Eidgensssische Technische Hachschule Zilrich
Swiss Federal Institute of Technology Zurich

Distributed Information Systems
From Middleware to Web services (Part 2)
VS - WS 2002/2003

Prof. Dr. Gustavo Alonso
Computer Science Department
ETH Ziirich
alonso@inf.ethz.ch

What is SOAP? = &&

O The W3C started working on SOAP in 1999. SOAP 1.0 was entirely based on HTTP.
The current specification is SOAP 1.1 (May 2000) is more generic by including other
transport protocols. Version 1.2 is at the working draft stage.

O SOAP 1.1 covers the following four main areas:
UJ A message format for one-way communication describing how a message can be
packed into an XML document
[A description of how a SOAP message (or the XML document that makes up a
SOAP message) should be transported using HTTP (for Web based interaction) or
SMTP(for e-mail based interaction)

LJ A set of rules that must be followed when processing a SOAP message and a
simple classification of the entities involved in Irocessing a SOAP message. It
also specifies what parts of the messages should be read by whom and how to
react in case the content is not understood

(] A set of conventions on how to turn an RPC call into 2 SOAP message and back
as well as how to implement the RPC style of interaction (how the c%ienf makes
an RPC call, this is translated into a SOAP message, forwarded, turned into an
RPC call at the server, the reply of the server converted into a SOAP message,
sent to the client, and passed on to the client as the return of the RPC call)

©Gustavo Alonso, ETH Ziirich. Middieware 2

The background for SOAP

O SOAP was originally conceived as the minimal possible infrastructure necessary to
perform RPC through the Internet:

(7 use of XML as intermediate representation between systems

[very simple message structure

[mapping to HTTP for tunneling through firewalls and using the Web infrastructure
O The idea was to avoid the problems associated with CORBA's I|OP/GIOP (which

fulfilled a similar role but using a non-standard intermediate representation and had
to be tunneled through HTTP any way)

0 The goal was to have an extension that could be easily plugged on top of existing
middleware platforms to allow them to interact through the Internet rather than
through a LAN as it is typically the case. Hence the emphasis on RPC from the very
beginning (essentially arl forms of middleware use RPC at one level or another)

O Eventually SOAP started to be presented as a generic vehicle for computer driven
message exchanges through the Internet and then it was open to support interactions
other than RPC and protocols other then HTTP. This process, however, is only in its
very early stages.

©Gustavo Alonso, ETH Ziirich. Middleware 3

SOAP messages

O SOAP is based on message exchanges
O Messages are seen as envelops where

SOAP Envelope

the application encloses the data to be SOAP header
sent |
O A message has two main parts: L Header Block
[J header: which can be divided into
blocks SOAP Bod
[0 body: which can be divided into o
blocks L I
0 SOAP does not say what to do with the Body Block

header and the body, it only states that

the header is optional and the body is

mandatory \/
0 Use of header and body, however, is

implicit. The body is for application

level data. The header is for
infrastructure level data

©Gustavo Alonso, ETH Ziirich. Middieware 4

For the XML fans (SOAP, body only)

XML name space identifier for SOAP serialization
XML name space identifier for SOAP envelope

<SOAP-ENV:Envelope
xmlng:SOAP-ENV ="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle ="http://schemas.xmlsoap.org/soap/encoding/" >
<S0AP-ENV:Body>
<m:GetlastTradePrice xmlns:m ="Some-URI">
<symbol > D15 </symbol >
< /m:GetlastTradePrice >
</SOAP-ENV:Body>
</SOAP-ENV:Envelope >

From the: Simple Object Access Protocol (SOAP) 1.1. W3C Note 08 May 2000

©Gustavo Alonso, ETH Ziirich. Middleware 5

SOAP example, header and body

<SOAP-ENV:Envelope
xmlns:SOAP-ENV ="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/ >
<SOAP-ENV:Header>
<t:Transaction
xmlns:t="some-URI"
SOAP-ENV:mustUnderstand="1">
5
< /t:Transaction>
</SOAP-ENV:Header>

<S0AP-ENV:Body>
<m:GetlastTradePrice xmlns:m="Some-URI">
<symbol >DEF </symbol >
< /m:GetlastTradePrice >
</SOAP-ENV:Body>

© From the: Simple Object Access Protocol (SOAP) 1.1. W3C Note 08 May 2000

</SOAP-ENV:Envelope >

Gustavo Alonso, ETH Ziirich. Middieware 6

The SOAP header ?ﬁ

0 The header is intended as a generic tlace holder for information that is not
necessarily application dependent (the application may not even be aware that a
header was attached to the message).

0 Typical uses of the header are: coordination information,identifiers (for, e.g.,
transactions), security information (e.g., certificates)

0 SOAP provides mechanisms to specify who should deal with headers and what to do
with them. For this purpose it includes:

I SOAP actor attribute: who should process that particular header entry (or header
block). The actor can be either: none, next, ultimateReceiver. None is used to
propagate information that does not need to be processed. Next indicates that a
node receiving the message can process that block. ultimateReceiver indicates the
header is intended for the final recipient of the message

UJ mustUnderstand attribute: with values 1 or O, indicating whether it is mandatory
to process the header. If a node can process the message (as indicated by the
actor attribute), the mustUnderstand attribute determines whether it is
mandatory to do so.

UJ SOAP 1.2 adds a relay attribute (forward header if not processed)

©Gustavo Alonso, ETH Ziirich. Middleware 7

The SOAP body

O The body is intended for the application specific data contained in the message

O A body entry (or a body block) is syntactically equivalent to a header entry with
attributes actor=ultimateReceiver and mustUnderstand = 1

O Unlike for headers, SOAP does specify the contents of some body entries:
UJ mapping of RPC to a collection of SOAP body entries
UJ the Fault entry (for reporting errors in processing a SOAP message)
0 The fault entry has four elements (in 1.1):
U fault code: indicating the class of error (version, mustUnderstand, client, server)

U fault string: human readable explanation of the fault (not intended for automated
processing)

UJ fault actor: who originated the fault
UJ detail: application specific information about the nature of the fault

©Gustavo Alonso, ETH Ziirich. Middieware 8

SOAP Fault element (v 1.2)

O In version 1.2, the fault element is specified in more detail. It must contain two
mandatory sub-elements:

[Code: containing a value (the code for the fault) and possibly a subcode (for
application specific information)

[J Reason: same as fault string in 1.1
O and may contain a few additional elements:
U detail: as in 1.1
U node: the identification of the node producing the fault (if absent, it defaults to
the intended recipient of the message)
U role: the role played by the node that generated the fault
O Errors in understanding a mandatory header are responded using a fault element but
alsdo inclutje a special header indicating which one o f the original headers was not
understood.

