Sequential Computation
The Consensus Problem

Roger Wattenhofer thread
a lot of kudos to /
Maurice Herlihy memory /
and Costas Busch

for some of
their slides

Concurrent Computation Asynchrony

1" Sudden unprledictable delays
- Cache misses (short)

- Page faults (/ong)
- Scheduling quantum used up (really /0/7_9)

— - - - — —
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Model Summary

Multiple threads
- Sometimes called processes

- Single shared memory
Objects live in memory
* Unpredictable asynchronous delays

Road Map

- We are going to focus on principles
- Start with idealized models
- Look at a simplistic problem
- Emphasize correctness over pragmatism

- "Correctness may be theoretical, but
incorrectness has practical impact”
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You may ask yourself ... Fundamentalism
T'm no theory weenie - why all - Distributed & concurrent systems are
the theorems and proofs? har d
- Failures
- Concurrency
- Easier to go from theory to practice
than vice-versa
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The Two Generals

Red army wins
If both sides
attack together
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Communications
‘—’__
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Communications

Messengers
don't always make it

.f)/
4 /
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Your Mission

Design a protocol to ensure
that red armies attack
simultaneously
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Theorem

There is no non-trivial
protocol that ensures the red
armies attacks simultaneously
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Proof Strategy

* Assume a protocol exists
- Reason about its properties
- Derive a contradiction
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Proof

1. Consider the protocol that sends
fewest messages

2. It still works if last message lost
3. So just don't send it

- Messengers' union happy
4. But now we have a shorter protocol!
5. Contradicting #1

O~
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Fundamental Limitation

« Need an unbounded number of

messages

* Or possible that no attack takes

N %

place
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You May Find Yourself ...

I want a real-tfime YAFA
compliant Two Generals
protocol using UDP datagrams
running on our enterprise-level
fiber tachyion network ...
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You might say

- S e
fiber tachyion netwd

:‘X
\
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L
“"x
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You might say

Advantage:
*Buys time to find another job

‘No one expects software to work
anywa
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You might say

Advantage:
*Bupeetimao +a
.Nd Disadvantage:
any ‘You're doomed

Without this course, you may
not even know you're doomed
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You might say

I can't find a fault-tolerant
algorithm, I guess I'm just a
paThe’rlc Ioser'
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You might say

Advantage:
*No need to ’rake course

algor'l’rhm I guess I'm JUS'I' a
pathetic loser
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You might say
Advantage:

h‘n nood +a +alre catines b
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You might say

Using skills honed in course, T
can avert certain disaster!
‘Rethink problem spec, or
N ‘Weaken requirements, or
*Build on dlffer'enT pla’rfor‘m

\ 24
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Consensus: Each Thread has a

Private Input
& G

N\
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They Communicate

%fﬂ

N\
o Distributed Computing Group Roger Wattenhofer 26
U/

They Agree on Some Thread's
Input

7
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Consensus is important

* With consensus, you can implement
anything you can imagine...

* Examples: with consensus you can
decide on a leader, implement mutual
exclusion, or solve the two generals
problem
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You gonna learn

* In some models, consensus is possible
* In some other models, it is not

* Goal of this and next lecture: to learn
whether for a given model consensus
is possible or not ... and prove it!

P
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Consensus #1
shared memory

* n processors, with n>1

* Processors can atomically read or
write (not both) a shared memory cell

s
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Protocol (Algorithm?)

* There is a designated memory cell c.

« Initially c is in a special state "?"

* Processor 1 writes its value v, into c,
then decides on v;.

* A processor j (j not 1) reads c until j
reads something else than "?", and
then decides on that.

s
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Unexpected Delay

,/-I..\
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Heterogeneous Architectures

(1D
&4 de— Distribut@d Computing Group
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Fault-Tolerance

ﬁ@%
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Consensus #2
wait-free shared memory

* n processors, with n> 1

* Processors can atomically read or
write (not both) a shared memory cell

* Processors might crash (halt)
* Wait-free implementation... huh?

on
& o1 Distributed Computing Group
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Wait-Free Implementation

* Every process (method call)

completes in a finite number of steps

- Implies no mutual exclusion
- We assume that we have wait-free

n
& o0+ Distributed Computing Group

\\J

atomic registers (that is, reads and
writes o same register do not
overlap)
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A wait-free algorithm...

