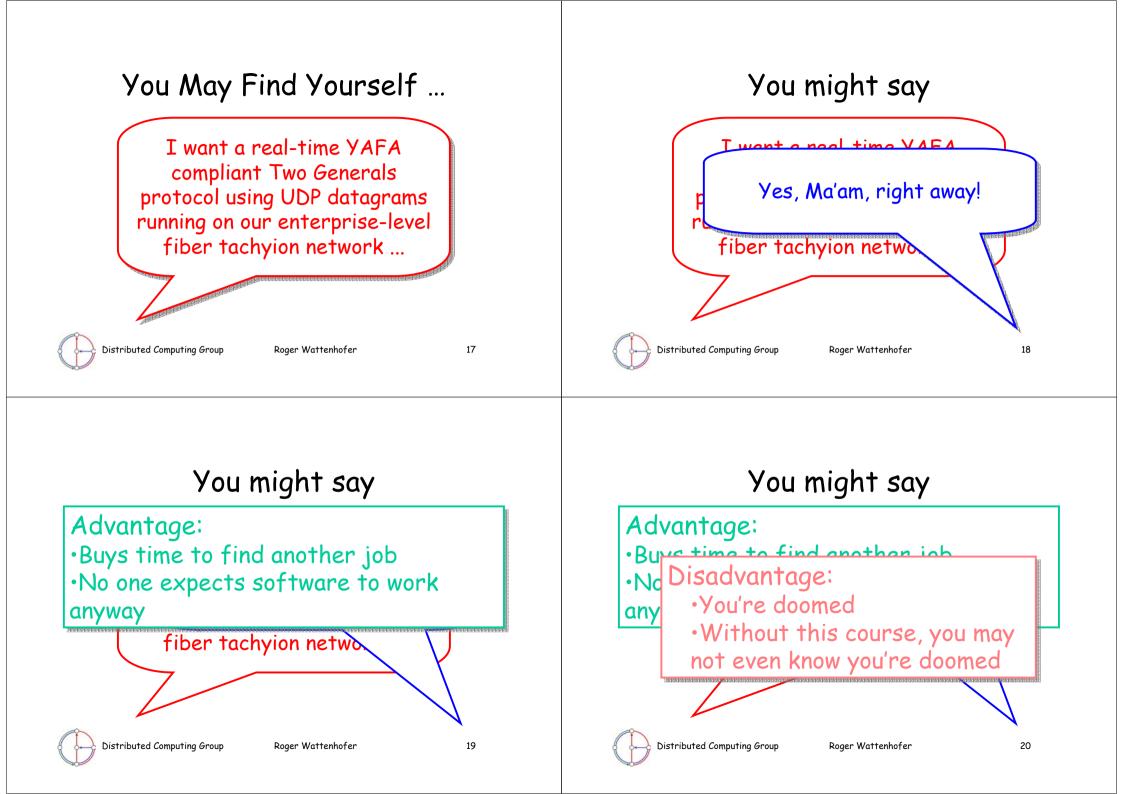


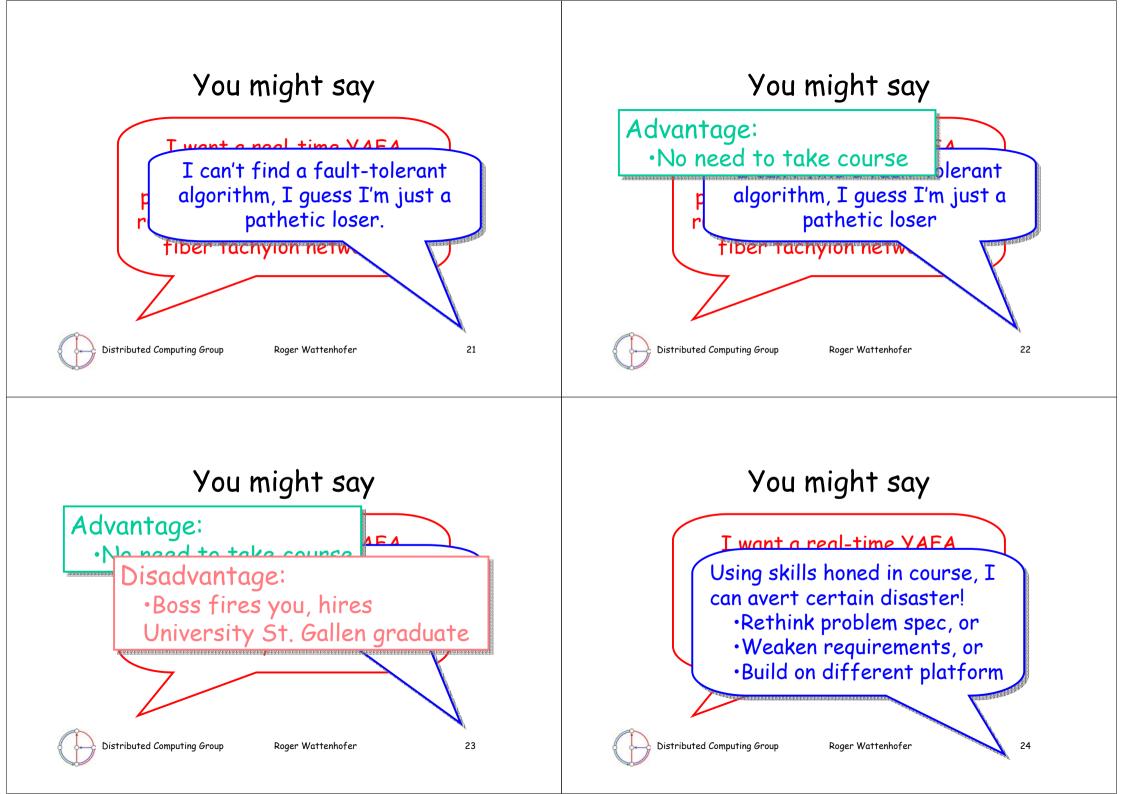
Proof

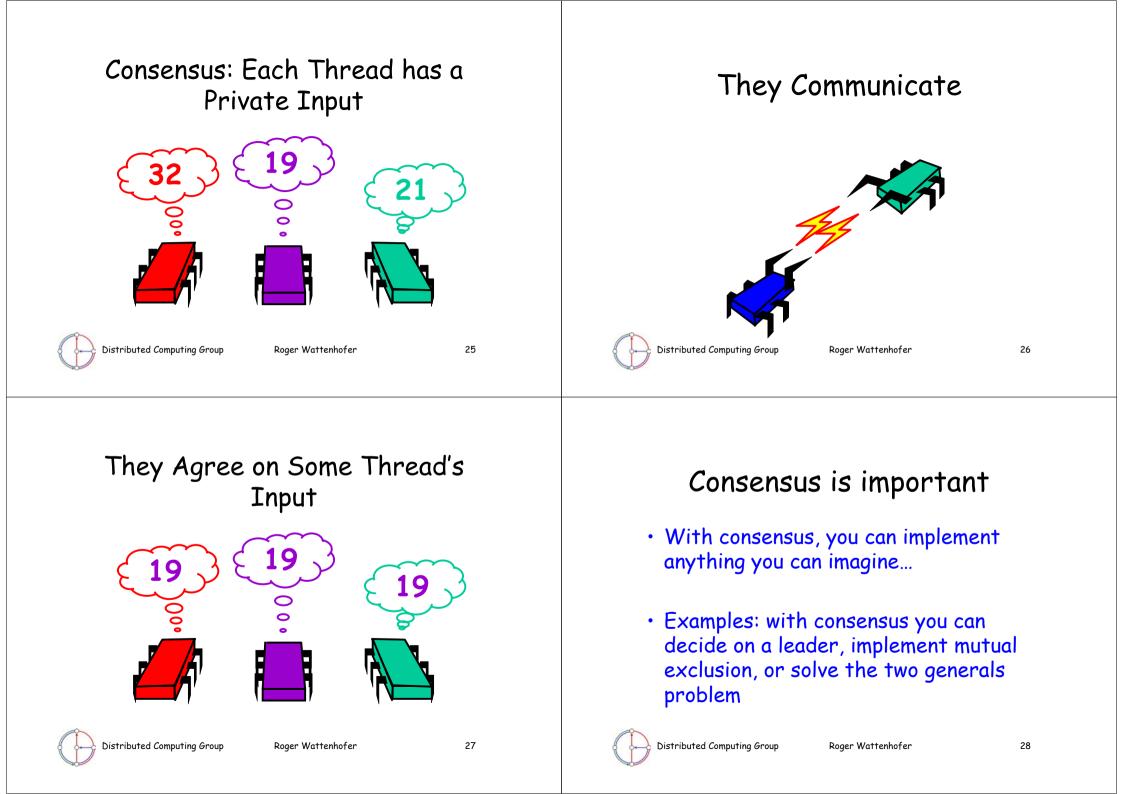
- 1. Consider the protocol that sends fewest messages
- 2. It still works if last message lost
- 3. So just don't send it
 - Messengers' union happy
- 4. But now we have a shorter protocol!
- 5. Contradicting #1

Fundamental Limitation

- Need an unbounded number of messages
- Or possible that no attack takes place







You gonna learn

- In some models, consensus is possible
- In some other models, it is not
- Goal of this and next lecture: to learn whether for a given model consensus is possible or not ... and prove it!

Distributed Computing Group

Roger Wattenhofer

29

Consensus #1 shared memory

- n processors, with n > 1
- Processors can atomically *read* or write (not both) a shared memory cell

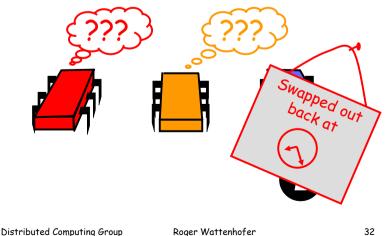
Roger Wattenhofer

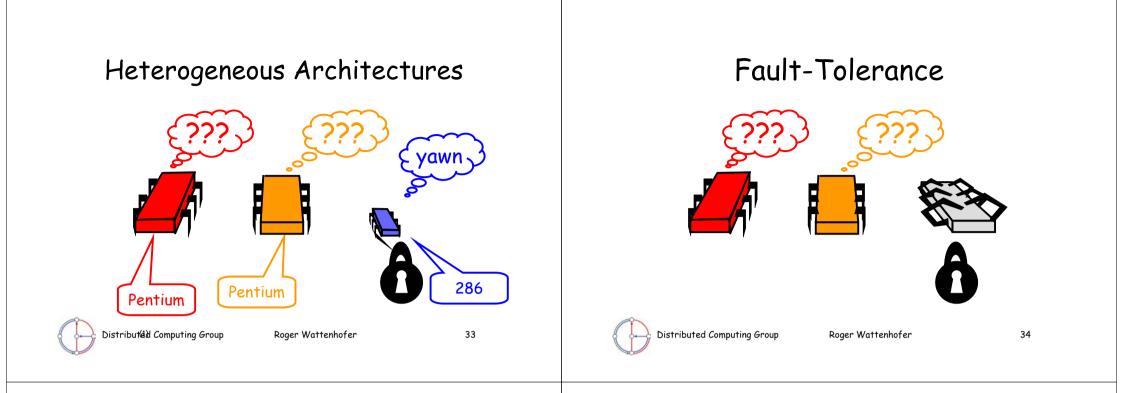
30

Protocol (Algorithm?)

- There is a designated memory cell c.
- Initially c is in a special state "?"
- Processor 1 writes its value v₁ into c, then decides on v_1 .
- A processor j (j not 1) reads c until j reads something else than "?", and then decides on that

Unexpected Delay





Consensus #2 wait-free shared memory

n processors, with n > 1

Distributed Computing Group

 Processors can atomically *read* or *write* (not both) a shared memory cell

Roger Wattenhofer

- Processors might crash (halt)
- Wait-free implementation... huh?

Wait-Free Implementation

- Every process (method call) completes in a finite number of steps
- Implies no mutual exclusion
- We assume that we have wait-free atomic registers (that is, reads and writes to same register do not overlap)

A wait-free algorithm...