©Gustavo Alonso, ETH Ziirich. Middleware 9

Message processing

O SOAP specifies in detail how messages must be processed (in particular, how header
entries must be processed)

[J Each SOAP node along the message path looks at the role associated with each
part of the message

1 There are three standard roles: none, next, or ultimateReceiver
U Applications can define their own roles and use them in the message
[The role determines who is responsible for each part of a message
O |If a block does not have a role associated to it, it defaults to ultimateReceiver

O If a mustUnderstand flag is included, a node that matches the role specified must
zrocess that part of the message, otherwise it must generate a fault and do not
orward the message any further

O SOAP 1.2 includes a relay attribute. |f present, a node that does not process that part
of the message must forward it (i.e., it cannot remove the part)

0 The use of the relay attribute, combined with the role next, is useful for establishing
persistence information along the message path (like session information)

©Gustavo Alonso, ETH Ziirich. Middieware 10

From TRPC to SOAP messages

RPC Request
SOAP Envelope

SOAP header
RPC Response (one of the two)

Transactional

context SOAP Envelope SOAP Envelope

SOAP header SOAP header
Transactional Transactional
SOAP Body context context
Name of Procedure
Input param 1 SOAP Body SOAP Body
Return parameter Fault entry
Input param 2
©Gustavo Alonso, ETH Ziirich. Middleware 11

HTTP as a communication protocol
O HTTP was designed for exchanging

documents. [t is almost like e-mail (in e e mateNeeted
fact, it uses RFC 822 compliant mail (docu2.html) and
headers and MIME types): version of the protocol used
O Example of a simplified request (from

browser):

List of MIME types

accepted by the browser
GET /docu2.html HTTP/1.0

Accept: www/source —|
Accept: text/html J
Accept: image/gif

User-Agent: Lynx/2.2 libwww/2.14
From: montulli @www.cc.ukans.edu

Information about the
environment where the
browser is running

" ablankline™ E-mail or identifier
of the user
O R(e) ufs(’r me’rh;dsie GET (refrievera’ra), (provided by the browser)
P append information), PU
(send in&rmafion), DELETE (remove 4’| End of request

information), ...
©Gustavo Alonso, ETH Ziirich. Middleware 12

HTTP server side

O Example of a response from the server
(to the request by the browser):

HTTP/1.0 200 OK

Date: Wednesday, 02-Feb-94 23:04:12
GMT

Server: NCSA/1.1
MIME-version: 1.0

Last-modified: Monday, 15-Nov-93
23:33:16 GMT

Content-type: text/html

Protocol version, code indicating

request status (200=ok)

Date, server identification (type)
and format used in the request

Content-length: 2345

* ablank line *

<HTML><HEAD><TITLE> ...
</TITLE>. . .etc.

O Server is expected to convert the data

MIME type of the document
being sent

Header for the document
(document length in bytes)

into a MIME type specified in the
request (“Accept:" headers)

©Gustavo Alonso, ETH Ziirich.

Parameter passing

O The introduction of forms for allowing users
to provide information to a web server
required to modify HTML (and HTTP) but it
provided a more advanced interface than just
retrieving files:

POST /cgi-bin/post-query HTTP/1.0

Accept: www/source

Accept: text/ntml

Accept: video/mpeg

Accept: image/jpeg

Accept: application/postscript

User-Agent: Lynx/2.2 libwww/2.14

From: grobe@www.cc.ukans.edu

Content-type: applicati on/x-www-form-urlencoded

Content-length: 150
* ablank line*

&name = Gustavo

Document sent

Middleware 13

—>

POST request indicating the
C61 script to execute (post-query)
GET can be used but requires the
parameters to be sent as part of the
URL:

/cgi-bin/post-query?name=...&email=...

As before

]
&email= alonso@inf.ethz.ch J

©Gustavo Alonso, ETH Ziirich.

Data provided through the form
and sent back to the server

Middieware 14

SOAP and HTTP o

O A binding of SOAP to a transport
protocol is a description of how a
SOAP message is to be sent using that

HTTP POST
transport protocol SOAP Enveione

0 The typical binding for SOAP is HTTP SOAP header

0 SOAP can use GET or POST. With B
GET, the request is not a SOAP
message but the response is a SOAP SOAP Body
message, with POST both request and Name of Procedure
response are SOAP messages (in Input parameter 1
version 1.2, version 1.1 mainly Input parameter 2
considers the use of POST).

O SOAP uses the same error and status \/_
codes as those used in HTTP so that

HTTP responses can be directly
interpreted by a SOAP module

©Gustavo Alonso, ETH Ziirich. Middleware 15

ILnXMl. (a request)

g POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn
SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
xmlns:SOAP-ENV ="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" >
<SO0AP-ENV:Body>
<m:GetLastTradePrice xmIns:m="Some-URI">
<symbol > DIS < /symbol >
< /m:GetlastTradePrice >
</SOAP-ENV:Body>
</80AP-ENV:Envelope >

© From the: Simple Object Access Protocol (SOAP) 1.1. W3C Note 08 May 2

Gustavo Alonso, ETH Ziirich. Middieware 16

_In XML (the response)

HTTP/1.1 200 OK
Content-Type: text/xml;
Content-Length: nnnn

charset="utf-8"

<SOAP-ENV:Envelope

<S0AP-ENV:Body>

xmlng:SOAP-ENV ="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/ >

<m:GetLastTradePriceResponse xmlns:m="Some-URI" >
<Price>34.5</Price>
< /m:GetlastTradePriceResponse >
</SOAP-ENV:Body>
</SOAP-ENV:Envelope >

® From the: Simple Object Access Protocol (SOAP) 1.1. W3C Note 08 May 2000

Gustavo Alonso, ETH Ziirich.

All together

SERVICE REQUESTER

RPC call
A

HTTP POST

SOAP Envelope
SOAP header

Transactional
context

SOAP Body
Name of Procedure

Input parameter 1

Input parameter 2

e

HTTP engine

SOAP
engine

©Gustavo Alonso, ETH Ziirich.

HTTP Acknowledgement

SOAP Envelope
SOAP header

Transactional
context
SOAP Body

Return parameter

\/_

Middleware 17

SERVICE PROVIDER

Procedure

SOAP
engine

HTTP engine

Middieware 18

SOAP summary

0 SOAP, in its current form, provides a basic mechanism for:
(7 encapsulating messages into an XML document
[mapping the XML document with the SOAP message into an HTTP request
U transforming RPC calls into SOAP messages

U simple rules on how to process a SOAP message (rules becoming more precise
and comprehensive in v1.2 of the specification)

O SOAP takes advantage of the standardization of XML to resolve problems of data
representation and serialization (it uses XML Schema to represent data and data
structures, and it also relies on XML for serializing the data for transmission). As
XML becomes more powerful and additional standards around XML appear, SOAP can
take advantage of them by simply indicating what schema and encoding is used as rart
of the SOAP message. Current schema and encoding are generic but soon there will be
vertical standards implementing schemas and encoding tailored to a particular
application area (e.q., the efforts around EDI)

O SOAP is a very simple protocol intended for transferring data from one middleware
platform to another. In spite of its claims to be open (which are true), current
specifications are very tied to RPC and HTTP.

