Eidgensssische Technische Hachschule Zilrich
Swiss Federal Institute of Technalogy Zurich

Distributed Information Systems
From Middleware to Web services (Part 1)
VS - WS 2002/2003

Prof. Dr. Gustavo Alonso
Computer Science Department
ETH Ziirich
alonso@inf.ethz.ch

Understanding the layers

O Client is any user or program that wants to
perform an operation over the system. To
support a client, the system needs to have a
presentation layer through which the user can

submit operations and obtain a result.

O The application logic establishes what
operations can be performed over the system
and how they take place. It takes care of
enforcing the business rules and establish the
business processes. The application logic can
be expressed and implemented in many

N different ways: constraints, business

processes, server with encoded logic ...

2-5 years Application O The resource manager deals with the
(system’s logic) organization (storage, indexing, and retrieval)
of the data necessary to support the application
logic. This is typically a database but it can
also be a text retrieval system or any other

~10 years Data management systems data management system providing querying
(operational and strategic data) capabilities and persistence.

1-2 years Clients and external
interface

(presentation, access channels)

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02) Middieware 2

web and wap browsers

web W iali i
e C“% specialized clients (Java, Notes

CLIENT

SMS

I HTML, SOAP, XML

web servers, J2EE, CGI
JAVA Serviets AP

business | business I MOM, HTML, I1OP,
obj ect object RMI-110P, SOAP, XML

ACCESS

TP-Monitors, stored procedures
programs, scripts, beans

1 MOM, [1OP,
RMI-I10OP, XML
system federations, filters
object monitors, MOM

ODBC, JDBC, RPC,
MOM, I1OP, RMI-I1OP
databases, multi-tier systems
backends, mainframes

APP

RESOURCE INTEGRATION

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02) Middleware 3

Understanding the context

*Scale up is based on using a bigger
computer as the load increases. This
requires to use parallel computers (SMP)
with more and more processors.

*Scale out is based on using more
computers as the load increases instead of
using a bigger computer.

* Both are usually combined! Scale out can
be applied at any level of the scale up.

Scale-out

Diagrams courtesy of Jim Gray, Microsoft

©Gustavo Alonso, ETH Ziirich. EAI-WS$01/02) Middieware 4

The Grid

er Cperaling Sys
wars which 2

Mass Storage
A wulive ol

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02) Middleware 5

Understanding the applications

¢

—

G- . v o G- J
Comp/Soft Books Monitor and cache Comp/Soft Books

%a_rch %'Va’s Diagram courtesy of Robert Bames, Microsoft %r Ch %’Va’s
©Gustavo Alonso, ETH Ziirich. EAI-WS$01/02) Middieware 6

PRESENTATION LAYER

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02)

RESOURCE MANAGEMENT LAYER Middleware 7

Understanding products el

repository

o
g
2
g
a
<
o)
E.
=
2

©Gustavo Alonso, ETH Ziirich. EAI-WS$01/02) Middieware 8

The evolving nature of the architecture
of distributed information systems

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02) Middieware 9

Distributed applications (top down design) ﬁﬂ

O The functionality of a system is divided
among several distributed nodes which
work exclusively for the system.

O Each node cannot act as a separate
com[;lonem‘, its functionality depends
on the functionality implemented at

other nodes.

O Nodes are typically homogeneous and
the system is designed to be
distributed from the beginning.

O This is the architecture of many
applications (for instance databases),
however, they do not allow to
incorporate other applications, legacy
systems, and are difficult to extend.

Functionality
A

Functionality
D
Functionality

B

©Gustavo Alonso, ETH Ziirich. EAI-WS$01/02) Middieware 10

Distributed applications (bottom up design)

O The basic components already exist,
stand alone systems which need to be
New Legacy linked in order to provide better
application application functionality.

’i O The components do not necessarily

cease to work as stand alone
components. Often old applications
continue running at the same time as
new applications.

O This approach has a wide application
because the underlying systems already
exist and cannot be easily replaced.

O Much of the work and products in this
area are related to middleware, the
intermediate layer used to provide a
common interface, bridge
heterogeneity, and cope with

Legacy systems distribution.

©Gustavo Alonso, ETH Ziirich. (EAI-WS$01/02) Middieware 11

Basic concepts and notation

O Client is any user or program that wants to
perform an operation over the system. To

Client Presentation layer support a client, the system needs to have a
7 1 presentation layer through which the user can

submit operations and obtain a result.