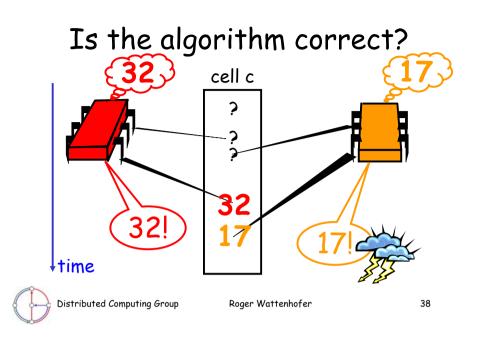
- There is a cell c, initially c="?"
- Every processor i does the following

```
decide r;
```

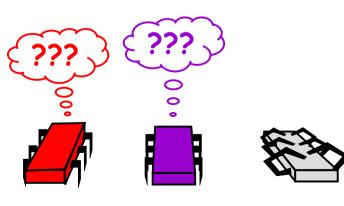

Distributed Computing Group

```
Roger Wattenhofer
```


39

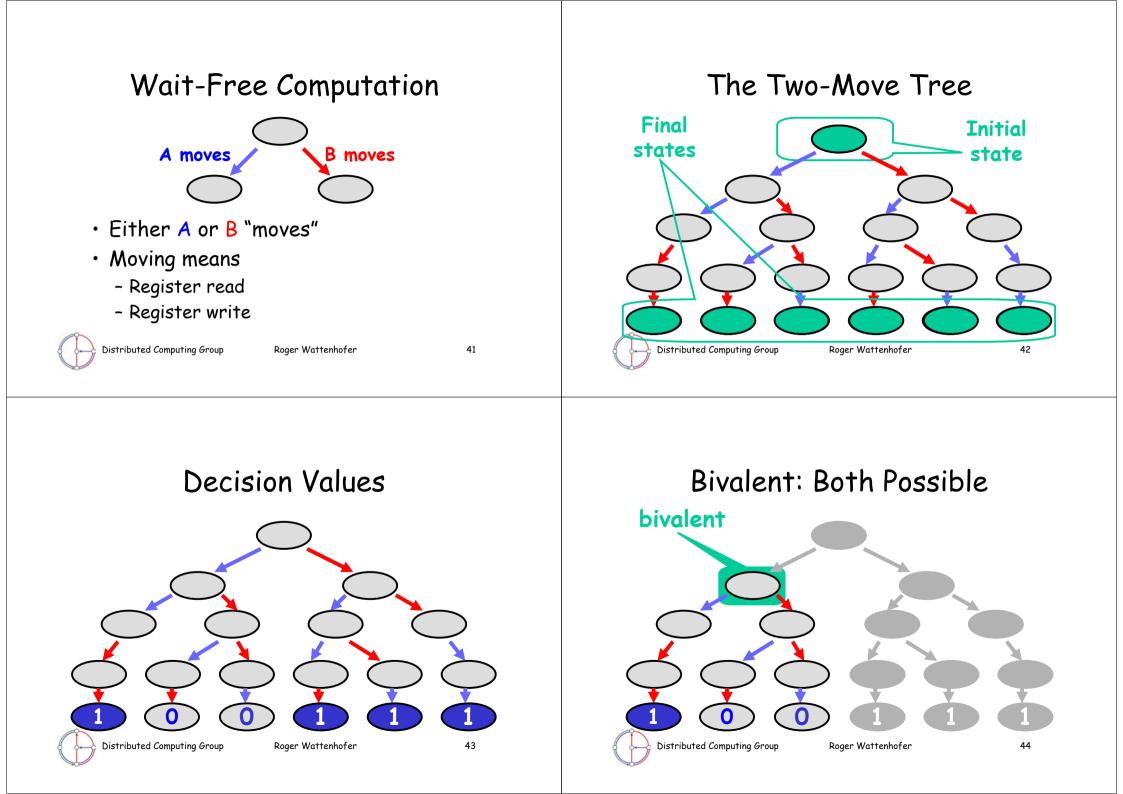


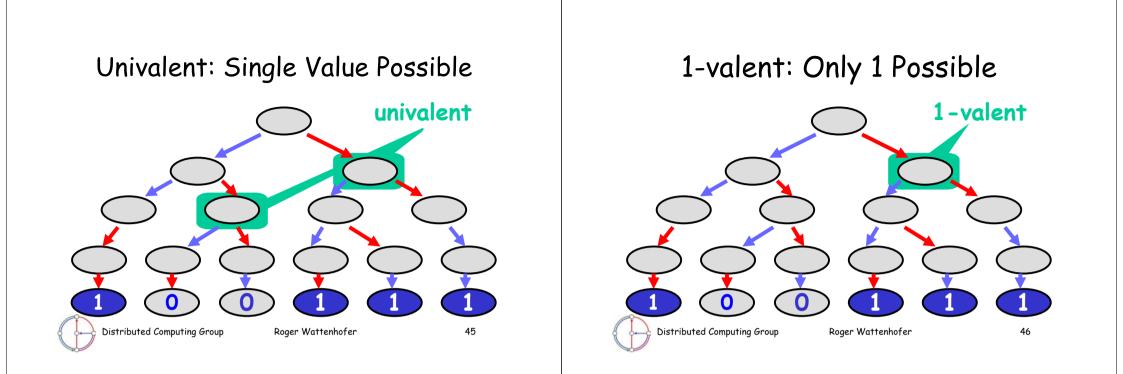
Theorem: No wait-free consensus



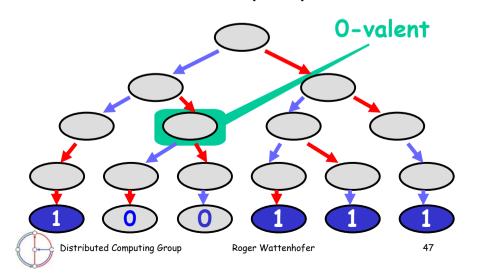
Roger Wattenhofer

- Make it simple
 - n = 2, binary input
- Assume that there is a protocol
- Reason about the properties of any such protocol
- Derive a contradiction





0-valent: Only 0 possible



Summary

- Wait-free computation is a tree
- Bivalent system states
 - Outcome not fixed
- Univalent states
 - Outcome is fixed
 - May not be "known" yet
 - 1-Valent and 0-Valent states

Claim

Some initial system state is bivalent

(The outcome is not always fixed from the start.)

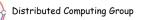
Distributed Computing Group

Roger Wattenhofer

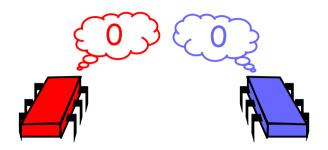
49

A O-Valent Initial State

• Solo execution by A also decides 0



A O-Valent Initial State

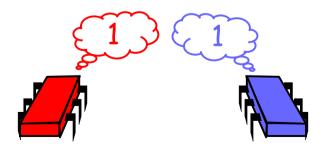


• All executions lead to decision of O

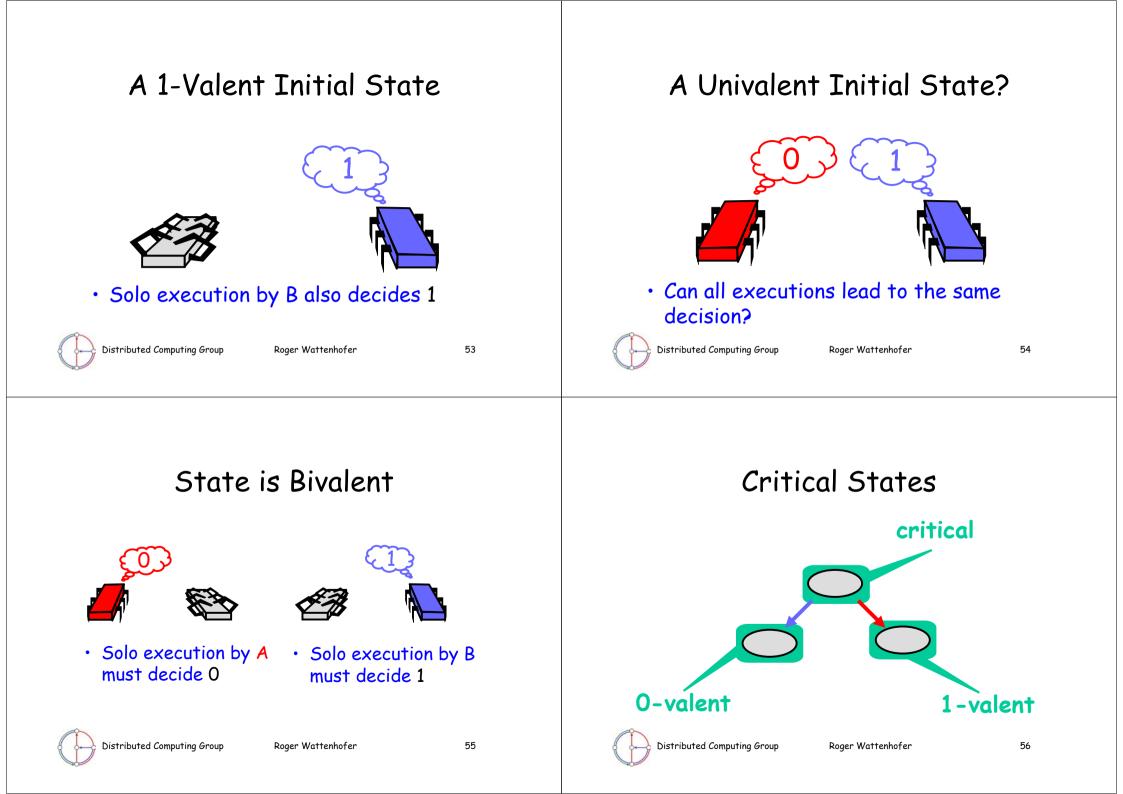
Distributed Computing Group

Roger Wattenhofer

A 1-Valent Initial State



• All executions lead to decision of 1



Critical States

- Starting from a bivalent initial state
- The protocol can reach a critical state
 - Otherwise we could stay bivalent forever
 - And the protocol is not wait-free

Distributed Computing Group Roger Wattenhofer 57 For Distributed Computing Group Roger Wattenhofer 58

59

Model Dependency

- So far, memory-independent!
- True for
 - Registers

Distributed Computing Group

- Message-passing
- Carrier pigeons
- Any kind of asynchronous computation

Roger Wattenhofer

What are the Threads Doing?