©Gustavo Alonso, ETH Ziirich. Middleware 19

SOAP and the client server model E;‘Fﬁ

O The close relation between SOAP, RPC and HTTP has two main reasons:

[J SOAP has been initially designed for client server type of interaction which is
typically implemented as RPC or variations thereof

[J RPC, SOAP and HTTP follow very similar models of interaction that can be very
easily mapped into each other (and this is what SOAP has done)

O The advantages of SOAP arise from its ability to provide a universal vehicle for
conveying information across heterogeneous middleware platforms and applications. In
this regard, SOAP will play a crucial role in enterprise application integration efforts
in the future as it provides the standard that has been missing all these years

0 The limitations of SOAP arise from its adherence to the client server model:
[data exchanges as parameters in method invocations
UJ rigid interaction patterns that are highly synchronous

O and from its simplicity:
[J SOAP is not enough in a real application, many aspects are missing

©Gustavo Alonso, ETH Ziirich. Middleware 20

A first use of SOAP

Web services

O Some of the first systems to
incorEorafe SOAP as an access method
have been databases. The process is

extremely simple:

UJ a stored procedure is essentially
an RPC interface

interfaces

client e
L [
mapping | |wrapping
A

SOAP engine

(] Web service = stored procedure

LI IDL for stored procedure =
translated into WSDL

[J call to Web service = use SOAP
engine to map to call to stored
procedure

O This use demonstrates how well SOAP
fits with conventional middleware
architectures and interfaces. It is just
a natural extension to them

database management system

A 4 A4
| stored procedure API |

Stored procedure interfaces

Database
stored procedure
engine

externa
application
resource manager ‘l_' LI

©Gustavo Alonso, ETH Ziirich.

...................................

Middleware 21

stubs, SOAP system
runtime
service

location

Serialized
XML doc

:-, RPC based middleware

...................................

...................................

SOAP system

runtime
adapters

Serialized
XML doc

\Wrap doc HTTP
in HTTP support
p POST /-

M-POST

Retrieve HTTP
doc from support
- HTTP

packet

...................................

©Gustavo Alonso, ETH Ziirich.

NETWORK

Middleware 22

SOAP exchange patterns (v 1.2)

SOAP response message exchange SOAP request-response message exchange

O It involves a request which is not a O It involves sending a request as a
SOAP message (implemented as an SOAP message and getting a second
HTTP GET ret‘ues’r method which SOAP message with the response to
ev{?n’rually includes ﬂ}e :ecessary i the request
information as part of the requeste 0 This is the typical mode of operation
URL) and a response that is a SOAP for most WeZ services and the one
message used for mapping RPC to SOAP.

O This pattern excludes the use of any O This exchange pattern is also the one
header information (as the request has that implicitly takes advantage of the
no headers) binding to HTTP and the way HTTP

works

The crucial aspect in both cases is the pattern being implemented: it is
a conventional client server pattern with a client making a request and
the server sending a response in return. The only difference is whether
the request is a SOAP message or not (which is only a minor point to
accommodate the way many web browser and web pages work today)
©Gustavo Alonso, ETH Ziirich. Middieware 23

Mapping SOAP to e-mail =¥

0 Currently, the SOAP specifications (including 1.2) do not contain an e-mail (SMTP
bindin]g, they just show an example of how to send a SOAP message in an e-mail (in
1.2). Two possible options are:

(] as normal e-mail text
[] as an attachement
O In both cases, the SOAP message is not different from what has been discussed so far

O E-mail, however, changes the interaction patterns considered in SOAP (which are very
tied to HTTP)

(] SMTP does implement a mechanism whereby an e-mail message is automatically
responded to with a delivery notification

[J SOAP cannot use the delivery notification message to return the response to the
request since the delivery notification message happens at the level of SMTP not
at the level of the SOAP protocol

[the current 1.2 draft warns about the limitations of e-mail binding for SOAP

reflecting once more the implicit client server model that inspires the design and
development of SOAP

©Gustavo Alonso, ETH Ziirich. Middleware 24

How to implement this with SOAP?

Integration thongh specinlized [
async hronons cent E
ountput quene E input quene
il andiiiii
o]
UL~ g [T
3 nput quene E ontpot quene 3
| LOCAL AREA NETWORK | E | LOCAL AREA NETWORK
=]
=
=
MIDDLEWARE L | MIDDLEWARE
| LOCAL AREA NETWORK | | LOCAL AREA NETWORK
SERYER SERYER SERYER SERYER SERYER SERYER
{(RESOURCE {(RESOURCE {(RESOURCE {RESOURCE {RESOURCE {RESOURCE
MANAGER) MANAGER) MANAGER) MANAGER) MANAGER) MANAGER)
©Gustavo Alonso, ETH Ziirich. Middleware 25

Implementing message queues

O In principle, it is not impossible to implement asynchronous queues with SOAP:
(1 SOLUTION A:

* use SOAP to encode the messages
* create an HTTP based interface for the queues

* use an RPC/SOAP based engine to transfer data back and forth between the
queues
[J SOLUTION B:
* use SOAP to encode the messages
* create appropriate e-mail addresses for each queue

* use an e-mail (SMTP) binding for transferring messages

O Both options have their advantages and disadvantages but the main problem is that
none is standardize. Hence, there is no guarantee that different queuing systems with
a SOAP will be able to talk to each other: all the advantages of SOAP are lost

0 The fact that SOAP is so simple also makes it difficult to implement these solutions:
a lot additional functionality is needed to implement reliable, practical queue systems

©Gustavo Alonso, ETH Ziirich. Middleware 26

The need for attachments

0 SOAP is based on XML and relies on
XML for representing data types

O The original idea in SOAP was to make
all data exchanged explicit in the form
of an XML document much like what
happens with [DLs in conventional
middleware platforms

O This approach reflects the implicit
assumption that what is being
exchanged is similar to input and
output parameters of program
invocations

O This approach makes it very difficult to
use SOAP for exchanging complex data
types that cannot be easily translated
to XML (and there is no reason to do
$0): images, binary files, documents,
proprie’rarys gﬁresenfa’rion formats,

embedded P messages, etc.
©Gustavo Alonso, ETH Ziirich.