* There is a cell ¢, initially c="?"
- Every processor i does the following
r = Read(c);
if (r == “?”) then
write(c, v;); decide v;;
else

Is the algorithm correct?

£327

/1
decide r; 7

time
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Theorem:
. Proof Strate
No wait-free consensus gy
* Make it simple
- - - n=2, binary input
- Assume that there is a protocol
* Reason about the properties of any
such protocol
i % - Derive a contradiction
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Wait-Free Computation

A moves /O\B moves
o O

- Either A or B "moves”

* Moving means
- Register read
- Register write

/’
@ Distributed Computing Group Roger Wattenhofer

41

The Two-Move Tree

Final Initial

states L&é state
- O

> ne
S

) Distributed Computing Group
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Decision Values

SN

- -

olNeoNeRs

g N\

oo
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Bivalent: Both Possible

bivalent

-
7

&

/’
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Univalent: Single Value Possible

O univalent

&

N
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1-valent: Only 1 Possible
D) 1-valent

FEr T

N
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O-valent: Only O possible
D O-valent

B &

N
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Summary

+ Wait-free computation is a tree
- Bivalent system states

- Outcome not fixed
* Univalent states

- Outcome is fixed

- May not be “known" yet

- 1-Valent and O-Valent states
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Claim

Some initial system state is bivalent

(The outcome is not always fixed from
the start.)

7
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A O0-Valent Initial State

.0 (0

£ -

&

- All executions lead to decision of O

a)

i
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A O0-Valent Initial State

0>

£

& =

- Solo execution by A also decides O
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A 1-Valent Initial State

LY 12

&

« All executions lead to decision of 1

M
¢

i
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A 1-Valent Initial State

.
2 &

- Solo execution by B also decides 1

/’
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A Univalent Initial State?

SRR

&

« Can all executions lead to the same
decision?

/’
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State is Bivalent

£0> 3
F & 2 B

* Solo executionby A - Solo execution by B
must decide O must decide 1

/’
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Critical States

critical
O-valent 1-valent
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Critical States

- Starting from a bivalent initial state

* The protocol can reach a critical
state

- Otherwise we could stay bivalent
forever

- And the protocol is not wait-free

Vai
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From a Critical State

O
o
O
O-valent

If A goes first, If B goes first,
protocol decides O protocol decides 1

/-
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Model Dependency

- So far, memory-independent!

* True for
- Registers
- Message-passing
- Carrier pigeons
- Any kind of asynchronous computation

Vai
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What are the Threads Doing?

 Reads and/or writes
 To same/different registers

Ve
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Possible Interactions

Reading Registers
D

A runs solo, B reads x

x.read() |y.read() |x.write(Q) |y.write() .
readO 5 5 5 5 decides O \
y.read() ? ? ? ?
A runs solo,
write(Q) 5 > 5 5 States look
a ; ; : : the same to A
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Possible Interactions Writing Distinct Regls’rer's
x.read() |y.read() |[x.write(Q) |y.write() A writes y B writes x
x.read() no no no no
y.read() no no no no
B writes x A wrifes y
x.write() no no ? ?
write()
Y no no ? ? The song remains the same
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Possible Interactions

Writing Same Registers

A writes V :\ B writes x

x.read() |y.read() |x.write(Q) |y.write()
read -
x-readQ no no no no A runs solo,
decides O [ / A writes x
y.readQ no ho no no O
x.write() no no p) no [ A runs solo,
decides 1
; States look
y.writeQ no no no ? the same to A
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That's All, Folks! Theorem
} ; _ _ « It is impossible o solve consensus
. . writ writ . . . )
x.read) |y.readQ |x.writeQ |y.writeQ using read/write atomic registers
x.read() no no no no .
- Assume protocol exists
y.read() ho no no ho - It has a bivalent initial state
- Must be able to reach a critical state
x.writeQ no no no no - Case analysis of interactions
+ Reads vs others
y.write() no no no no * Writes vs writes
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What Does Consensus have to
do with Distributed Systems?