Application Logic Business rules 0 The application logic establishes what
v v operations can be performed over the system

and how they take place. It takes care of

RN N Bidnid shledn enforcing the business rules and establish the
= business processes. The application logic can
be expressed and implemented in many
different ways: constraints, business
processes, server with encoded logic ...
Client Client O The resource manager deals with the
7) organization (storage, indexing, and retrieval)
of the data necessary to support the application
Server Business processes logic. This is typically a database but it can
1 i also be a text retrieval system or any other
; data management system providing querying
Database Persistent storage capabilities and persistence.

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02) Middieware 12

P .,

Presentation logic

I

Support for multiple clients

Data distribution or replication

Application Logic

Separated application logic

Any combination thereof

Resource Manager

D o

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02)

A game of boxes and arrows

o

Middleware 13

Thereis no problem in system
design that cannot be solved by
adding alevel of indirection.
Thereis no performance
problem that cannot be solved
by removing alevel of
indirection.

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02)

Each box represents a part of the system.

Each arrow reEresem‘s a connection between
two parts of the system.

The more boxes, the more modular the system:
more opportunities for distribution and
parallelism. This allows encapsulation,
component based design, reuse.

The more boxes, the more arrows: more
sessions (connections) need to be maintained,
more coordination is necessary. The system
becomes more complex to monitor and manage.

The more boxes, the greater the number of
context switches and intermediate steps to go
through before one gets to the data.
Performance suffers considerably.

System designers try to balance the capacity of
the computers involved and the advantages and
disadvantages of the different architectures.

Middieware 14

Architectures (1): fully centralized

. . O The presentation layer, arplicaﬁon logic and

1-tier architecture resource manager are built as a monolithic
entity.

O Users/programs access the system through
display terminals but what is displayed and how
it appears is controlled by the server. (This are
the “dumb” terminals).

O This was the typical architecture of mainframe
applications, offering several advantages:
O no forced context switches in the control
flow (everything happens within the
system),

O all is centralized, managing and

controlling resources is easier,
O the design can be highly optimized by
) blurring the separation between layers.
O This is not as unfashionable as one may think:
network computing is based on similar ideas!
v
©Gustavo Alonso, ETH Ziirich. (EAI-WS$01/02) Middieware 15

Architecture (2): 2 tier system

i) O As computers became more powerful, it was
2-tier architecture possible to move the presentation layer to the
client. This has several advantages:

O Clients are independent of each other:
one could have several presentation layers
depending on what each client wants to
do.

o
; U One can take advantage of the computing

Server] power at the client machine to have more
=== sophisticated presentation layers. This
also saves computer resources at the

server machine.
O It introduces the concept of AP

(Application Program Interface). An
interface to invoke the system from the
outside. It also allows to think about

federating these systems by linking
several of them.

v O The resource manager only sees one
client: the application logic. This greatly
helps with performance since there are no
connections/sessions to maintain.

©Gustavo Alonso, ETH Ziirich. EAI-WS$01/02) Middieware 16

Technical aspects of the 2 tier architecture

O There are clear technical advantages: work within the server takes place within one
scope (almost as in 1 tier), the design is tighter and can be optimized, less race
conditions to worry about (still easy to manage and control), etc.

0 However, not all are advantages:

[J The system has to deal with all possible connections. The maximum number of
clients is given by the number of connections supported by the server.

[J Clients are “tied” to the system since there is no standard presentation layer. If
one wants to connect to two systems, then the client needs two presentation

.-

layers
z [There is no failure or load encapsulation. If the system fails, nobody can work.
Similarly, the load created by a client will directly affect the work of others since
they are all competing for the same resources.

UJ The design of the application logic and the resource manager is tightly coupled,
making it very difficult to change or separate but also more efficient.

UJ The design is complex and difficult to port to other platforms.

©Gustavo Alonso, ETH Ziirich. (EAI-WS$01/02) Middieware 17

The client is always right

[The underlying systems are
probably different. The complexity

gg of dealing with two heterogeneous
i L systems needs to be addressed by
7/ \ - the client.

[The client becomes responsible for
@ knowing where things are, how to
Sorver A Sorver B get to them, and how to ensure
erver erver consistency!
O This is tremendously inefficient from

more systems. With a 2-tier all points of view (very fat clients are

architecture, this creates several not 3 s.olufion)'.
problems: O There is very little that can be done to

: ' solve this problems if staying within
- ;zzuﬂnﬂzzmﬁaeﬁzs{fﬁm ?: ':.; know the 2 tier model. It can be solved by

common business logic. If it is adding a level of indirection:

necessary, it needs to be MIDDLEWARE
implemented at the client.