A possible solution

<env:Body>
<p:itinerary

xmins:p="http://.../reservation/travel" >
<p:departure>

<p:departing>New York</p:departing>

<p:arriving > Los Angeles </p:arriving>
<p:departureDate >2001-12-14 < /p:departureDate >
<p:departureTime > late afternoon</p:departureTime>
<p:seatPreference > aisle</p:seatPreference>

</p:departure>

<p:return>
<p:departing>Los Angeles </p:departing >
<p:arriving>New York</p:arriving>
<p:departureDate >2001-12-20 </p:departureDate >
<p:departureTime >mid-morning</p:departureTime >
<p:seatPreference/ >
</p:return>

</p:itinerary>

</env:Body>

From SOAP Version 1.2 Part O: Primer. December 2002

Middieware 27

O There is a"SOAP messages with
attachments note” proposed in
11.12.02 that addresses this problem

O It uses MIME types (like e-mails) and
it is based in including the SOAP
message into a MIME element that
contains both the SOAP message and
the attachment (see next page)

O The solution is simple and it follows
the same approach as that taken in e-
mail messages: include a reference and
have the actual attachment at the end
of the message

O The MIME document can be embedded
into an HTTP request in the same way
as the SOAP message

O The Apache SOAP 2.2 toolkit supports
this approach

©Gustavo Alonso, ETH Ziirich.

O Problems with this approach:

U handling the message implies
dragging the attachment along,
which can have performance
implications for large messages

[J scalability can be seriously
affected as the attachment is sent
in one go (no streaming)

U not all SOAP implementations
support attachments

[J SOAP engines must be extended to
deal with MIME types (not too
complex but it adds overhead)

O There are alternative proposals like
DIME of Microsoft (Direct Internet
Message Encapsulation) and WS-
attachments

Middleware 28

Attachments in SOAP

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
start =" <¢laim061400a.xml@claiming-it.com >"
Content-Description: This is the optional message description.
--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-1D: <claim061400a.xmI@claiming-it.com>

<?xml version=".0' 7>

<SOAP-ENV:EnveIoYIe
xmins:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" >
<SOAP-ENV:Body>

”<fhe$ignedForm href="cid:claim061400a.tiff@claiming-it.com"/ >

</SOAP-ENV:Body>
</SOAP-ENV:Envelope >
--MIME_boundary
Content-Type: image/tiff
Content-Transfer-Encoding: binar

Content-1D: <claim0614003.’rif¥@claiming-i’r.com > ATTACHMENT

SOAP MESSAGE

8
&
:
o
[a)]
3
L
5
=z
8
2
2}
5}
E
8
£
<
£
H
%
=
<
3
£
o
i

...binary TIFF image...
©Gustavo Alonso, --MIM _boundary-- eware 29

The problems with attachments

O Attachments are relatively easy to include in a message and all proposals (MIME or
DIME based) are similar in spirit

O The differences are in the way data is streamed from the sender to the receiver and
how these differences affect efficiency

[J MIME is optimized for the sender but the receiver has no idea of how big a
message it is receiving as MIME does not include message length for the parts it
contains

U this may create problems with buffers and memory allocation

[it also forces the receiver to parse the entire message in search for the MIME
boundaries between the different parts (DIME explicitly specifies the length of
each part which can be use to skip what is not relevant)

0 All these problems can be solved with MIME as it provides mechanisms for adding
part lengths and it could conceivably be extended to support some basic form of
streaming

O Technically, these are not very relevant issues and have more to do with marketing and
control of the standards

O The real impact of attachments lies on the specification of Web services (discussed

later on)
©Gustavo Alonso, ETH Ziirich. Middieware 30

SOAP as simple protocol

O SOAP does not include anything about:
U reliability
UJ complex message exchanges
L transactions
U security
O...

O As such, it is not adequate by itself to implement industrial strength applications that
incorporate typical middleware features such as transactions or reliable delivery of
messages

O SOAP does not EreVenf such features from being implemented but they need to be
standardized to be useful in practice:

O WS-security
[J WS-Coordination
[J WS-Transactions
0...
O A wealth of additional standards are being proposed to add the missing functionality

©Gustavo Alonso, ETH Ziirich. Middleware 31

Beyond SOAP

O Not everybody agrees to the procedure of SOAP + WS-"extensions”, some
organizations ingist that a complete protocol specification for Web services needs to
address much more than just getting data across

O ebXML, as an example, proposes its own messaging service that incorEorafes many of
the additional features missing in SOAP. This messaging service can be built using
SOAP as a lower level protocol but it considers the messaging problem as a whole

O The idea is not different from SOAP ...

Abstract ebXML Messaging Service

Messaging service layer
(maps the abstract interface to the
transport service)

Transport service(s)

O but extended to incorporate additional features (next page)

©Gustavo Alonso, ETH Ziirich. Middieware 32

ebXML messaging service

| MESSAGING SERVICE INTERFACE
]
AUTEHTICATION, AUTHORIZATION
AND REPUDIATION SERVICES

|
HEADER PROCESING
I

ENCRYPTION,
DIGITAL SIGNATURE

MESSAGE PACKAGING MODULE

I

DELIVERY MODULE
SEND/RECEIVE
TRANSPORT MAPPING AND BINDING

FTP HTTP 1HOP SMTP

©Gustavo Alonso, ETH Ziirich. TRANSPORT SERVICES Middleware 33

ebXML and SOAP =k

O The ebXML Messaging specification clarifies in great detail how to use SOAP and how
to add modules implementing additional functionality:

(7 ebXML message = MIME/Multipart message envelope according to “SOAP with
attachments” specification

(7 ebXML specified standard headers:

* MessageHeader: id, version, mustUnderstand flag to 1, from, to, conversation
id, duplicate elimination, etc.

(] ebXML recommends to use the SOAP body to declare (manifest) the data being
transferred rather than to carry the data (the data would go in pther parts of the
MIME message)

7 ebXML defines a number of core modules and how information relevant to these
modules is to be exchanged:

* gecurity (for encryption and signature handling)
* error handling (above the SOAP error handling level)
* sync/reply (to maintain connections open across intermediaries)

©Gustavo Alonso, ETH Ziirich. Middleware 34

Additional features of ebXML messages

O Reliable messaging module

UJ a protocol that guarantees reliable delivery between two message handlers. It
includes persistent storage of the messages and can be used to implement a wide
variety of delivery quarantees

Message status service

[a service that allows to ask for the status of a message previously sent
Message ping service

U to determine if there is anybody listening at the other end of the line
Message order module

UJ to deliver messages to the receiver in a particular order. It is based on sequence
numbers

Multi-hop messaging module
UJ for sending messages through a chain of intermediaries and still achieve
reliability
O This are all typical features of a communication protocol that are needed anyway
(including practical SOAP implementations)

O

O

O

O

©Gustavo Alonso, ETH Ziirich. Middleware 35

What is WSDL?