From a Critical State

-valent

If B goes first,

protocol decides 1

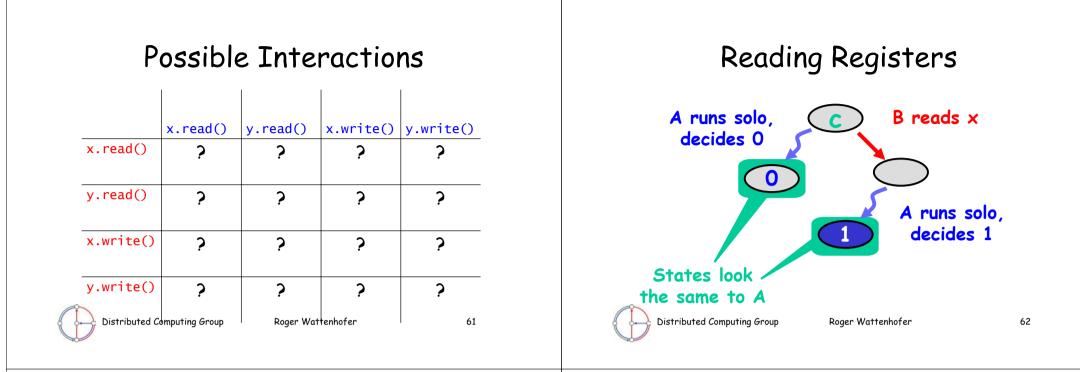
• Reads and/or writes

0-valent

If A goes first,

protocol decides 0

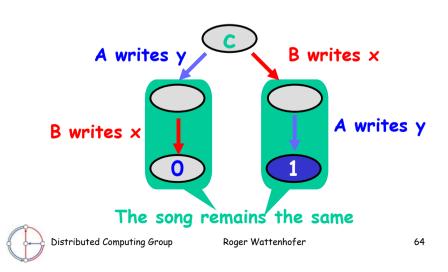
To same/different registers

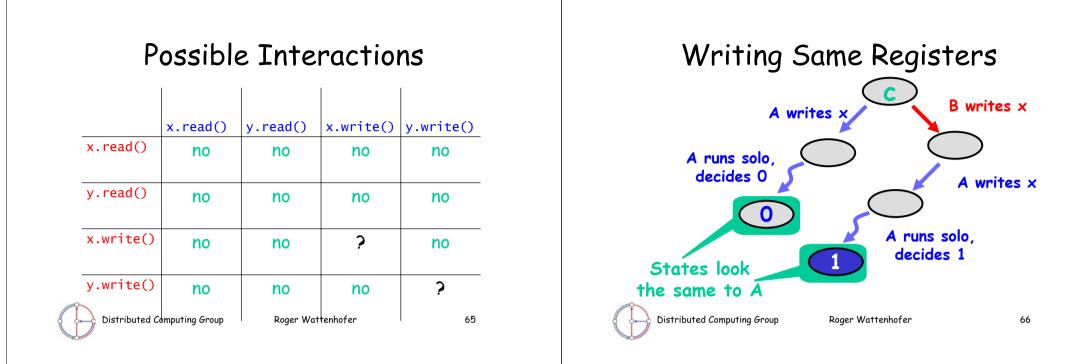


Possible Interactions

	x.read()	y.read()	x.write()	y.write()
x.read()	no	no	no	no
y.read()	no	no	no	no
x.write()	no	no	?	?
y.write()	no	no	?	?
) Distributed Co	omputing Group	Roger Wat	Itenhofer	63

Writing Distinct Registers



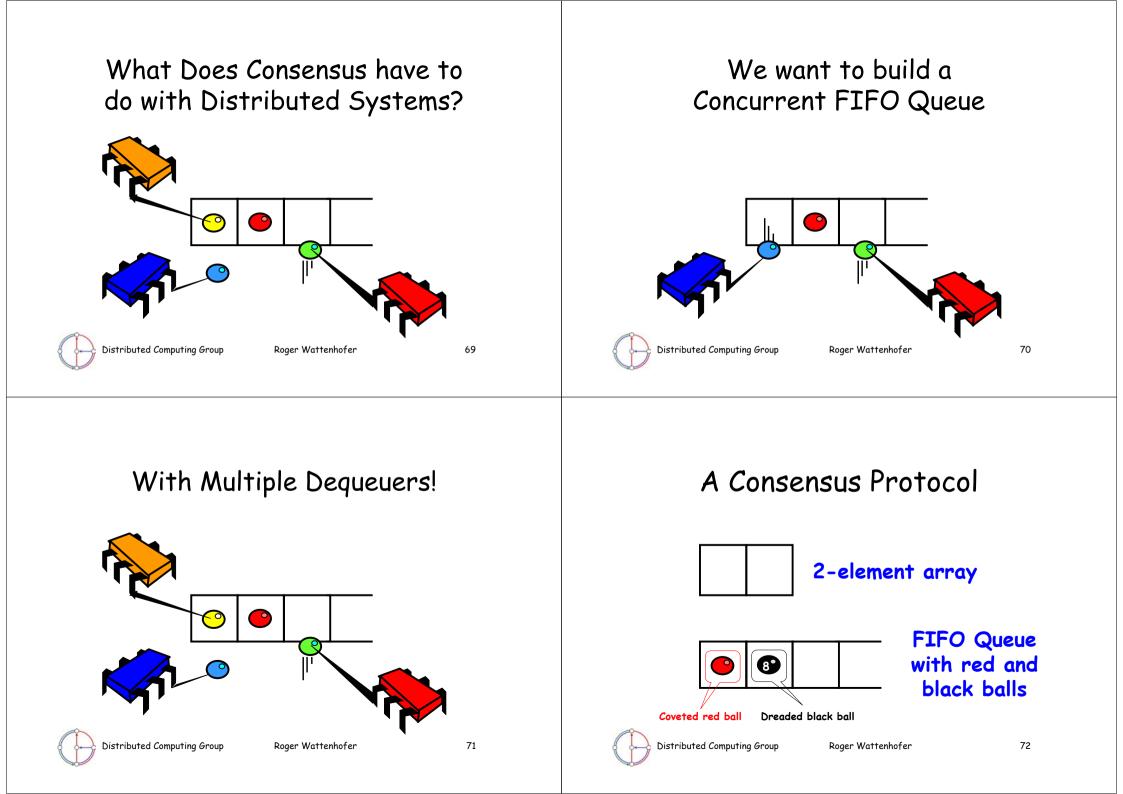


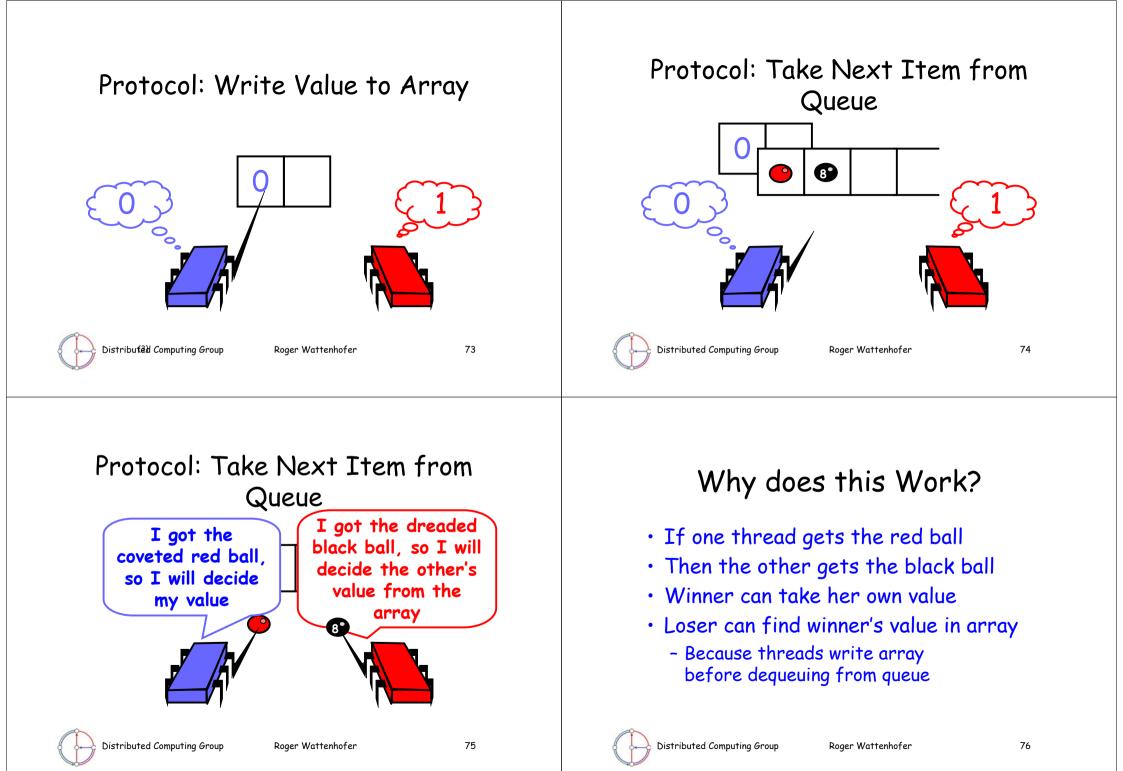
That's All, Folks!

	x.read()	y.read()	x.write()	y.write()
x.read()	no	no	no	no
y.read()	no	no	no	no
x.write()	no	no	no	no
y.write()	no	no	no	no
) Distributed Co	omputing Group	Roger Wattenhofer		67

Theorem

- It is impossible to solve consensus using read/write atomic registers
 - Assume protocol exists
 - It has a bivalent initial state
 - Must be able to reach a critical state
 - Case analysis of interactions
 - Reads vs others
 - Writes vs writes





Implication

- We can solve 2-thread consensus using only
 - A two-dequeuer queue
 - Atomic registers

Distributed Computing Group

Distributed Computing Group

Roger Wattenhofer

77

79

Implications

Assume there exists
A queue implementation from atomic registers
Given

A consensus protocol from queue and registers

Substitution yields

A wait-free consensus protocol from atomion registers

Corollary

- It is impossible to implement a twodequeuer wait-free FIFO queue with read/write shared memory.
- This was a proof by reduction; important beyond NP-completeness...

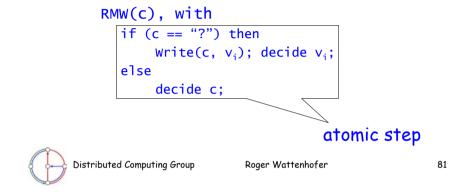
Roger Wattenhofer

Consensus #3 read-modify-write shared mem.

- n processors, with n > 1
- Wait-free implementation
- Processors can atomically read *and* write a shared memory cell in one atomic step: the value written can depend on the value read
- We call this a RMW register

Protocol

- There is a cell c, initially c="?"
- Every processor i does the following



Discussion

- Protocol works correctly
 - One processor accesses c as the first; this processor will determine decision
- Protocol is wait-free
- RMW is quite a strong primitive
 - Can we achieve the same with a weaker primitive?