&
-

We want to build a
Concurrent FIFO Queue

<|:7 Distributed Computing Group Roger Wattenhofer 69 C}j\ Distributed Computing Group Roger Wattenhofer 70
With Multiple Dequeuers! A Consensus Protocol
2-element array

- FIFO Queue

I ® | with red and

black balls

Coveted red ball  Dreaded black ball
C ;7\ Distributed Computing Group Roger Wattenhofer 71 C}j Distributed Computing Group Roger Wattenhofer 72




Protocol: Write Value to Array

e
b

7
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Protocol: Take Next Item from
Queue

@06 g:)
b

N\
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Protocol: Take Next Item from

Queue

I got the dreaded
black ball, so I will
decide the other's
value from the

array

I got the

coveted red ball,
so I will decide
my value

N\
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Why does this Work?

* If one thread gets the red ball
* Then the other gets the black ball
* Winner can take her own value

* Loser can find winner's value in array

- Because threads write array
before dequeuing from queue
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Implication

* We can solve 2-thread consensus
using only
- A two-dequeuer queue
- Atomic registers

Vai
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Implications

+ Assume there exists
- A queue implementation from atomic registers
- Given
- A consensus protocol from queue and registers
* Substitution yields

- A wait-free consensus protocol
registers

Vai
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Corollary

- It is impossible to implement a two-
dequeuer wait-free FIFO queue with
read/write shared memory.

* This was a proof by reduction;
important beyond NP-completeness...

Vai
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Consensus #3
read-modify-write shared mem.

* n processors, withn> 1
* Wait-free implementation

* Processors can atomically read and
write a shared memory cell in one
atomic step: the value written can
depend on the value read

* We call this a RMW register

Ve
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Protocol

* There is a cell ¢, initially c="?"
- Every processor i does the following

RMW(c), with
if (c == “?”) then

write(c, v;); decide vj;
else

decide c;

atomic step
.'/-I..\
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Discussion

* Protocol works correctly

- One processor accesses ¢ as the first;
this processor will determine decision

* Protocol is wait-free

* RMW is quite a strong primitive

- Can we achieve the same with a weaker
primitive?

,/-I..\
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Read-Modify-Write
more formally

* Method takes 2 arguments:
- Variable x
- Function f

« Method call:

- Returns value of x
- Replaces x with £(x)

Ve
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Read-Modify-Write

public abstract class RMw {
private int value:

Return prior value
public void rmw(tun 1
[int prior = th?gftzﬁgi?%]
[this.value = t(this.value);
return prior;

}

Apply function

Ve
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Example: Read

public abstract class RMW {
private int value;

public void read() {
int prior = this.value;
[(this.value = this.value;
return prior;

}

identity function

,_ Distributed Computing Group

"\/

Roger Wattenhofer 85

"\/

Example: testdset

public abstract class RMw {
private int value;

public void TAS() {
int prior = this.value;
(this.value = 1;
return priors

}

constant function

Distributed Computing Group Roger Wattenhofer 86

Example: fetch&inc

public abstract class RMW {
private int value;

public void fai() {
int prior = this.value;
[this.value = this.value+l;
return prior;

}

increment function
r ; Distributed Computing Group
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Example: fetch&add

public abstract class RMw {
private int value;

public void faa(int x) {
int prior = this.value;
[this.value = this.value+x;
return prior;

}

addition function

Distributed Computing Group Roger Wattenhofer 88




Example: swap

public abstract class RMW {
private int value;

public void swap(int x) {
int prior = this.value;
[this.value = x;
return prior;

}

constant function

~— Distributed Computing Group Roger Wattenhofer 89
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Example: comparedswap

public abstract class RMw {
private int value;

public void CAS(int old, int new) {
int prior = this.value;

it (this.value == old)
this.value = new;

return prior;