0 The Web Services Description Language specification is in version 1.1 (March 2001)
and currently under revision (v1.2 is in the working draft stage)

0 WSDL 1.1 discusses how to describe the different parts that comprise a Web service:
(] the type system used to describe the interfaces (based on XML)
[J the messages involved in invoking the service
[the individual operations that make up the service
[the sets of operations that constitute a service
[the mapping to a transport protocol for the messages
[the location where the service resides
U groups of locations that can be used to access the same service
O |t also includes specification indicating how to bind WSDL to SOAP, HTTP and MIME

©Gustavo Alonso, ETH Ziirich. Middieware 36

WSDL ve IDL i

O WSDL can be best understood when we approach it as an XML version of an IDL tha
also covers the aspects related to integration through the Internet and the added
complexity of Web services

O An IDL in conventional middleware and enterprise application integration platforms
has several purposes:

U description of the interfaces of the services provided (e.g., RPC)

U serve as an intermediate representation for bridging heterogeneity by providing a
mapring of the native data types to the intermediate representation associated to
the IDL in question

U serve as the basis for development through an IDL compiler that produces stubs
and libraries that can be use to develop the application

O A conventional IDL does not include information such as:
UJ location of the service (implicit in the platform and found through static or
dynamic binding)
U different bindings (typically an IDL is bound to a transport protocol)
UJ sets of operations (since an interface defines a single access point and there is
no such a thing as a sequence of operations involved in the same service)

©Gustavo Alonso, ETH Ziirich. Middleware 37

IDL (Interface Definition Language)

O All RPC systems have a language that 0 Given an IDL specification, the interface

allows to describe services in an compiler performs a variety of tasks:
abstract manner (independent of the) gonerates the client stub procedure for
r"’ﬂ’amm'"ﬂ |anguage used). This each procedure signature in the interface.
anguage has the generic name of (DL The stub will be then compiled and
XDR) i) O Generates a server stub. It can also
a The lDl- a“ows .fo defme each. service create a server ,”3/'”, wifh fhe sfub a“d
in terms of their names, and input and the dispatcher compiled and linked into
output parameters (plus maybe other it. This code can then be extended by the
relevant aspects). designer by writing the implementation
O An interface compiler is then used to of the procedures
generate the stubs for clients and 7 |t might generate a *.h file for
servers (rpegen in SUN RPC). It might importing the interface and all the
also generate procedure headings that necessary constants and types

the programmer can then used to fill
out the details of the implementation.

©Gustavo Alonso, ETH Ziirich. Middieware 38

IDL Example in SUN's XDR

const MAX;

typedef int Fileldentifier;
typedef int FilePointer;
typedef int Length;

struct Data {

int length;

char bufferfMAX];
}

struct writeargs {
Fileldentifier f;
FilePointer position;
Length length;

}

struct readargs {
Fileldentifier f;
FilePointer position;
Length length;

©Gustavo Alonso, ETH Ziirich.

Example (XDR in SUN RPC)

program FILEREADWRITE {
version VERSION {
void WRITE(writeargs)=1; /* proc number*/
Data READ(readargs)=2; /* proc number*/
}=2; I* version number */
}=2001; /* Program number*/

Middleware 39

O Marshalling or serializing can be done
by hand (a?fhough this is not
desirable) using (in C) sprinffand
sscanf.

Message= “Alonso” “ETHZ” “2001”

char *name="Alonso”, place="ETHZ";
int year=2001,;

sprintf(message, “%d %s %s %d %d”,
strlen(name), name, strlen(place), place,
year);

Message after marshalling =
“6 Alonso 4 ETHZ 2001”

O Remember that the type and number of
parameters is know, we only need to
agree on the syntax ...

©Gustavo Alonso, ETH Ziirich.

T SUN XDR follows a similar approach:

[J messages are transformed into
sequence of 4 byte objects, each
byte being in ASCII code

[it defines how to pack different
data types into these objects,
which end of an object is the most
significant, and which byte of an
object comes first

U the idea is to simplify computation
at the expense of bandwidth

6 String length
Al on

s o

4 String length
ETHZ

20 0 1| cardinal

Middieware 40

Elements of WSDL

WSDL document)
| Types (type information for the document, e.g., XML Schema) | ;
Z I I I ! ~. 2
Message 1 || Message 2 || Message 3 || Message 4 || Message 5 || Message 6 E
o
Operation 1 Operation 2 Operation 3 °
—_ 1 = :
e}
Port Type (abstract service) <
Interface Interface Interface Interface 5

blnd;ng 1 blnd;ngz bmd;ng3 blnd;ng4 g_ 8

v v v v %‘E >

port 1 port 2 port 3 port 4 5 8

o 2

~— ! 2 — T e

Service (the actual servicein all oo
its available implementations) 38

©Gustavo Alonso, ETH Ziirich. Middleware 41

Types in WSDL

<element name="P0" y8e="ins:POTyye"/> PURCHASE ORDER TYPE
<comhlg(Type name="POType" >
<a

<element name="id" type="string"/>
<element name="name" type="string"/>
<element name="items">

<comhlexTyye>
<all>
<element name="item" type="tns:lItem" minOccurs="0" maxQccurs="unbounded"/>
</all>
</comrlexTyye>
< /element>
</all>
</complexType >
<comrlexType name="ltem" >
<all> ITEM TYPE
<element name="gquantity" type="int"/ >
<element name="product" type="string"/>
</all>
</complexType>
<element name="lnvoice" type="tns:InvoiceType"/> INVOICE TYPE
<comrlexType name="lnvoiceType">
<all>
<element name="id" type="string"/ >
</all>
</complexType >

From Web Services Description Language (WSDL) 1.1 W3C Note 15 March 2001

©Gustavo Alonso, ETH Ziirich. Middleware 42

Messages

0 Messages have a name that identifies
them throughout the XML document.

Messages are divided into parts, each §

of them being a data structure g

represented in XML. Each Farf must <message name="P0">

have a type (basic or complex types, = <part name="po" element="tns:P0"/>
previously declared in the WSDL § <part name="invoice" element="tns:lnvoice" />
document). o</ message>

O A WSDL message element matches the
contents of the body of 2 SOAP
message. By looking at the types and
looking at f¥ue message, it is possible
to build a SOAP message that matches
the WSDL descrir’rion (and this can be
done automatically since the
description is XML based and the types
also supported by SOAP)

O A message does not define any form of
interaction, it is just a message
©Gustavo Alonso, ETH Ziirich. Middieware 43

From Web Services Description Language (WSDL)

Operations

O Operations provide the first level of
context for the messages. In WSDL,
there are four types o? operations
(WSDL does not talk about
client/server but about endpoints):

[J one-way: the client send a
message to the server

U requesf—resnonse: the client sends
a request, the server replies with a
response

U Solicit-response: the server sends
a message and the client replies

S ONE-WAY:

§ <wsdl:operation name="Purchase" >
<wsdl:input name="0rder" message="P0"/>

</wsdl:operation>

REQUEST-RESPONSE:
<wsdl:operation name="Purchase" >
. <wsdl:input name="0rder" message="P0"/>
with a response <wsdl:output name ="Confirm" message="Conf"/>
[Notification: the server sends a <wsdl:fault name="Error" message="POError"/>
message = </wsdl:operation>
0 WSDL only defines bindings for the
first two

From Web Services Description Language (WSDL) 1.1 W3C Note 15 M

©Gustavo Alonso, ETH Ziirich. Middleware 44

Port Types

O A Port Type corresponds to the
abstract definition of a Web service
(abstract because it does not specify
location or access protocol)

0 The Port Tyte is simply a list of
operations that can be used in that
Web service

O Operations are not defined by
themselves but only as part of a
PortType

©Gustavo Alonso, ETH Ziirich.