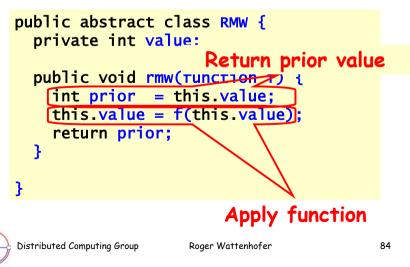
Distributed Computing Group

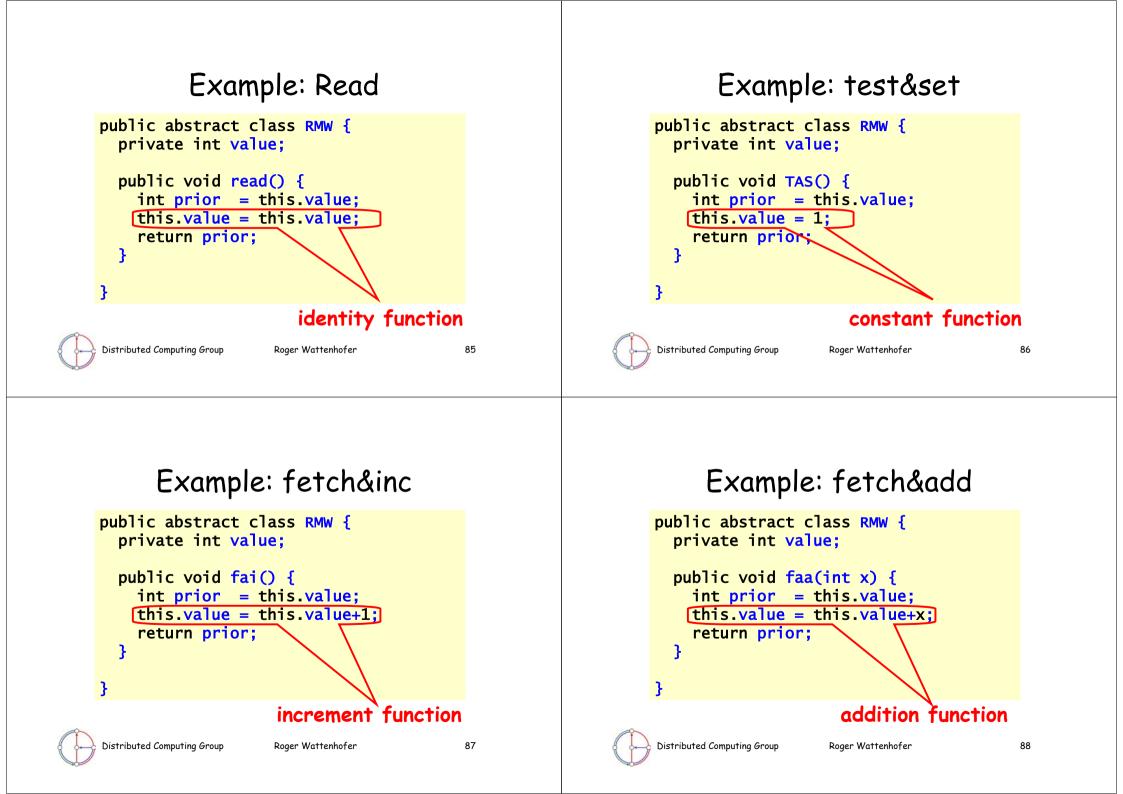
Roger Wattenhofer

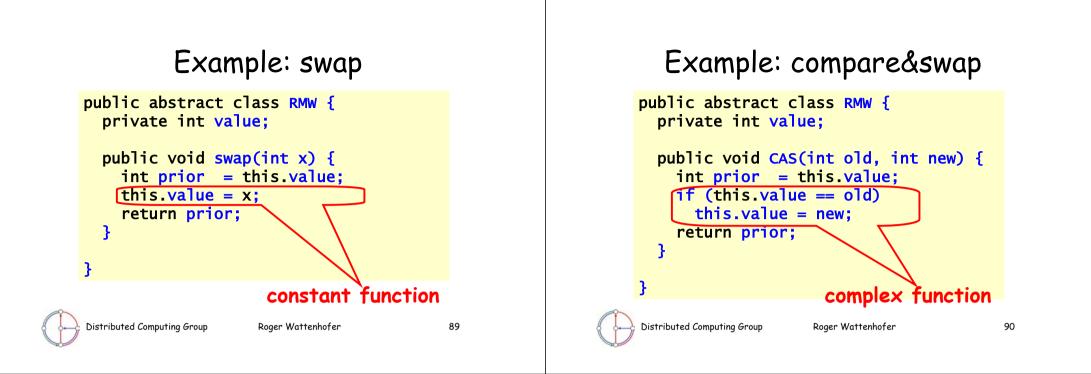
82

Read-Modify-Write more formally

- Method takes 2 arguments:
 - Variable x
 - Function ${\boldsymbol{\mathsf{f}}}$
- Method call:
 - Returns value of \boldsymbol{x}
 - Replaces x with f(x)







"Non-trivial" RMW

Not simply read

Distributed Computing Group

- But
 - teståset, fetchåinc, fetchåadd, swap, compareåswap, general RMW
- Definition: A RMW is non-trivial if there exists a value v such that v ≠ f(v)

Roger Wattenhofer

91

Consensus Numbers (Herlihy)

- An object has consensus number n
 - If it can be used
 - Together with atomic read/write registers
 - To implement n-thread consensus
 - But not (n+1)-thread consensus

Consensus Numbers

- Theorem
 - Atomic read/write registers have consensus number 1
- Proof
 - Works with 1 process
 - We have shown impossibility with 2

Roger Wattenhofer

93

Consensus Numbers

- Consensus numbers are a useful way of measuring synchronization power
- Theorem
 - If you can implement X from Y
 - And X has consensus number c
 - Then Y has consensus number at least c

Roger Wattenhofer

Distributed Computing Group

94

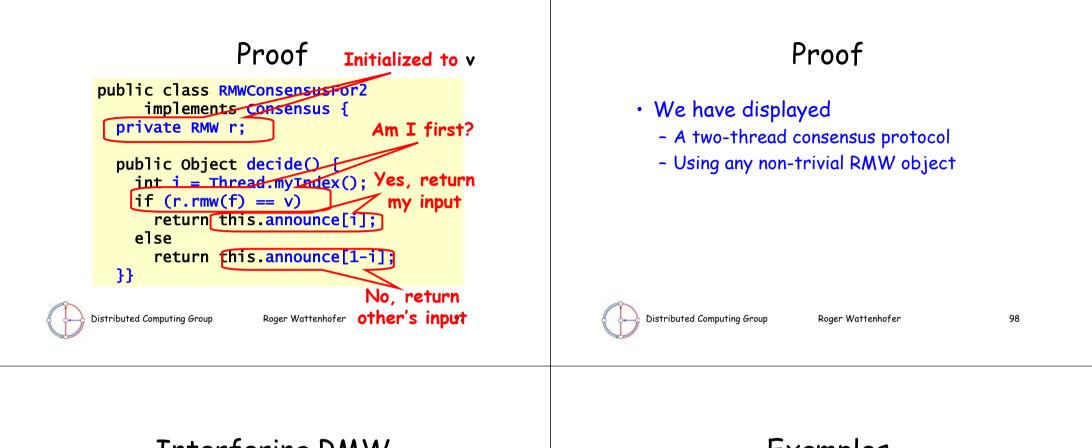
Synchronization Speed Limit

- Conversely
 - If X has consensus number c
 - And Y has consensus number d < c
 - Then there is no way to construct a wait-free implementation of X by Y
- This theorem will be very useful
 - Unforeseen practical implications!

95

Theorem

- Any non-trivial RMW object has consensus number at least 2
- Implies no wait-free implementation of RMW registers from read/write registers
- Hardware RMW instructions not just a convenience

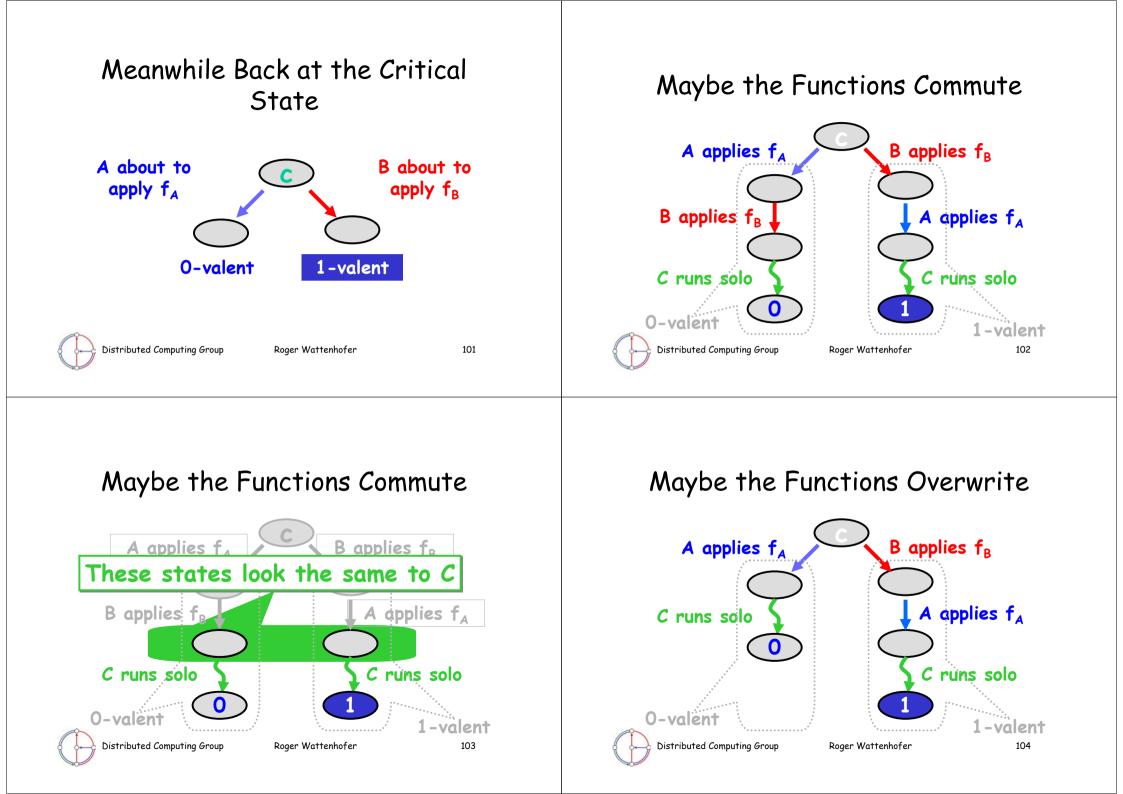


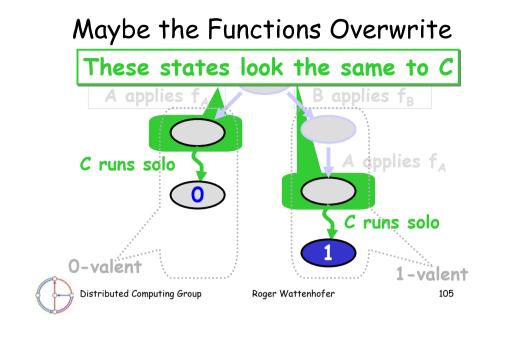
Interfering RMW

- Let F be a set of functions such that for all f_i and f_{j_i} either
 - They commute: $f_i(f_j(x))=f_j(f_i(x))$
 - They overwrite: $f_i(f_j(x))=f_i(x)$
- Claim: Any such set of RMW objects has consensus number exactly 2

Examples

- Test-and-Set
 - Overwrite
- Swap
 - Overwrite
- Fetch-and-inc
 - Commute





Impact

- Many early machines used these "weak" RMW instructions
 - Test-and-set (IBM 360)
 - Fetch-and-add (NYU Ultracomputer)

- Swap

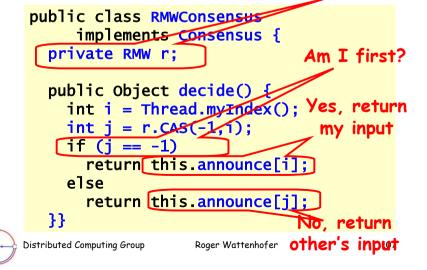
- We now understand their limitations
 - But why do we want consensus anyway?

Roger Wattenhofer

Distributed Computing Group

106

CAS has Unbounded Consensus Numberlized to -1



The Consensus Hierarchy

Distributed Computing Group

Consensus #4 Synchronous Systems

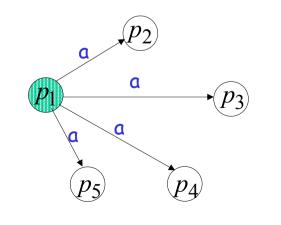
- In real systems, one can sometimes tell if a processor had crashed
 - Timeouts

Distributed Computing Group

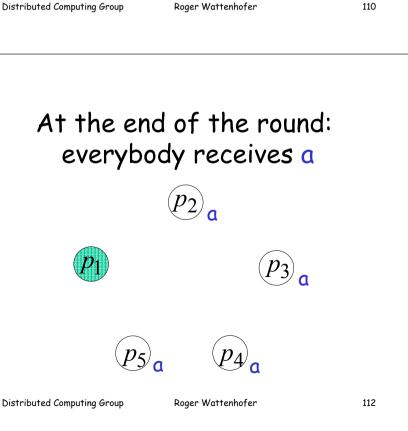
- Broken TCP connections
- Can one solve consensus at least in synchronous systems?