©Gustavo Alonso, ETH Ziirich. EAI-WS$01/02) Middieware 18

O Clients end up wanting to access two or

Middleware

clients]

Middleware or
global application logic

Local application logic
Local resource
managers

| PR R

O Middleware is just a level of indirection
between clients and other layers of the
system.

O It introduces an additional layer of
business logic encompassing all underlying

systems.
% O By doing this, a middleware system:

O simplifies the design of the clients by
reducing the number of interfaces,

I provides transparent access to the
underlying systems,

[acts as the platform for inter-system

iddl funcfionali’rr and high level
migaieware application logic, and

7 N [J takes care of locating resources,

] \- accessing them, and gathering results.

ﬁ === O But a middleware system is just a system
like any other! It can also be 1 tier, 2 tier,
Server A Server B 3 Her ...

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02) Middleware 19

Technical aspects of middleware based systems ﬁﬁ

0 The introduction of a middleware layer helps in that:
[J the number of necessary interfaces is greatly reduced:

* clients see only one system (the middleware),

* local applications see only one system (the middleware),
U it centralizes control (middleware systems themselves are usually 2 tier),
U it makes necessary functionality widely available to all clients,

U it allows to implement functionality that otherwise would be very difficult to
provide, and

0 if)is a first step towards dealing with application heterogeneity (some forms of
it).
O The middleware layer does not help in that:
[it is another indirection level,
U it is complex software,
U it is a development platform, not a complete system, and
U middleware functionality is poorly understood.

©Gustavo Alonso, ETH Ziirich. EAI-WS$01/02) Middleware 20

Architecture (3): 3 tier system

. . O In a3 tier system, the three layers are fully
3-tier architecture separated.

O For some people, a middleware based system is
a 3 tier architecture. This is a bit
oversimplified but conceptually correct since
the underlying systems can be treated as black
boxes. In fact, 3 tier makes only sense in the
context of middleware systems Yofherwise the
client has the same problems as in a 2 tier
system!).

O We will see examples of this architecture when
concrete middleware systems are discussed.

O A 3 tier systems has the same advantages as a
middleware system and also its disadvantages.

O In practice, things are not as simple as they

seem ... there are several hidden layers that
S if are not necessarily trivial: the wrappers.

©Gustavo Alonso, ETH Ziirich. (EAI-WS$01/02) Middieware 21

b
b @%

A real 3 tier middleware based system ...

e

External client

internal
§ clients control
f
8 connecting logic ‘ ;‘
E “!I
2 E'] [: E'] [?['Jﬂé%ﬁrc middleware
wrappers - =
: "
& Resource
% managers 2 tier system Resource
) manager
~

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02) Middieware 22

The Web as software layer ...
O The WWW suddenly opened up

software systems that had remained @
hidden wifluin the IT organization of a S
company

O |t is not that new types of interactions | WEB SERVER
were possible. Behind the WWW there
is the same client/server model as in
basic RPC. However, the WWW made
everything much easier, cheaper and
efficient

[integration at the level of user
interface became possible

[services could be accessed from

anywhere in the world “ ﬁ wrappers

MIDDLEWARE

user
program

app server 1’

app server 1

[the clients could now be not just E—— e
an internal or selected user but
anybody with a browser []
.| =
=y I
©Gustavo Alonso, ETH Ziirich. (EAI-WS$01/02) Middieware 23

... on top of existing systems

: COI serip calls
| TP Client | | TP Client |

Y early balance ? Monthly
average revenue ?

TP—,M onitor Control (load balancing,
environment cc and rec., replication,
distribution, scheduling,
priorities, monitoring ...)