Bindings and ports

— <message name="m1">

& <part name= "body" element="tns:GetCompanylnfo"/>
g </message>

b

15

£ <message name="m2">

é <part name="body" element="tns:GetCompanylnfoResult"/>
2 <part name="docs" type="xsd:string"/>

E‘L <part name="logo" type="tns:Array0fBinary"/ >

B </message>

<portType name="pt">
<operation name="GetCompanylnfo" >
<input message="m1"/>
<output message="m2"/>
< /operation>
</portType>

From Web Services Description Language (W

Middleware 45

0 A binding defines message formats and 00 A port specifies the address of a
protocol details for the operations and binding, i.e., how to access the service

messages of a given Port Type

using a particular protocol and format

O A binding corresponds to a single Port 0 Ports can only specify one address and
Type (obvious since it needs to refer to they should not contain any binding

the operations and messages of the
Port Type)

O A Port Type can have several bindings
(thereby providing several access
channels to the same abstract service)

0 The binding is extensible with
elements that allow to specify
mappings of the messages and
operations to any format or transport
protocol. In this way WSDL is not
protocol specific.

©Gustavo Alonso, ETH Ziirich.

information

O The port is often specified as part of a
service rather than on its own

Middieware 46

Bindings and Ports (example)

<binding name="b1" type="tns:pt1" >
<operation name="GetCompanylnfo" >
< soap:operation soapAction="http://example.com/GetCompanylnfo"/>
<input>
<soap:body use="literal"/>
</input>
<output>
<mime:multipartRelated >
<mime:part>
<soap:body parts="body" use="literal"/>
</mime:part>
<mime:part>
<mime:content part="docs" type="text/html"/>
</mime:part>
<mime:part>
<mime:content part="logo" type="image/qif"/ >
<mime:content part="logo" type="image/jpeq"/ >
</mime:rarf>
</mime:multipartRelated >
</output>
< /operation>
</binding>
<service name="CompanylnfoService" >
<port name="CompanylnfoPort"binding="tns:b1">
<soap:address location="http://example.com/companyinfo"/>

From Web Services Description Language (WSDL) 1.1 W3C Note 15 March 2001

/ </port>
< ice >
©Gustavo Alunsofelévflﬁeliirich. Middieware 47

Services

O Services group a collections of ports together and therefore become the complete
definition of the service as seen by the outside:

[J a service supports several protocols (it has several bindings)

[access to the service under a given protocol is through a particular address
(specified in the ports of each binding)

[J the operations and messages to exchange are defined in the Port Type
O Ports that are part of the same service may not communicate with each other

O Ports that are part of the same service are considered as alternatives all of them with
the same behavior (determined by the Port Type) but reachable through different
protocols

©Gustavo Alonso, ETH Ziirich. Middieware 48

Elements of WSDL

WSDL document)
| Types (type information for the document, e.g., XML Schema) | ;
Z I I I ! ~. 2
Message 1 || Message 2 || Message 3 || Message 4 || Message 5 || Message 6 E
o
Operation 1 Operation 2 Operation 3 °
—_ 1 = :
e}
Port Type (abstract service) <
Interface Interface Interface Interface 5

blnd;ng 1 blnd;ngz blnd;ng3 blnd;ng4 g_ 8

v v v v %‘E >

port 1 port 2 port 3 port 4 5 8

o 2

~— ! 2 — T e

Service (the actual servicein all oo
its available implementations) 38

©Gustavo Alonso, ETH Ziirich. Middleware 49

WSDL bindings (SOAP) 1

<?xml version="1.0"7>
<definitions name="StockQuote"

’rarge’rNames?ace ="http://example.com/stockquote.wsdl"
xming:tns="http://example.com/stockquote.wsdl"
xmlns:xsd="http://www.w3.0rg/2000/10/XMLSchema"
xming:xsdl="http://example.com/stockquote.xsd"
xmlins:soap="http://schemas.xmlsoap.org/wedl /soap/"
xmins ="http://schemas.xmlsoap.org/wsdl/" >

<message name="GetTradePricelnput" >
<part name= "fickerSYmbol" element="xsd:string"/ >
<part name="time" element="xsd:timelnstant"/>
</message>

<message name="GetTradePriceQutput">
<part name="result" type="xsd:float"/>
< /message>

<portType name="StockQuotePortType" >
<operation name="GetTradePrice" >
<input message="tns:GetTradePricelnput"/>
<output message="tns:GetTradePriceQutput"/>
< /operation>
</portType>

From Web Services Description Language (WSDL) 1.1 W3C Note 15 March 2001

©Gustavo Alonso, ETH Ziirich. Middieware 50

WSDL binding (SOAP) 2

<binding name="StockQuoteSoapBinding" type="tns:StockQuotePoriType" >
<soap:binding style="rpe" transport="http://schemas.xmlsoap.org/soap/http"/ >
<operation name="GetTradePrice" >
<soap:operation soapAction="http://example.com/GetTradePrice"/ >
<input>
<soap:body use="encoded" namespace ="http://example.com/stockquote”
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/ >
</input>
<output>
<soap:body use="encoded" namespace ="http://example.com/stockquote”
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/ >
</output>
< /operation>>
</binding>

<service name="StockQuoteService" >
< documentation > My first service </documentation >
<port name="8tockQuotePort" binding="tns:StockQuoteBinding" >
<soap:address location="http://example.com/stockquote"/>
</port>
</service>
</definitions >

©Gustavo Alonso, ETH Ziirich. Middleware 51

From Web Services Description Language (WSDL) 1.1 W3C Note 15 March 2001

Conversations

O WSDL is in its current version an extension of the IDL model to support interaction
through the Internet:

(7 XML as syntax and type system

[possibility of grouping operations into a service

U different options for accessing the service (addresses and protocols)
O This is its great advantage ...