111

Send a message to all processors in one round: Broadcast



Roger Wattenhofer



Communication Model

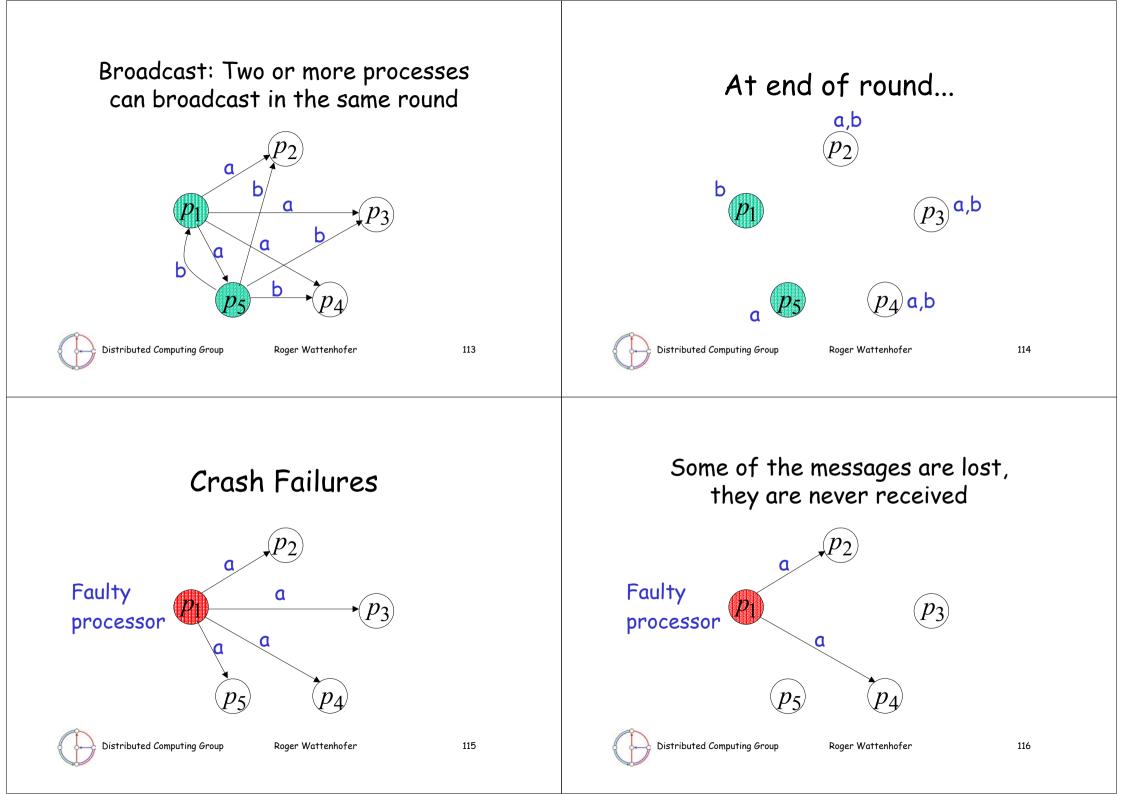
 p_1

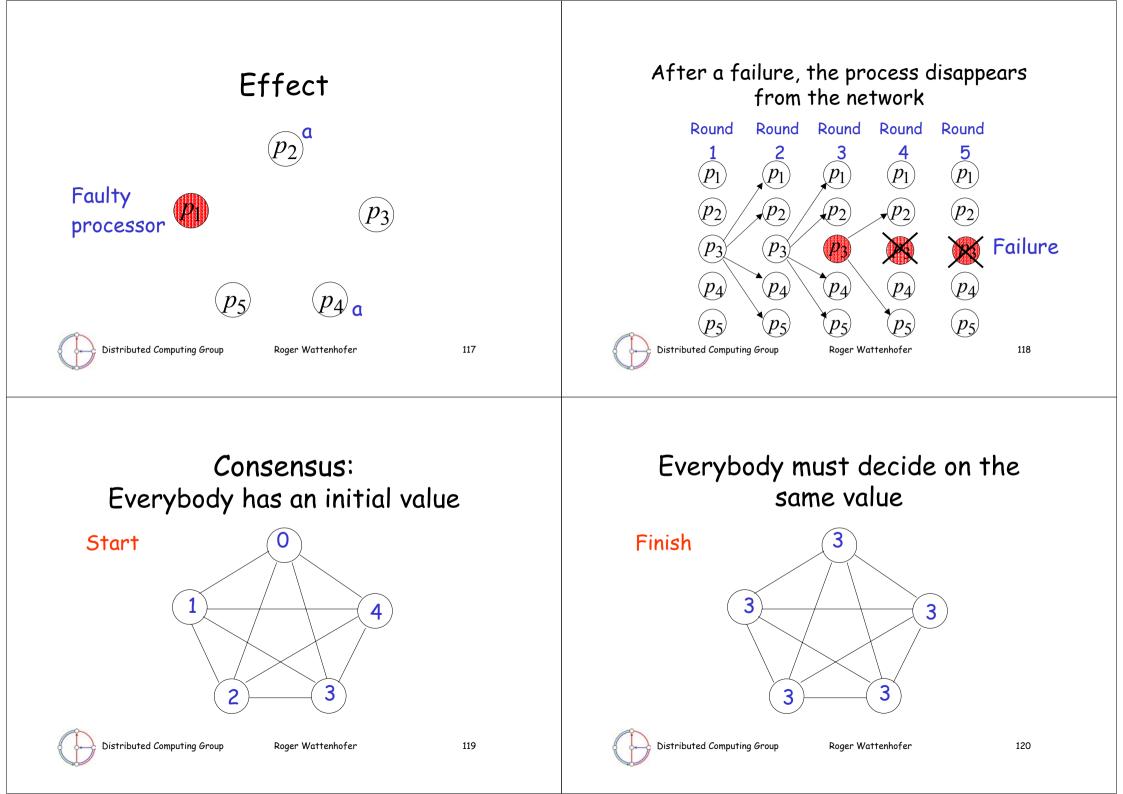
 p_3

n

• Complete graph

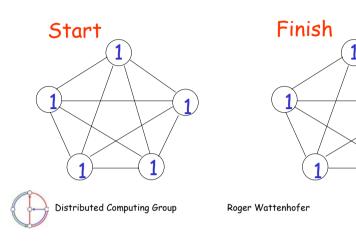
Synchronous



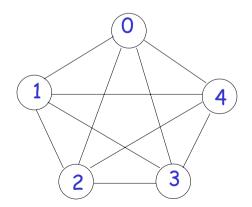


Validity condition:

If everybody starts with the same value they must decide on that value



Start



121

A simple algorithm

Each processor:

- 1. Broadcasts value to all processors
- 2. Decides on the minimum

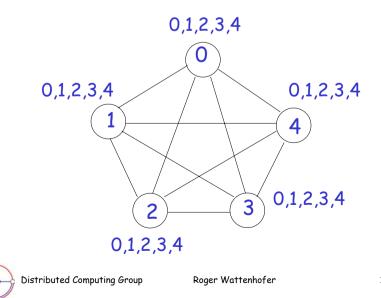
(only one round is needed)

Distributed Computing Group

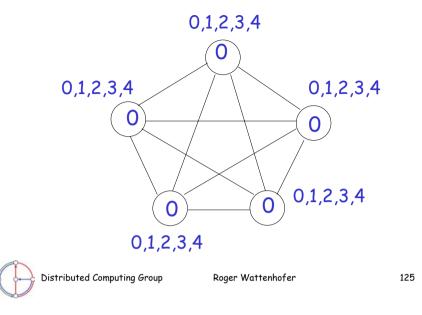
Roger Wattenhofer

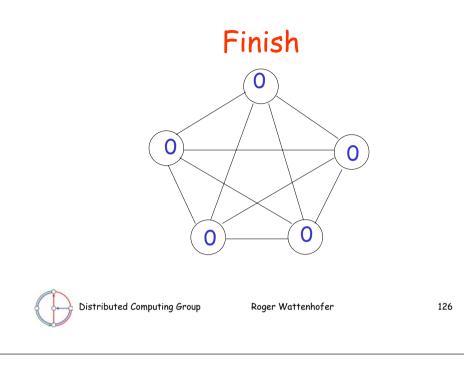
122

Broadcast values

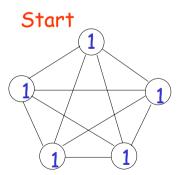


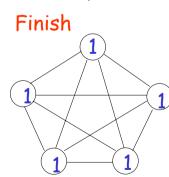
Decide on minimum





This algorithm satisfies the validity condition





If everybody starts with the same initial value, everybody sticks to that value (minimum)

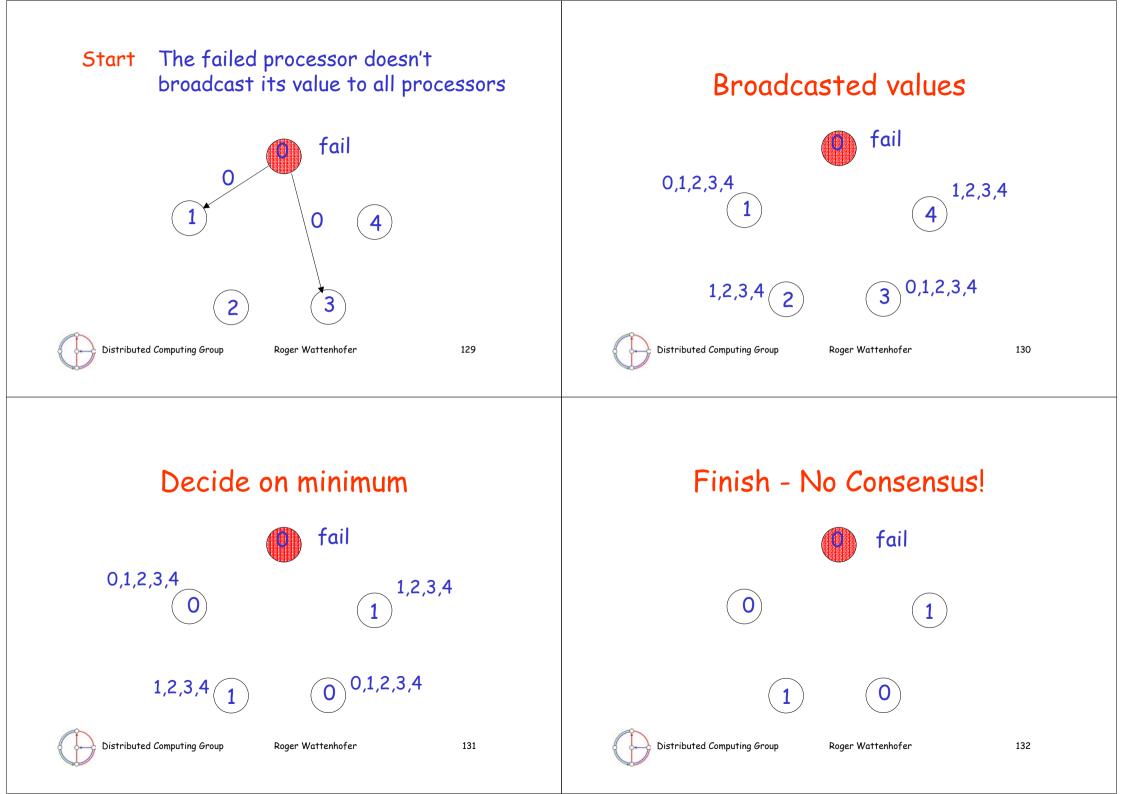
Consensus with Crash Failures

The simple algorithm <u>doesn't</u> work

Each processor:

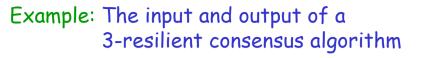
1. Broadcasts value to all processors

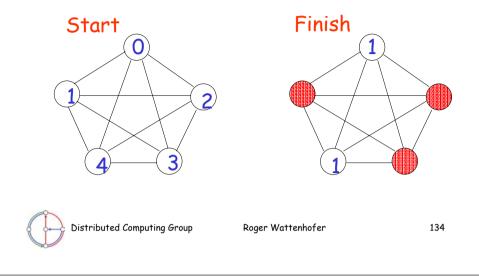
2. Decides on the minimum



If an algorithm solves consensus for f failed processes we say it is

an f-resilient consensus algorithm





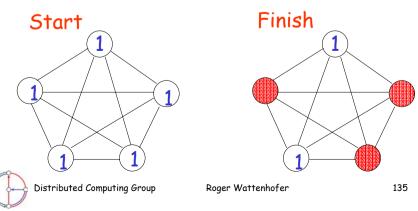
Distributed Computing Group

up Roger Wattenhofer

133

New validity condition:

if all non-faulty processes start with the same value then all non-faulty processes decide on that value