Internet

browser

— :—‘ &I

= =] recoverable
g = 5 P = 2 queue
S| KR S 2| KR 3

(72} (o] o 50

o =2 o =2 S

o (@] o % o <

< app server 3

Branch 1 Branch 2 Finance Dept.
- - -
1 YRR - 1

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02) Middleware 24

Remote clients

. client
client
embedded XML
SQL
user defined Y

D
user defined
application logic
[
e

resource manager resource manager

application logic API

database management system
©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02) Middleware 25

Business to Business (B2B)

A

MIDDLEWARE
MIDDLEWARE

user
program
user
program

Service A

Resource X

©Gustavo Alonso, ETH Ziirich. EAI-WS$01/02) Middleware 26

Middleware platforms:
From RPC to Enterprise Application Integration
©Gustavo Alonso, ETH Ziirich. (EAI-WS$01/02) Middieware 27

Generic distributed application it

Server 1 (customer)

A

Server 2 (products)

Server 3 (inventory)

e

©Gustavo Alonso, ETH Ziirich. EAI-WS$01/02) Middieware 28

What can go wrong here?

O RPC is a point to point protocol in the
sense that it supports the interaction
between two entities (the client and
the server)

O When there are more entities
interacting with each other (a client
with two servers, a client with a server
and the server with a database), RPC
treats the calls as independent of each
other. However, the calls are not
independent

O Recovering from ¥arfial system failures
is very comrlex. or instance, the
order was placed but the inventory was
not updated, or payment was made but
the order was not recorded ...

O Avoiding these problems using plain
RPC systems is very cumbersome

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02)

Transactional RPC

v |

Server 2 (products)

Middleware 29

O The solution to this limitation is to
make RPC calls transactional, that is,
instead of providing plain RPC, the
system should provide TRPC

O What is TRPC?
[J same concept as RPC plus ...

[additional language constructs and
run time supton‘ (additional
services) to bundle several RPC
calls into an atomic unit

U usually, it also includes an
interface to databases for making
end-to-end transactions using the
XA standard (implementing 2
Phase Commit)

[J and anything else the vendor may
find useful %fransacfional
callbacks, high level locking, etc.)

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02)

O Simplifying things quite a bit, one can
say that, historically, TP-Monitors are
RPC based systems with transactional
support. An example: Encina

~ Distributed Applications

TP-Monitors

O The design c¥cle with a TP-Monifo:is
very similar to that of RPC:

U define the services to implement
and describe them in DL

U specify which services are
transactional

[use an IDL compiler to generate
the client and server stubs

Execution requires a bit more control
since now interaction is no longer point
to point:

U transactional services maintain
context information and call
records in order to guarantee
atomicity

U stubs also need to support more
information like transaction id and
call context

O Complex call hierarchies are typically
implemented with a TP-Monitor and

©Gustavo Alonso, ETH Zirich. [EAI-WS01/02) not with plain RPC Middieware 31

[) .

Server 2 (products) Server 3 (inventory)

TP-Monitor Example

@ |Interfacesto user defined services
- Programs implementing the services
Y early balance ? Monthly average revenue ?

TP-Monitor - Feeical (load balencing,
environment cc and rec., replication,
distribution, scheduling,
priorities, monitoring ...)

= — &
o) o) g recoverable
5 2 g queue
w
aQ g &
& < < app server 3

Branch 1

-

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02) Middleware 32

Asynchronous calls

O The solution is to entirely separate the
client and the server. Instead of the
client calling a procedure at the server
and waiting %or the server to execute
the procedure and return a result, the
client simply sends the call to the
server without waiting. The server
processes the call in due time and
sends a message with the response

O The exchange typically occurs using
persistent queues where these
messages are stored until the client or
the server pick them up

O These queues can be treated as
separate entities and can be made
persistent, transactional, indexed,
priority based, multi-user, etc.

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02)

Queuing systems

Asynchronous calls are, but their very
nature, point to point. Although m:n
relations are feasible, the system
supports each individual calr as a
separate entity (much like RPC). There
is no easy way to link several
asynchronous calls into an atomic unit

Asynchronous calls and transactional
calls are complementary aspects of
distributed systems:

U transactional calls are for highly
consistent on-line operations
] asynchronous calls are for
information dissemination across
different systems
Note: TP-Monitors were the first

systems to provide the type of
persistent queuing used today

Middleware 33

Input Output
queue ueue
o externa
application Output
. queue
=
[——

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02)

Queuing systems implement the asynchronous
interaction.

Each element in the system communicates with
the rest via persistent queues. These queues
store messages transactionally. The flow of
control from queue to queue is defined by the
user as limited form of process and constitutes
the application logic.

Queuing systems offer significant advantages
over traditional solutions in terms of fault
tolerance and overall system flexibility:
applications do not need to be there at the
time a request is made!