0 :'flis straightforward to adapt existing middleware platforms to use or support
ShL

[automatic translation from existing IDLs to WSDL is trivial
O ... but also the disadvantage
U electronic commerce and B2B interactions are not single service calls

[T WSDL does not reflect the structure of the procedures to follow to correctly
interact with a service (conversations)

* business protocol = set of valid conversations
O Without a business protocol, most of the development work is still manual

©Gustavo Alonso, ETH Ziirich. Middleware 52

Worlkflow for Initieter Role I Workflow for Participant Rele

: I
|

ebXML Message —
Request Quote
& @ l PriceAndivailabilityQuote Send Quote
r

< Compose Message 1
L Process Quote and
8 1 I Availability
= Send QPA
= Message B2B
% Messaging
= Service v
'S | Receive Quote Return Quote
o .]
g ebXML Message
E Wait for PricedndivailabilitvResponse
= sponse
o
= |
2 l |
‘D
> | .

Extract Message l

v
©Gustavo Alonso, ETH Ziirich. Middleware 53

Conversations (example)

“The xCBL 3.5 ChangeQrder document is a buyer-initiated document that can be used to
change an existing Order already received and responded to by a seller. The document
can be used to make changes to header level information, change line items, cancel line
items, add line items, etc. Note that if an OrderResponse has not been received for a
given Order, a ChangeOrder is not necessary (an Order with a purpose of “Replace”
should be used). Similarly, if an entire order is to be cancelled (regardless of whether a
response has been received or not) an Order with a purpose of “Cancellation” should be

used.”
XCBL 3.5 Order Management Recommended Use, Version 1.0 November 19, 2001

©Gustavo Alonso, ETH Ziirich. Middleware 54

Other standards

O ebXML shows here again what could be
a possible evolution path for WSDL (or
the type of technology that is being
built on top of WSDL)

O ebXML does not consider a client/
server model but an interaction
between partners (peer-to-peer)

O Consequently, the service description
model for ebXML is the description of
how two business processes interact
with each other:

U partners publish their processes
(an external view over them)

UJ a collaboration agreement is drawn
based on those processes

[the collaboration agreement
describes the business protocol
between those partners

©Gustavo Alonso, ETH Ziirich.

Automatic development

service

service

VIEW OF BUSINESS PROCE

PARTNER 1
/
\

COLLABORATION
AGREEMENT

o]

© O

VIEW OF BUSINESS PROCESS

PARTNER 2 Middleware 55

0 The ultimate goal of WSDL is to
provide support for automating as much
as possible for the development
process for Web services:

[J given the WSDL description, a
WSDL compiler generates the
stubs or skeletons necessary to
develop clients that can interact
with the service

(7 for that purpose, WSDL must rely
on a standard protocol so that
generic stubs can be created, this
is where SOAP comes into the
picture

[J WSDL is meant as a bridge
between internal services and
external (Web) services)

©Gustavo Alonso, ETH Ziirich.

O Similarly, the ultimate goal in ebXML

is to automate the process of
developing a collaboration agreement,
deploying it and enforcing its rules:

[given a collaboration agreement
?possibly a standard one), one
should be able to automatically
generate a stub or skeleton for the
individual business processes at
the ends of the agreement

U partners need only to extend the
stub process with their own
internal logic

(7 this is why ebXML needs more
than SOAP as the agreement is
used to control and direct the flow
of messages between partners at
the platform level

Middieware 56

What is UDDI?

O The UDDI specification is probably the one that has evolved the most from all
specifications we have seen so far. The latest version is version 3 (July 2002):

UJ version 1 defined the basis for a business service registry
[version 2 adapted the working of the registry to SOAP and WSDL

UJ version 3 redefines the role and purrose of UDDI registries, emphasizes the role
of private implementations, and deals with the problem of interaction across
private and public UDDI registries

O Originally, UDDI was conceived as an “Universal Business Registry” similar to search
engines (e.g., Google) which will be used as the main mechanism to find electronic
services provided by companies worldwide. This triggered a significant amount of
activity around very advanced and complex scenarios (Semantic Web, dynamic binsing
to partners, runtime/automatic partner selection, etc.)

0 Nowadays UDDI is far more pragmatic and recognizes the realities of B2B
interactions: it presents itself as the “infrastructure for Web services”, meaning the
same role as a name and directory service (i.e., binder in RPC) but applied to Web
services and mostly used in constrained environments (internally within a company or
among a predefined set of business partners)

©Gustavo Alonso, ETH Ziirich. Middleware 57

Hype and reality

0 There are a few universal UDDI 0 UDDI is rather useful if seen as
registries in operation (maintained by supporting infrastructure for Web
IBM, Microsoft, SAP, etc) services in well defined and

0 These registries are very visible and constrained environments (i.e., without
often the first thing one sees of Web public access and where there is a
services context that provides the missing

O Unfortunately, these registries are still tnformation) Lo
very small and most of the entriesin O Most of the UDDI registries in place
them do not work or do not correspond !"df'! are private registries operating
to any real service inside companies (recall that the

O This has been a source of criticism to widest use of Web services today is for

We services in general. The criticism conventional EA) or maintained by 2

has not been entirely undeserved but it set of companies In 4 private manner
is often misquided: what was there to 0 UDDI has now become the accepted

criticize was not UDDI itself but the way to document Web services and
use that was been made of it and the sup%ly the information missing in
hype around dynamic Web services WSDL descriptions

©Gustavo Alonso, ETH Ziirich. Middieware 58

Role of UDDI

O Services offered through the Internet
to other companies require much more
information that a typical middleware
service

O |n many middleware and EAI efforts,
the same people develop the service
and the application using the service

O This is obviously no longer the case
and, therefore, using a service requires
much more information that it is
typically available for internal company
services

O This documentation has three aspects
to it:
[basic information
U categorization
UJ technical data

©Gustavo Alonso, ETH Ziirich.

More detailed (ebXML architecture)

SERYICE
REGISTRY

Service
description

PUBLISH

SERYICE
FROYIDER

Service
description

SERYICE
REQUESTER

Service Interfoce

Service

Middleware 59

XML

&,
Request Business Details &@J COMPANY A

12000 ebXML T™M

Build Local System

Implementation

ebXML compliant
system

©Gustavo Alonso, ETH Ziirich.

Middieware 60

UDDI data

O An entry in an UDDI registry is an XML document composed of different elements
(labeled as such in XML), the most important ones being:

U businessEntity : is a description of the organization that provides the service.
I businessService: a list of all the Web services offered by the business entity.
U bindingTemplate: describes the technical aspects of the service being offered.

U #Modet (“technical model”)is a generic element that can be used to store
addotional information about the service, fzpically additional technical
information on how to use the service, conditions for use, guarantees, etc.

0 Together, these elements are used to provide:

UJ white pages information: data about the service provider (name, address, contact
person, etc.)