}

} complex function

~— Distributed Computing Group Roger Wattenhofer 90

"Non-trivial" RMW

* Not simply read
* But
- testdset, fetchd&inc, fetch&add,
swap, comparedswap, general RMW
- Definition: A RMW is non-trivial if
there exists a value v such that v #

f(v)

7 —\
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Consensus Numbers (Herlihy)

- An object has consensus number n
- If it can be used
« Together with atomic read/write registers
- To implement n-thread consensus
* But not (n+1)-thread consensus

7 —\
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Consensus Numbers

« Theorem

- Atomic read/write registers have
consensus number 1

» Proof
- Works with 1 process
- We have shown impossibility with 2

g D/\ Distributed Computing Group Roger Wattenhofer 93

Consensus Numbers

» Consensus numbers are a useful way
of measuring synchronization power

« Theorem

- If you can implement X from Y
- And X has consensus nhumber ¢
- Then Y has consensus number at least ¢

\ D/\ Distributed Computing Group Roger Wattenhofer 94

Synchronization Speed Limit

- Conversely
- If X has consensus nhumber ¢
- And Y has consensus number d < ¢

- Then there is no way to construct a
wait-free implementation of X by Y

* This theorem will be very useful
- Unforeseen practical implications!

sk
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Theorem

Any non-trivial RMW object has
consensus number at least 2

Implies no wait-free implementation
of RMW registers from read/write
registers

Hardware RMW instructions not just
a convenience

sk
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Pf‘OOf Initialized to v

public class RMWCons r2
impleme nsus {
Er'ivate RMW r; Am I first?

public Object decide

x(); Yes, return
my input

= “my

if (r.rmw(f) == v)
return[ this.announce[1];
else
return Eﬁis.announce[1—1 -

Proof

* We have displayed
- A two-thread consensus protocol
- Using any non-trivial RMW object

3}
. No, return .
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Interfering RMW Examples
- Let F be a set of functions such that * Test-and-Set
for all f; and f; either - Overwrite
- They commute: f(f;(x))=f;(f(x)) - Swap
- They overwrite: f(f;(x))=f(x) - Overwrite
* Claim: Any such set of RMW objects . Fetch-and-inc
has consensus number exactly 2 - Commute
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Meanwhile Back at the Critical
State

A about to @ B about to

apply f4 7\ apply fg
O O

O-valent 1-valent
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Maybe the Functions Commute

W

A applies f, / \, B applies fg

B applies f; A applies f,

C runs solo C runs solo
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Maybe the Functions Commute

These states look the same to C

C runs solo runs solo

@ Distributed Computing Group Roger Wattenhofer 103

Maybe the Functions Overwrite

A applies f, O B

/ \. B applies fg

C runs salo A applies f,

C runs solo
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Maybe the Functions Overwrite
These states look the same to C

A \

C runs salo

C runs solo

N\
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Impact

* Many early machines used these
"weak" RMW instructions
- Test-and-set (IBM 360)
- Fetch-and-add (NYU Ultracomputer)
- Swap
+ We now understand their limitations
- But why do we want consensus anyway?

N\
oo Distributed Computing Group Roger Wattenhofer 106
U/

CAS has Unbounded
Consensus Numbedfized +o -1

public class RMWCons
impleme nsus {
Er'ivate RMW r; Am I first?

public Object decide()
int i = Thread.

O: Yes, return
my input

int j = r. ;
(Gf (§ = -1)
return[_this.announce[i];

else
return Em S. announ@
1} , return

7 \ . .
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The Consensus Hierarchy

1 Read/Write Registers, ..

2 T&S, F&I, Swap, ..

o CAS, ..

N\
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Consensus #4
Synchronous Systems

* In real systems, one can sometimes

tell if a processor had crashed
- Timeouts
- Broken TCP connections

- Can one solve consensus at least in

synchronous systems?