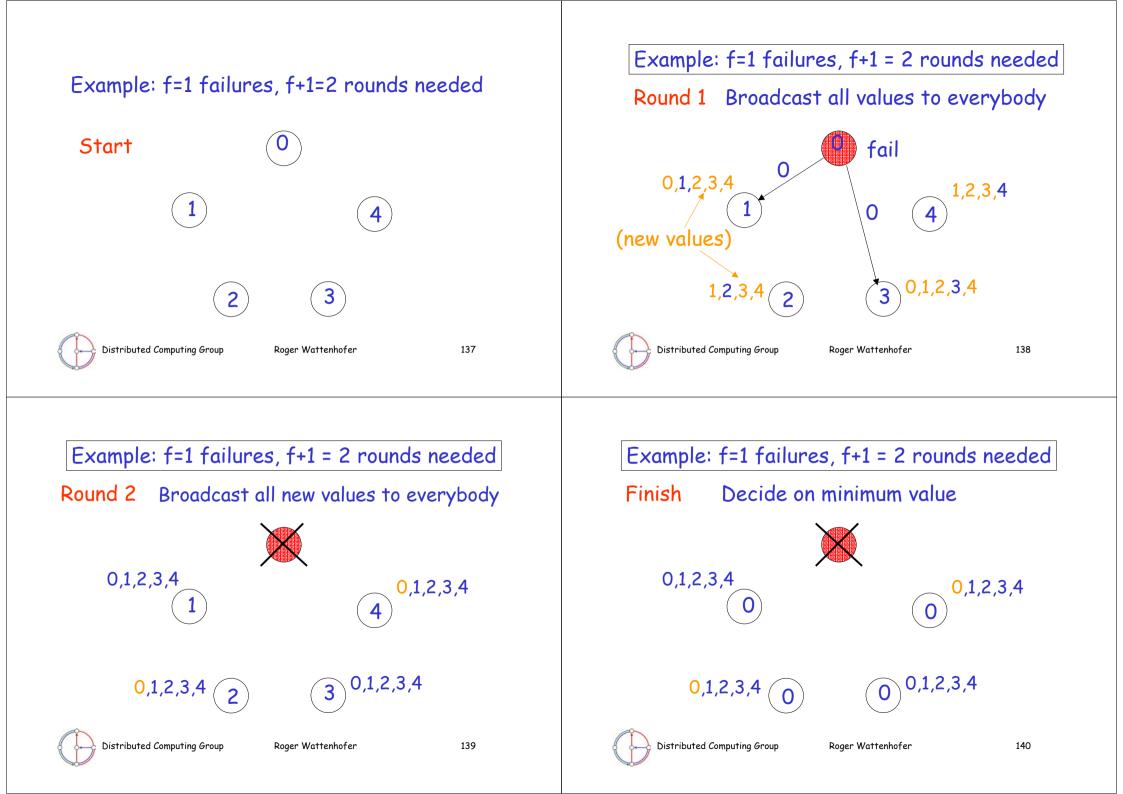
An f-resilient algorithm

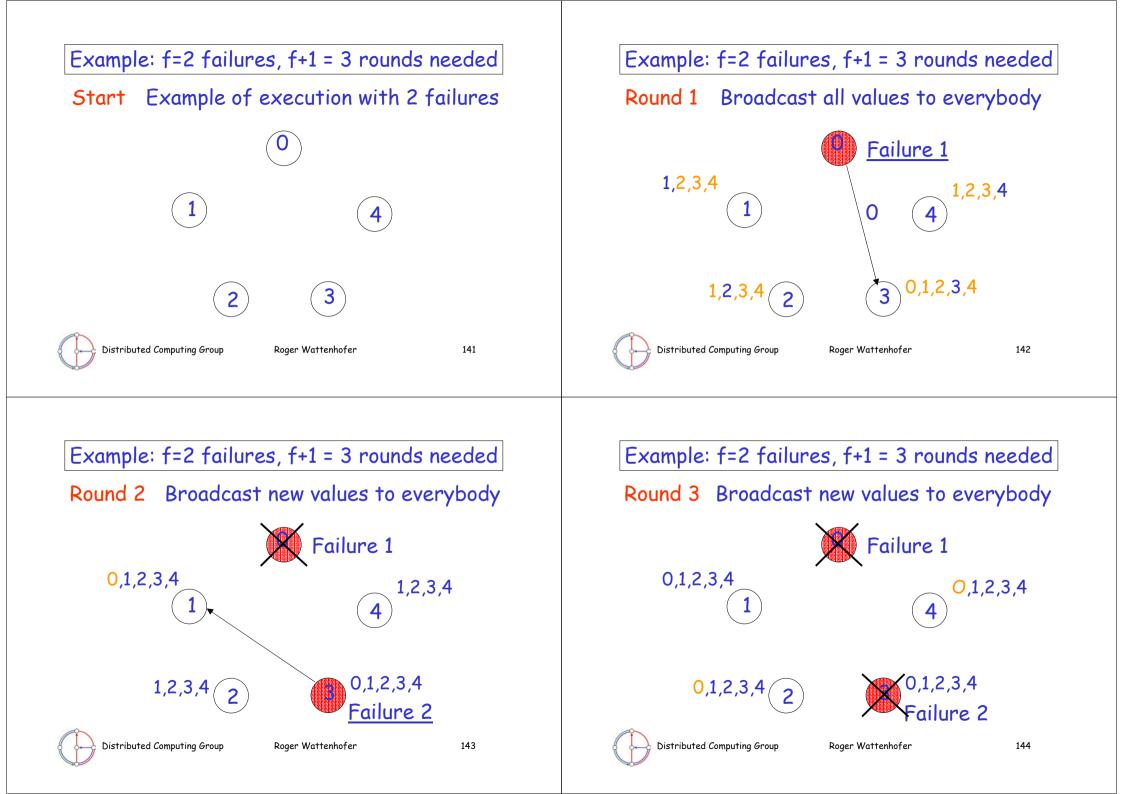
Round 1: Broadcast my value

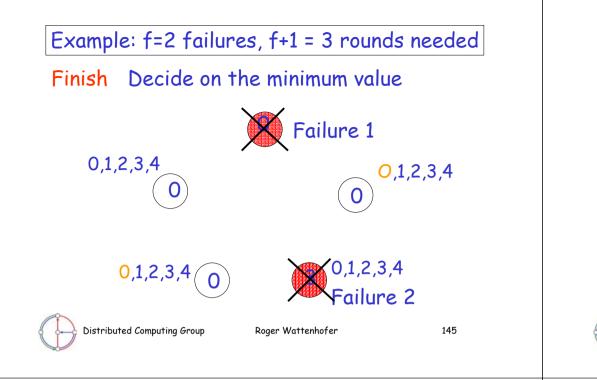
Round 2 to round f+1: Broadcast any new received values

End of round f+1:

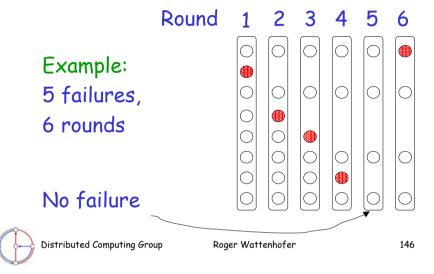
Decide on the minimum value received







If there are f failures and f+1 rounds then there is a round with no failed process



At the end of the round with no failure:

- Every (non faulty) process knows about all the values of all the other participating processes
- •This knowledge doesn't change until the end of the algorithm

Roger Wattenhofer

147

Distributed Computing Group

Therefore, at the end of the round with no failure:

Everybody would decide on the same value

However, as we don't know the exact position of this round, we have to let the algorithm execute for f+1 rounds

Validity of algorithm:

when all processes start with the same input value then the consensus is that value

This holds, since the value decided from each process is some input value

Roger Wattenhofer

149

A Lower Bound

Theorem: Any f-resilient consensus algorithm requires at least f+1 rounds

Roger Wattenhofer

150

Proof sketch:

Assume for contradiction that f or less rounds are enough

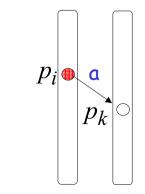
Worst case scenario:

There is a process that fails in each round

151

Worst case scenario

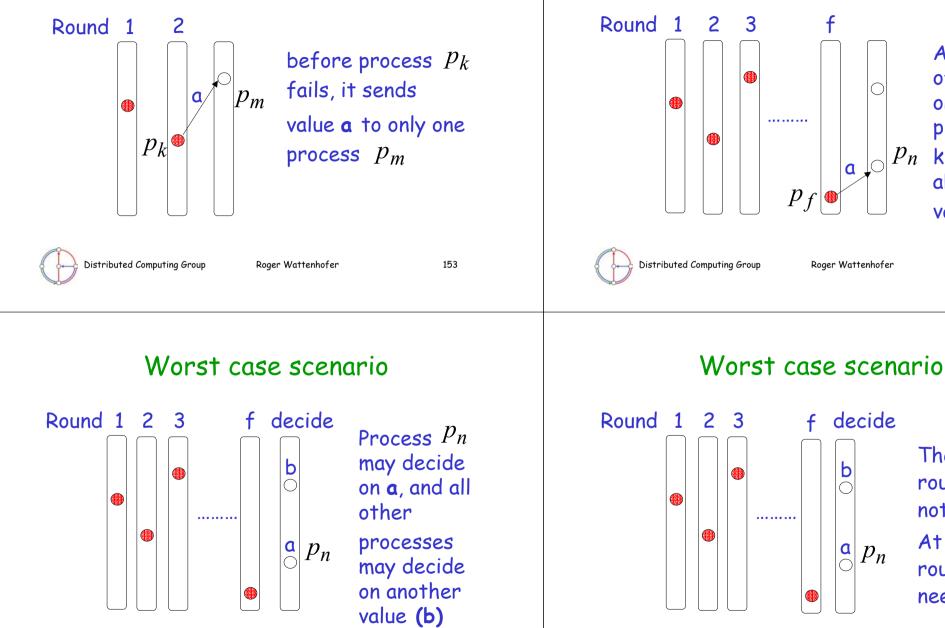
Round



before process p_i fails, it sends its value **a** to only one process p_k

Worst case scenario

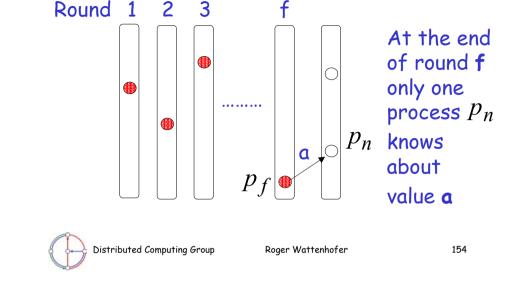
Distributed Computing Group



155

Roger Wattenhofer

Worst case scenario

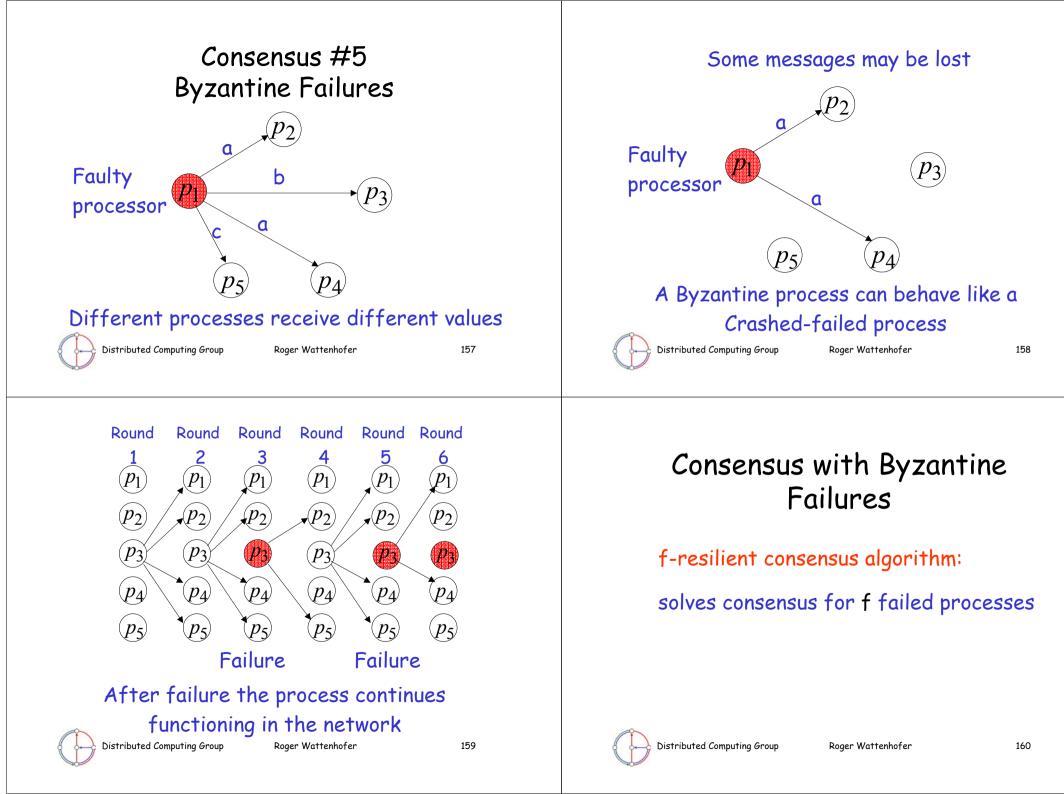


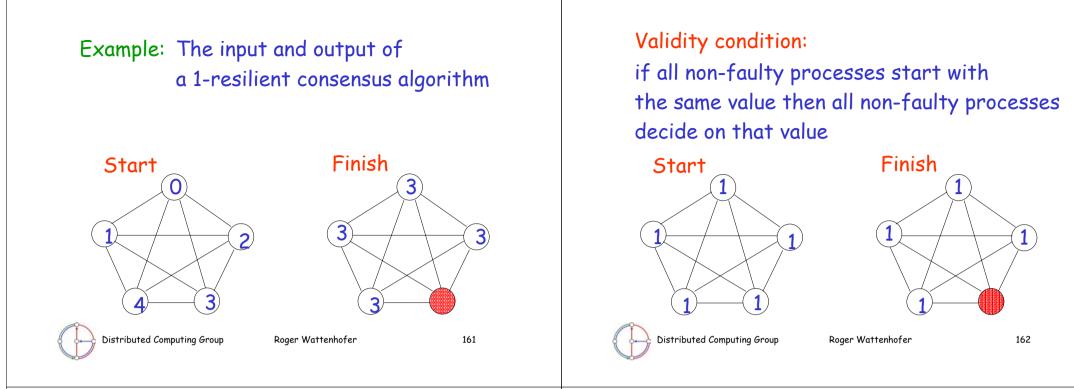
decide

Roger Wattenhofer

Distributed Computing Group

Therefore f rounds are not enough At least f+1 rounds are needed





Lower bound on number of rounds

- Theorem: Any f-resilient consensus algorithm requires at least f+1 rounds
- Proof: follows from the crash failure lower bound

Upper bound on failed processes

Theorem: There is no *f*-resilient algorithm for *n* processes, where $f \ge n/3$

Plan:

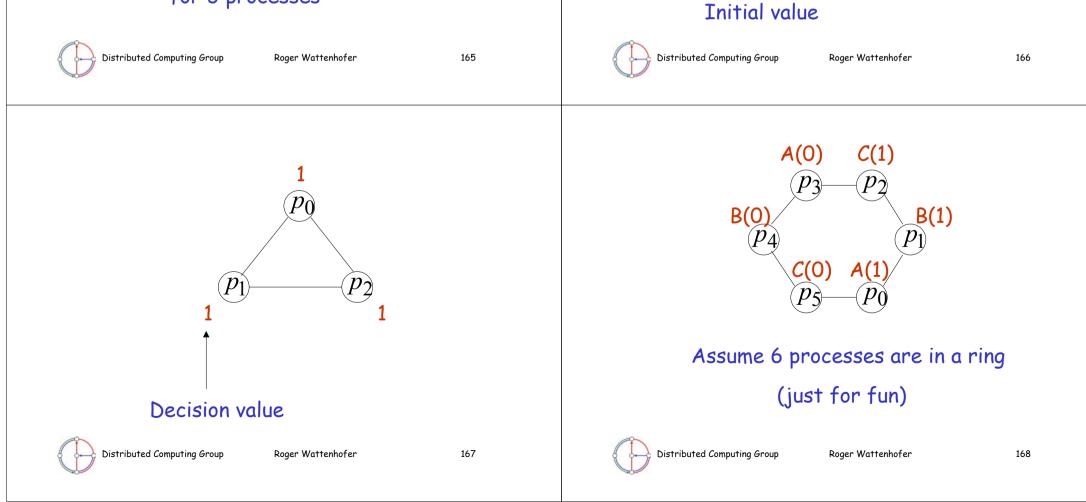
Distributed Computing Group

First we prove the 3 process case, and then the general case

Roger Wattenhofer

The 3 processes case

- Lemma: There is no 1-resilient algorithm for 3 processes
- **Proof:** Assume for contradiction that there is a 1-resilient algorithm for 3 processes



A(0)

 p_{0}

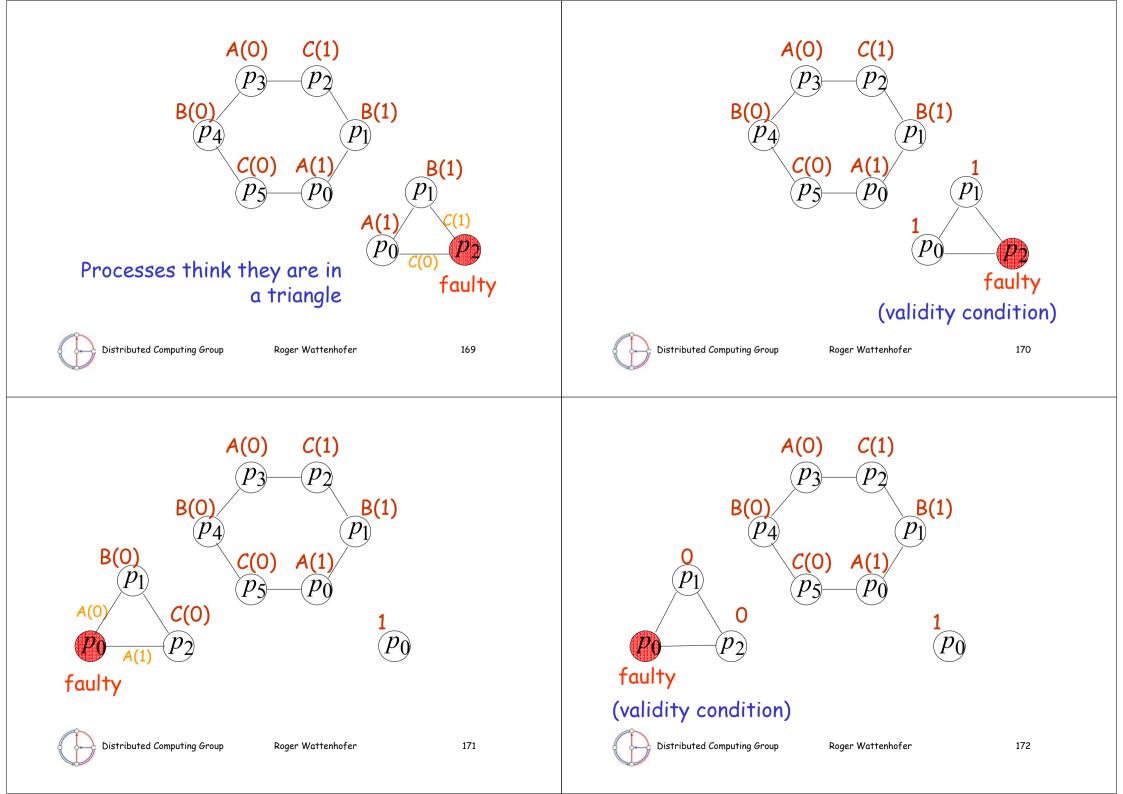
 p_2

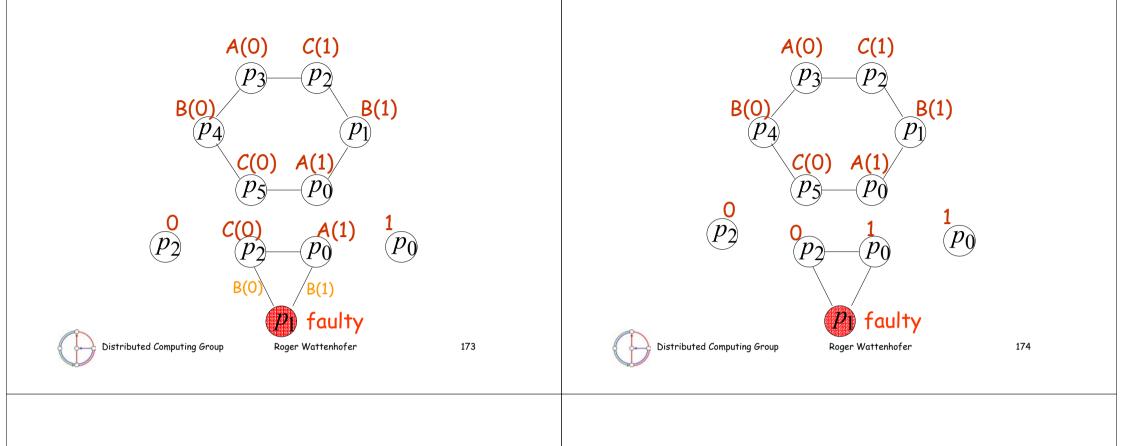
C(0)

Local

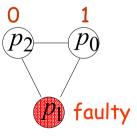
algorithm

B(1





Impossibility



Conclusion

There is no algorithm that solves consensus for 3 processes in which 1 is a byzantine process

The n processes case

Assume for contradiction that there is an f-resilient algorithm Afor n processes, where $f \ge n/3$

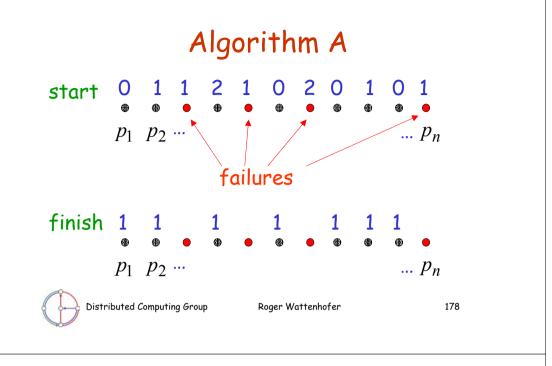
We will use algorithm A to solve consensus for 3 processes and 1 failure (which is impossible, thus we have a contradiction)