U yellow pages information: what type of services are offered and a list of the
different services offered

[green pages information: technical information on how to use each one of the
services offered, including pointers to WSDL descriptions of the services (which
do not reside in the UDDI registry)

©Gustavo Alonso, ETH Ziirich. Middleware 61

Business entity

O The generic white and yellow pages information about a service provider is stored in
the businessEntity, which contains the following data:

[each businessEntity has a businessKey

[J discoveryURLs: a list of URLs that point to alternate, file based service discovery
mechanisms.

[] Name: (textual information)

UJ Business description: (textual information)

[J Contacts: (textual information)

U businessServices: a list of services provided by the businessEntity
U identifierBag: a list of external identifiers

[categoryBag: a list of business categories (e.g., industry, product category,
geographic region)

O The businessEntity does not need to be the company. It is meant to represent any
entity that provides services: it can be a department, a group of people, a server, a
set of servers, etc

©Gustavo Alonso, ETH Ziirich. Middleware 62

Business service

O The services provided by a business entity re described in business terms using
businessService elements. A businessService element can describe a single Web
service or a group of related Web services (all of them offered by the same
businessEntity)

O A businessEntity can have several businessServices but a businessService belongs to
one businessEntity

O The businessService can actually by provided by a different businessEntity that the
one where the element is found. This is called projection and allows to include
services provided by other organizations as part of the own services

O |t contains:

(] a serviceKey that uniquely identifies the service and the businessEntity (not
necessarily the same as where the businessService is found)

L] name: as before
U description: as before
[categoryBag: as before

U bindingTemplates: a list to all the bindingTemplates for the service with the
technical information on how to access and use the service

©Gustavo Alonso, ETH Ziirich. Middleware 63

Binding template

O A bindin? template contains the technical information associated to a particular
service. [t contains the following information:

U bindingKey
[serviceKey
[description

[J accessPoint: the network address of the service being provided (typically an URL
but it can be anything as this field is a string: e.g., an e-mail address or even a

phone)

[J tModels: a list of entries corresponding to tModels associated with this particular
binding. The list includes references to the tModels, documents describing these
tModles, short descriptions, etec.

U categoryBag: additional information about the service and its binding (e.g.,
whether it is a test binding, it is on production, etc)

O A businessService can have several bindingTemplates but a binding Tenplate has only
one businessService

O The binding template can be best seen as a folder where all the technical information
of a service is put together

©Gustavo Alonso, ETH Ziirich. Middieware 64

tModel

O A tModel is a generic container of information where designers can write any techical
information associated to the use of a Web service:

[J the actual interface and protocol used, including a pointer to the WSDL
description

U description of the business protocol and conversations supported by the service

O A tModelis a document with a short description of the technical information and a
pointer to the actual information. It contains:

I tModelKey
] name
U description

[overviewDoc: (with an overviewURL and useType that indicate where to find the
information and its format, e.g., “text” or “wsdldescription”)

[identifierBag
[categoryBag

O A tModel can point to other tModels and eventually different forms of tModels will be
standardized (tModel for WSDL services, tModels for EDI based services, etc.)

©Gustavo Alonso, ETH Ziirich. Middleware 65

Summary of the data in UDDI

UDDI Registry entry
BUSINESS ENTITY

name H=— white pages information
contacts ‘_______/____——~ H

description

1dentitiers
categories yeliow pages information

BUSINESS SERYICE green pages miormation
service key H
business key /
nanme
.
.

descriptipn
categories

BINDING TEMPLATE
binding key
binding key
description
access point

tMODEL
name
description WS DL document
overview docoment (located at the
URL pointers to specifications|THl-—~~~~ | servie provider)

©Gustavo Alonso, ETH Ziirien. Middieware 66

UDDI and WSDL

~"| uDDI entry

W hite pages information
Yellow pages information
Green pages information

uDDI
SERVICE .-~
REGISTRY

tec hmical information

pointer to service description |
|

Service
description

[NQUIRY
URL

PUBLISHING == = =

SOAFP - HTTPS

SERYICE
PROYIDER

SERYICE
REQUESTER

WSDL
service
description

©Gustavo Alonso, ETH Ziirich. Middieware 67

UDDI interfaces 9%

O The UDDI specification provides a number of Application Program Interfaces (APIs
that provide access to an UDDI system:

UJ UDDI Inquiry: to locate and find details about entries in an UDDI registry.
Support a number of patterns (browsing, drill-down, invocation)

UJ UDDI Publication: to publish and modify information in an UDDI registry. All
operations in this API are atomic in the transactional sense

LJ UDDI Security: for access control to the UDDI registry (token based)

UJ UDDI Subscription: allows clients to subscribe to changes to information in the
UDDI registry (the changes can be scoped in the subscription request)

L] UDDI Replication: how to perform replication of information across nodes in an
UDDI registry

[J UDDI Custody and Ownership transfer: to change the owner (publisher) of
information and ship custody from one node to another within an UDI registry

O UDDI also provides a set of APIs for clients of an UDDI system:
[J UDDI Subscription Listener: the client side of the subscription AP
(1 UDDI Value Set: used to validate the information provided to an UDDI registry

©Gustavo Alonso, ETH Ziirich. Middieware 68

SOAP and UDDI

O Access to an UDDI registry typically
takes place through SOAP messages
that are used to invoke the

O UDDI registries ignore headers, if a
message arrives with a mustUnderstand
corresponding API header set to 1, a SOAP fault is

ted
O The implicit assumption is that the generate

. . 0 UDDI registries also ignore actor and
ﬁ‘spelds :’:m‘:ﬁ’:;:‘; RPG and SOAP is use a generic SOAP fault message

POST /someVerbHere HTTP/1.1
Host: www.somenode.org
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "get_bindingDetail"

<?xml version="1.0" encoding="UTF-8" 72>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/" >
<Body>

<get_bindingDetail xmlns="upsyddizora:8pi-d%iZion, 10 iy 2002

©Gustavo Alonso, ETH Ziirich. Middleware 69

Summary UDDI

O The UDDI specification is rather complete and encompasses many aspects of an UDDI
registry from its use to its distribution across several nodes and the consistency of
the data in a distributed registry

O Most UDDI registries are private and typically serve as the source of documentation
for integration efforts based on Web services

O UDDI registries are not necessarily intended as the final repository of the information
pertaining Web services. Even in the “universal” version of the repository, the idea is
to standardize basic functions and then built Yropriefary tools that exploit the basic
repository. That way it is possible to both tailor the design and maintain the
necessary compatibility across repositories

0 While being the most visible part of the efforts around Web services, UDDI is
perhaps the least critical due to the complexities of B2B interactions (establishing
trust, contracts, legal constrains and procedures, etc.) . The ultimate goal is, of
course, full automation, but until that happens a long list of problems need to be
resolved and much more standardization is necessary.

©Gustavo Alonso, ETH Ziirich. Middieware 70