Distributed Computing Group Roger Wattenhofer 109

Communication Model

- Complete graph

» Synchronous \\

P1

b
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Send a message to all processors At the end of the round:
in one round: Broadcast everybody receives a
DF
Py,
Py (P,
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Broadcast: Two or more processes
can broadcast in the same round

Vai
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At end of round...
a,b

a,b
@a,b
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Crash Failures

Faulty
processor

Vai
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Some of the messages are lost,
they are never received

Faulty
processor -

.'/- i
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FC(UH'Y
processor
s (pag
m3= Distributed Computing Group Roger Wattenhofer 17

After a failure, the process disappears
from the network

Round Round Round Round Round
1 2 3 4

Failure

o
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Consensus:
Everybody has an initial value

0
.

Start

P
;'/L_\ Distributed Computing Group Roger Wattenhofer 19
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Everybody must decide on the
same value

Finish
’ \ (3)
m,_\ Distributed Computing Group Roger Wattenhofer 120
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Validity condition:
If everybody starts with the same value
they must decide on that value

Start Finish

NG N

Each processor:
1. Broadcasts value to all processors

2. Decides on the minimum

(only one round is needed)
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Start Broadcast values
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01234

1= ’

01234 / \\ 01234
i 0
e e 01234
01234
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Decide on minimum
01234

01234 / \\ 01234
° o)
Q Q 01234
01234
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Finish
O
AR

/’
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This algorithm satisfies the validity condition
Start Finish

i\ A

If everybody starts with the same initial value,
everybody sticks to that value (minimum)

/’
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Consensus with Crash Failures

The simple algorithm doesn't work

Each processor:

1. Broadcasts value to all processors

2. Decides on the minimum

/’
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Start The failed processor doesn't
broadcast its value to all processors

fail

0 (@

2)

Broadcasted values
fail

0,1,2,3,4 1234

© (4)
1121314@ @0,1,2,3,4
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Decide on minimum Finish - No Consensus!
fail fail
01234 1234 :
SRONNOL Ho©
Roger Wattenhofer 131 Roger Wattenhofer 132
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If an algorithm solves consensus for
f failed processes we say it is

an f-resilient consensus algorithm

@ Distributed Computing Group Roger Wattenhofer 133

Example: The input and output of a
3-resilient consensus algorithm

Start Finish

(4—3
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New validity condition:

if all non-faulty processes start with the
same value then all non-faulty processes
decide on that value

Start Finish

AN
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Round 1:
Broadcast my value

Round 2 fo round f+1:
Broadcast any new received values

End of round f+1:
Decide on the minimum value received
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Example: f=1 failures, f+1=2 rounds needed

Start (0)
© (4)

OGO
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Example: f=1 failures, f+1 = 2 rounds needed

Round 1 Broadcast all values to everybody

@ Distributed Computing Group Roger Wattenhofer 138

Example: f=1 failures, f+1 = 2 rounds needed

Round 2 Broadcast all new values to everybody

01234 1234

© )
1234 @ @ 01234

@ Distributed Computing Group Roger Wattenhofer 139

Example: f=1 failures, f+1 = 2 rounds needed

Finish Decide on minimum value

01234 1234

(9 ©)
1234 @ @ 01234
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Example: f=2 failures, f+1 = 3 rounds needed

Start Example of execution with 2 failures

©®
O )

OGO

@ Distributed Computing Group Roger Wattenhofer 141

Example: f=2 failures, f+1 = 3 rounds needed

Round 1 Broadcast all values to everybody

Eailure 1
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Example: f=2 failures, f+1 = 3 rounds needed

Round 2 Broadcast new values to everybody

Failure 1

1234 1234

@)

01234

1=

12,34 @
Failure 2
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Example: f=2 failures, f+1 = 3 rounds needed

Round 3 Broadcast new values to everybody

Failure 1
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Example: f=2 failures, f+1 = 3 rounds needed

Finish Decide on the minimum value

Failure 1
0,1,2,3,4 ,1,2,3,4

,1,2,3,4@

7
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If there are f failures and f+1 rounds then
there is a round with no failed process