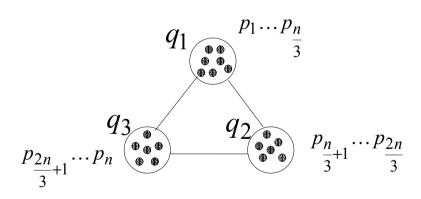
Distributed Computing Group

Roger Wattenhofer

177

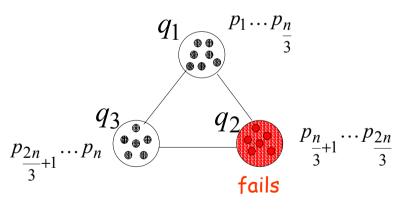
179





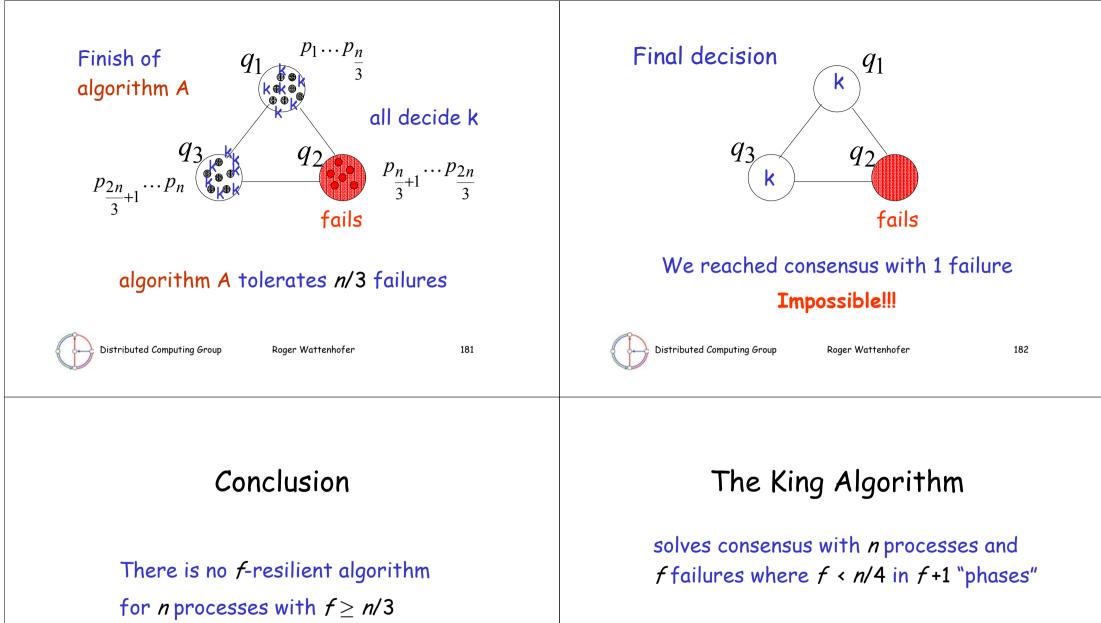
Each process q simulates algorithm A on n/3 of "p" processes

Roger Wattenhofer



When a single q is byzantine, then n/3 of the "p" processes are byzantine too.

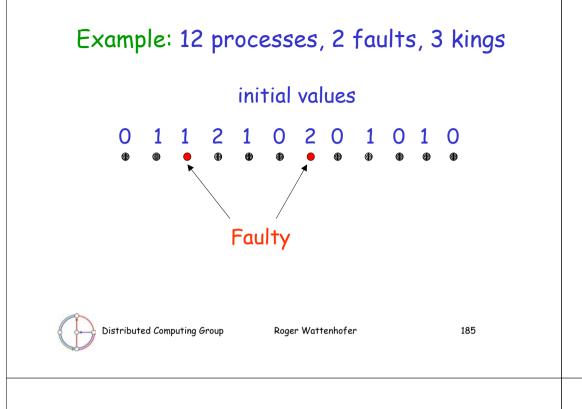
Distributed Computing Group



There are f+1 phases Each phase has two rounds In each phase there is a different king

183

Distributed Computing Group

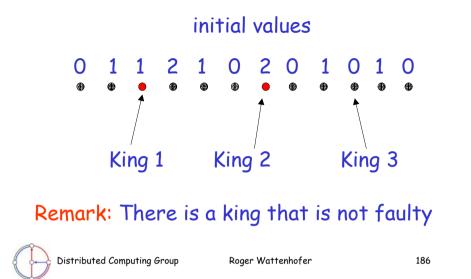


The King algorithm

Each processor p_i has a preferred value v_i

In the beginning, the preferred value is set to the initial value

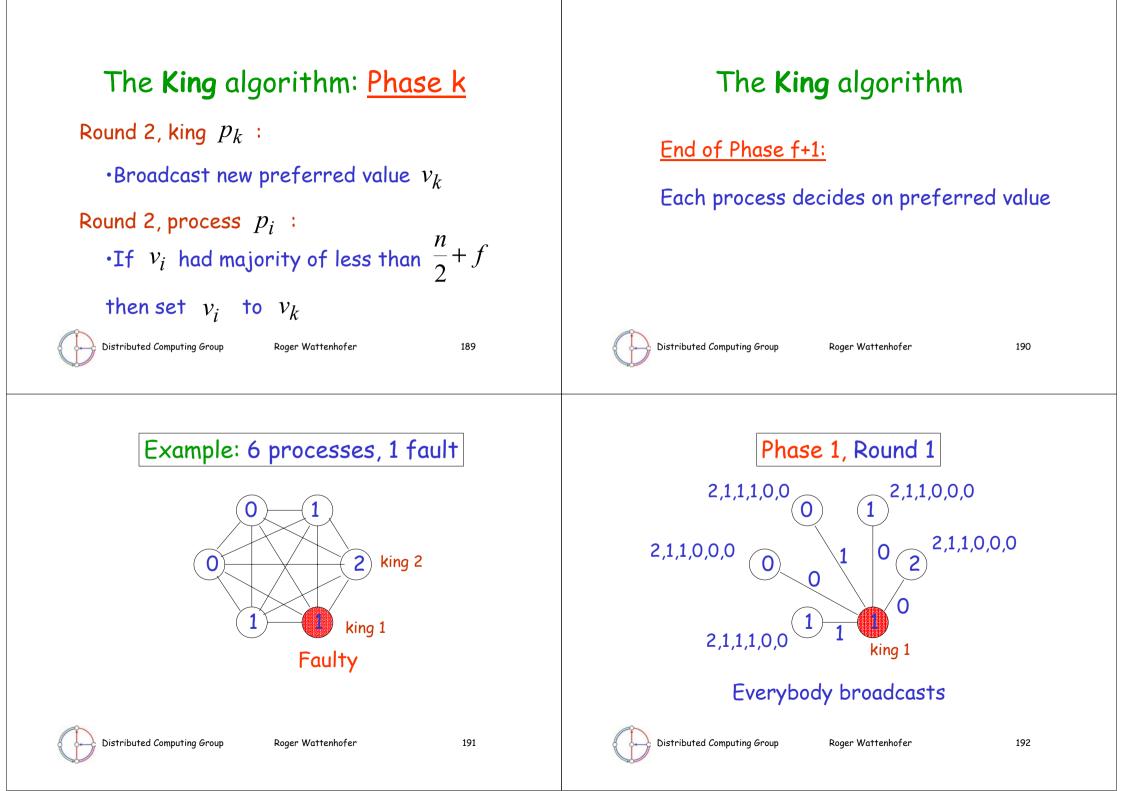
Example: 12 processes, 2 faults, 3 kings

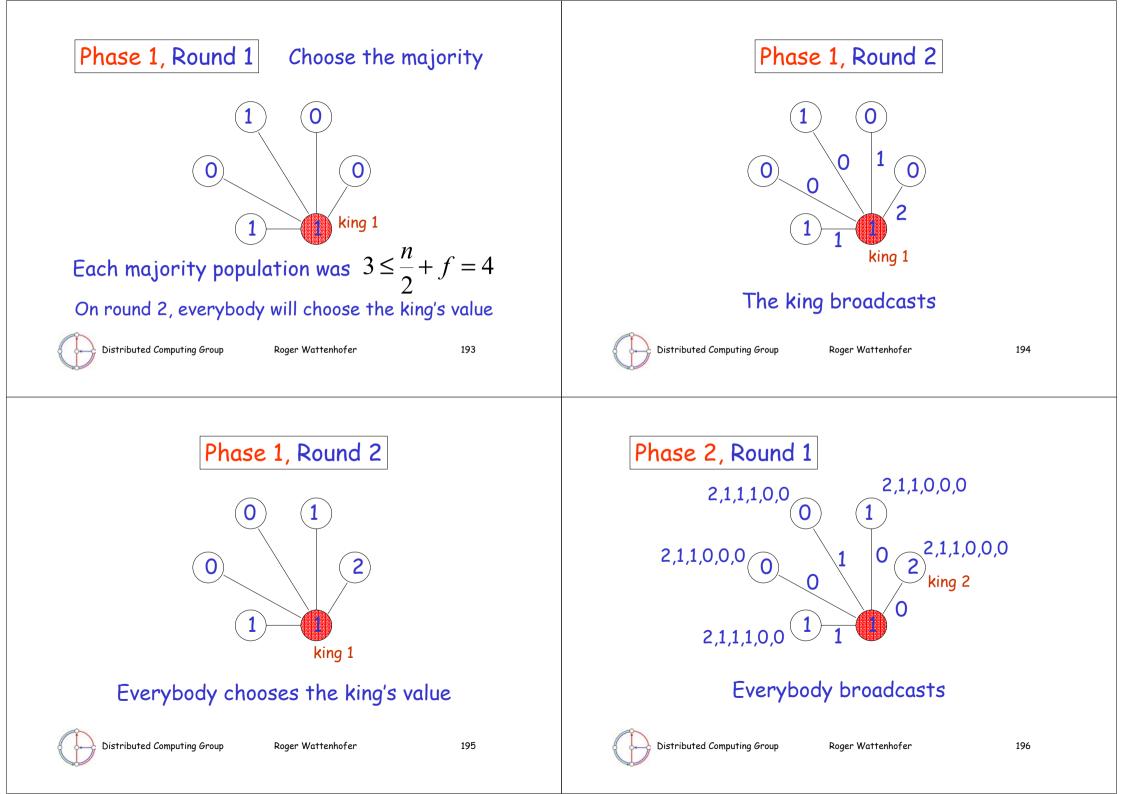


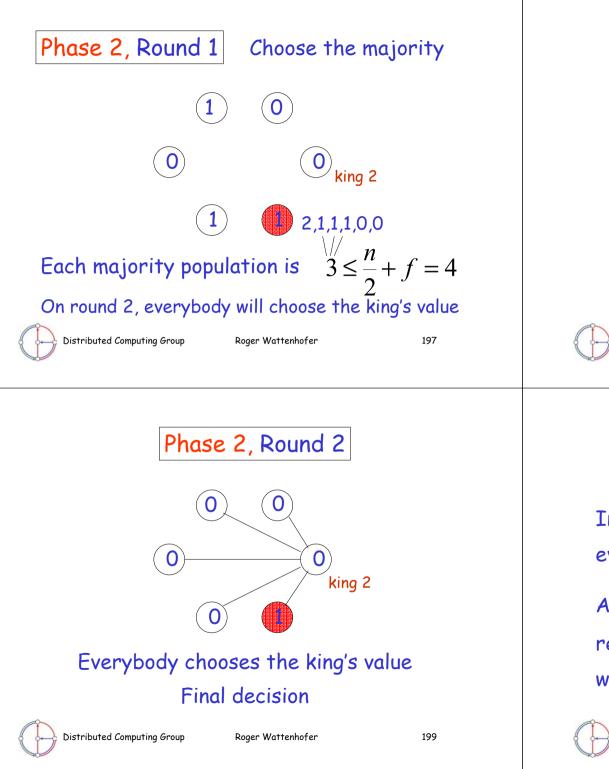
The King algorithm: Phase k

Round 1, processor p_i :

- Broadcast preferred value v_i
- Set v_i to the majority of values received







0 0 0 0 king 2 1 0 king 2 The king broadcasts

Phase 2, Round 2

Distributed Computing Group

Roger Wattenhofer

Invariant / Conclusion

In the round where the king is non-faulty, everybody will choose the king's value ${\bf v}$

After that round, the majority will remain value **v** with a majority population which is at least $n-f > \frac{n}{2} + f$

Exponential Algorithm

solves consensus with *n* processes and f failures where f < n/3 in f+1 "phases"

But: uses messages with exponential size

Atomic Broadcast

- One process wants to broadcast message to all other processes
- Either everybody should receive the (same) message, or nobody should receive the message
- Closely related to Consensus: First send the message to all, then agree!

Distributed Computing Group Roger Wattenhofer 201	Distributed Computing Group Roger Wattenhofer 202
Summary • We have solved consensus in a variety	
 We have solved consensus in a variety of models; particularly we have seen algorithms wrong algorithms lower bounds impossibility results reductions etc. 	Distributed Computing Group Roger Wattenhofer