Queues provide a way to communicate across
heterogeneous networks and systems while still
being able to make some assumptions about the
behavior of the messages.

They can be used embedded (workflow, TP-

Monitors) or by themselves (MQSeries,
Tuxedo/Q).

Middieware 34

Message brokers

O Message brokers are the latest
incarnation of queuing systems

[it is the same concept as a queuing
system (often the same
implementation) plus ...

UJ additional services that permit
filtering and transforming
messages as they move from queue
to queue

O Why are they needed?

U In conventional queuing systems,
message formatting must be done
by all senders individually so that
the receiver understands the
message

] A message broker centralizes this
formatting in a single point,
thereby facilitating the design

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02)

... and JAVA?

iueue

Input

mm |

O
& —=
,ﬁ

application

Input
queue
® application
_—
,ﬁ

Middleware 35

O Developing a large information system has
never been easy. With the advent of the
Internet and the scalability problems it
creates, today's information systems are
becoming incredibly complex. Nevertheless,
and in spite of the help that middleware
provides, most development is entirely ad-hoc.
That means, it is expensive, non portable, a
legacy problem ... rfhis is also true of
CORBA since with CORBA the code developed
is platform dependent!)

O For vendors, to provide off-the-shelf solutions
is not a realistic option since there are too
many platforms that would fragment the market
and make development considerable difficult
(note that parallelism of what SAP has meant
for databases and what could be done for
middleware and three tier architectures in
general).

O A step in this direction is J2EE (and the
competing proposal .NET)

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02)

——

middleware system

interna
clients

2 tier systems

wrappers

Resource
managers

Middieware 36

Applets and clients browse

VM

O The problem of the using a web

browser as universal client is that it
does not do much beyond displaying 1Get |2 send
data (it is a thin client): client | applet s?/st%s
U multiple interactions are needed to v v
complete complex operations WEB SERVER
[the same operations must be done
over and over again for all clients Front end
U the processing power at the client

is not used

O By adding a JVM (Java Virtual
Machine) to the browser, now it
becomes possible to dynamically
download the client functionality (an
applet) every time it is needed

O The client becomes truly independent
of the operating system and is always
under the control of the server

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02)

MIDDLEWARE

app server 1’

app server 1

Web server as a client of a EAl system

O CG6l scripts were initially widely used ~ Request1 Request 2

as there was no other way of \ \ Web server process
connecting the web server with the IT N\ =
system so that it could do something \ [
beyond sending static documents o >
0 However, C6I scripts have several CGlI script
problems that are not easy to solve: calsspt child process 2
U C6I scripts are separate child process 1
processes, requiring additional call to
context switches when a call is underlying
made (and thereby adding to the Request 1 Request 2
overall delay) \ Web server process
U Fast-C6l allows calls to be made N\ N >
to a single running process but it \ \ Fast CGl calls

still requires two context switches
[J C6l is really a quick hack not

desigped for pen:fprmance, CGl script Callto
security, scalability, ete. child process 1 underlying
middleware

©Gustavo Alonso, ETH Ziirich. EAI-WS$01/02) Middleware 38

Servlets

O Servlets fulfill the same role as CGl
scripts: they provide a way to invoke a
program in response to an http request.

O However:

U Servlets run as threads of the Java
server process (not necessarily the
web server) not as separate 08
processes

I unlike C6I scripts, that can be
written in any language, Servlets
are always written in Java (and
are, therefore, portable)

(] can use all the mechanisms
provided by the JVM for security
purposes

O The merge of Java based tools and
middleware platforms leads to the so
called application servers.

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02)

web wap
client client

business | business
obj ect

object

©Gustavo Alonso, ETH Ziirich. (EAI-WS01/02)

Request 1 Request 2

Java server process

Servlet
child thread 2

Servlet
child thread 1
Caél th>]
underlying
middleware
Middleware 39

web and wap browsers
specialized clients (Java, Notes
SMS

I HTML, SOAP, XML

web servers, J2EE, CGI
JAVA Serviets API

I MOM, HTML, I10P,

RMI-110P, SOAP, XML

TP-Monitors, stored procedures
programs, scripts, beans

1 MOM, [1OP,
RMI-I10OP, XML
system federations, filters
object monitors, MOM

ODBC, JDBC, RPC,
MOM, I1OP, RMI-I1OP
databases, multi-tier systems
backends, mainframes

CLIENT

ACCESS

APP

RESOURCE INTEGRATION

Middleware 40