Round 1 2 3 4 5 6

o] [o] [o] [o] [o] @
Example: ®
5 failures, Ol O] 9] 1O |O] |©
O] @
6 rounds ol ol e
O] O] O] O] O] 1O
Ol O] |O
No failure \QQJQ} O] ©
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At the end of the
round with no failure:

- Every (non faulty) process knows
about all the values of all the other
participating processes

*This knowledge doesn't change until
the end of the algorithm

7
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Therefore, at the end of the
round with no failure:

Everybody would decide on the same value

However, as we don't know the exact
position of this round,

we have to let the algorithm execute
for f+1 rounds

7
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Validity of algorithm:

when all processes start with the same
input value then the consensus is that value

This holds, since the value decided from
each process is some input value

T\
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A Lower Bound

Theorem: Any f-resilient consensus algorithm
requires at least f+1 rounds

/’
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Proof sketch:

Assume for contradiction that f
or less rounds are enough

Worst case scenario:

There is a process that fails in
each round

/’
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Worst case scenario

Round 1

(N

Pk

(N

/’
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before process P;
fails, it sends its
value a to only one
process Pj
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Worst case scenario

Round 1

(N

Pk

2

(N

@ Distributed Computing Group

Pm

before process Pk

fails, it sends

value a to only one
process Pm

Roger Wattenhofer
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Round i

(N

Worst case scenario

2

(N

3

@

(N
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f

Pn

Roger Wattenhofer

At the end
of round f

only one
process Pn

knows
about

value a
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Worst case scenario

Round 1 2

 J _J

3

(N

@ Distributed Computing Group

f decide
b
O
g Pn
@

Roger Wattenhofer

Process Pn
may decide
onh a, and all
other

processes
may decide
on another
value (b)
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Worst case scenario

Round 1 2 3

(N

(N

@

(N
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f decide

b
O

a
O

Pn

Roger Wattenhofer

Therefore f
rounds are
not enough

At least f+1
rounds are
needed
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Consensus #5
Byzantine Failures

Different processes receive different values
™\
oo Distributed Computing Group Roger Wattenhofer 157
&

Some messages may be lost

Faulty

processor
P9 (s

A Byzantine process can behave like a
Crashed-failed process

N\
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Round Round Round Round Round Round

2 3 4 5
oy

=)

6
2
)
')
b3

®2)
(py
(3
Failure Failure

After failure the process continues

functioning in the network

N\
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Consensus with Byzantine
Failures

f-resilient consensus algorithm:

solves consensus for f failed processes

N\
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Example: The input and output of
a 1-resilient consensus algorithm

Start Finish

(4—3
/’
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Validity condition:

if all non-faulty processes start with

the same value then all non-faulty processes
decide on that value

Start Finish
TN
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Lower bound on number of
rounds

Theorem: Any f-resilient consensus
algorithm requires at least

f+1 rounds

Proof: follows from the crash failure
lower bound

/’
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Upper bound on failed
processes

Theorem: There is no f-resilient algorithm

for nprocesses, where > n/3

Plan: First we prove the 3 process case,
and then the general case

/’
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The 3 processes case

Lemma: There is no 1-resilient algorithm
for 3 processes

Proof:  Assume for contradiction that
there is a 1-resilient algorithm
for 3 processes

/’
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A(0)

Local @

algorithm

e

B(1) C(0)

Initial value
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@ Distributed Computing Group

Roger Wattenhofer

166

1 1

|

Decision value
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A(0) ¢

B(/ \@8(1)

o

Assume 6 processes are in a ring

(just for fun)

/’
@ Distributed Computing Group

Roger Wattenhofer

168




AQ)  C(1)
B(O / \ B(1)
)
c0) Ay

A1)

Processes think they are in

a triangle
an)
. Distributed Computing Group
,

Roger Wattenhofer

B(1)

faulty

169

A©Q)  C(1)
(P3—(P2
/ B(1)

B(O
7
) Aty 1
fu y

(validity condition)
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A(0) ¢(1)

B( 3(1)
B(‘ ‘\C(O) A(1)/

\C(O)

5

faulty

/’
@ Distributed Computing Group

Roger Wattenhofer

171

AQ0) c(1)

B(0 / \ B(1)
i
c0) Ay

1

0
g 2 o
faulty

(validity condition)

7
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A0) C(1)

/’
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A0) C(1)
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Impossibility

Roger Wattenhofer
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Conclusion

There is no algorithm that solves
consensus for 3 processes
in which 1 is a byzantine process
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The n processes case

Assume for contradiction that
there is an £ -resilient algorithm A
for nprocesses, where > n/3

We will use algorithm A to solve consensus
for 3 processes and 1 failure (which is
impossible, thus we have a contradiction)
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Algorithm A
0

ctart 0 11 21020101
® 4] (] ® (] ® (] @® ® (]
plpz"'\ f//l?n

failures

finish 1 1 1 1 1 11
® o

® ® (] ® (] ® e & (]

pP1 P2 .. Py

/’
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Each process ¢ simulates algorithm A

on n/3 of "p" processes
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fails

When a single ¢ is byzantine, then #/3 of

the "p" processes are byzantine too.

/’
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Finish of

algorithm A
g3
Pan Pn
o+
3

fails

algorithm A tolerates #/3 failures

1\
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Final decision q1

93
(0

We reached consensus with 1 failure

fails

Impossiblelll
D\
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Conclusion

There is no F-resilient algorithm

for nprocesses with £> n/3
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\.

The King Algorithm

solves consensus with # processes and
f failures where £ < n/4 in f+1 "phases”

There are f+1 phases
Each phase has two rounds
In each phase there is a different king

/’
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Example: 12 processes, 2 faults, 3 kings

initial values
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Example: 12 processes, 2 faults, 3 kings

initial values

Remark: There is a king that is not faulty
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The King algorithm
Each processor p; has a preferred value v;

In the beginning, the preferred value

is set to the initial value
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The King algorithm: Phase k

Round 1, processor p; :
* Broadcast preferred value Vv;

- Set V; to the majority of
values received
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The King algorithm: Phase k

Round 2, king Py :
*Broadcast new preferred value v

Round 2, process p; :

n
‘If V; had majority of less than 5 +f

thenset v; to Vi

@ Distributed Computing Group Roger Wattenhofer 189

The King algorithm

End of Phase f+1.

Each process decides on preferred value
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Example: 6 processes, 1 fault
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Phase 1, Round 1

21110, O 2 1100,0
211000
211000@ \O@
N
2,1,1,1,00

king 1

Everybody broadcasts
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Phase 1, Round 1| Choose the majority

1 ©

n
Each majority population was 3 < ) +f =4

On round 2, everybody will choose the king's value
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Phase 1, Round 2

king 1

The king broadcasts
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Phase 1, Round 2

Everybody chooses the king's value
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Phase 2, Round 1
211100

211000

O

21111'0,0,0@ 1 10 2,110,0,0
0

\ /@king 2
2,1,1,1,0,0 1

Everybody broadcasts
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Phase 2, Round 1| Choose the majority

© ©
@ @king 2
(1) 2,111,00
W

Each majority populationis 3 < ) +f=4

On round 2, everybody will choose the king's value

T\
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Phase 2, Round 2

The king broadcasts

T\
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Phase 2, Round 2

Everybody chooses the king's value
Final decision

/’
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Invariant / Conclusion

In the round where the king is non-faulty,

everybody will choose the king's value v

After that round, the majority will

remain value v with a majority population

which is at least n—f>;+f
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Exponential Algorithm

solves consensus with # processes and
f failures where £ < n/3 in f+1 "phases”

But: uses messages with exponential size

Atomic Broadcast

* One process wants to broadcast
message to all other processes

» Either everybody should receive the
(same) message, or nobody should
receive the message

* Closely related to Consensus: First
send the message to all, then agree!
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Summary
- We have solved consensus in a variety

of models; particularly we have seen

- algorithms )

- wrong algorithms estions?

- lower bounds

- impossibility results Distrh

- reductions Comp

- etc. Roger Wattenhofer
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