Reliability – from Distributed Systems to Ubicomp

Ubiquitous Information Systems

Doktorandenseminar

23. Januar 2002

RESEARCH GROUP FOR

Distributed

Jürgen Bohn вонм@імғ.етнz.сн

Outline

- Development of Distributed Systems
 - Distributed Computing (DC)
 - Mobile Computing (MC)
 - Ubiquitous Computing (UC/Ubicomp)
- Evolution of Reliability Problems
- Reliability Challenges in Ubicomp

Distributed Systems

Definition:

"All computer applications where several autonomous computers, processors or processes cooperate in some way" [Tel 2000]

- Coordination requires communication
- Reasons for Distributed Systems:
 - information exchange
 - resource sharing
 - increased reliablility through replication
 - increased performance through parallelization
 - simplification of design through specialization

Development of Distr. Systems

Evolution of Characteristics I

Evolution of Characteristics II

- Diversification, heterogeneity
- Specialization, simplicity
- Number of interacting units
- * Decentralization
- * Spontaneity
- * Mobility

Distributed Computing Syst.

Distribute Hardware, Applications and Services

Technical Characteristics

- immobility
- authorized networks, static topology
- homogeneous entities
- terminal (client) vs. server
- static topology
- permanent connectivity
- constant power supply
- one client for many users
- size \geq meter scale

MC

UBICOMP

Reliable Distributed Systems

- Reliable system = reliable soft- and hardware
 - appearance of faults is treated as anomaly
- Achieved by introducing fault tolerance
 - = ability of a system to behave in a welldefined manner once faults occur
- Allot redundancy to troublespots
- Technology dominated approach
 - user expectations reduced to quality of technical system properties

Building Reliable Distr. Systems

- Fault Tolerant Services
 - fault tolerant software (cont. service under *design faults*)
 - process resiliency (continued service under *node failures*)
 - data resiliency (continued service under *node failures*)
 - atomic actions (consistency under node failures)
 - consistent state recovery (consist. under *node failures*)
- Basic Building Blocks
 - reliable and atomic broadcast
 - fail stop processors, stable storage, reliable communication
- Distributed System

Mobile Computing Systems

Support client mobility

DC

Technical Characteristics

- nomadic client vs. server
- variable network topology
- infrastructure-based client comunication
- new wireless

MC

- communication technologies
- intermittent disconnections
- intermittent power shortage
- one client per user
- size ≈ decimeter scale

UBICOMP

Reliable in spite of Mobility

- Mobile information access
 - disconnected operation
 - bandwidth adaptive file access
- Support for nomadicity
 - mobile networking, e.g., Mobile IP
- Reliable communication
 - enhanced wireless mobility support, e.g. cellular systems such as 3G systems and IMT 2000 standard
 - choice of access standards, e.g., CDMA, TDMA, GSM
 - reliable routing and communication protocols
- Adaptive applications and resource management

Ubiquitous Computing Syst.

Sense and control environment

Technical Characteristics

- high mobility / dynamics
- frequent topology changes
- device ≈ client ≈ server
- ad-hoc short-range wireless communication
- intermittent connectivity
- limited power supply
- many devices per task
- size ≤ centimeter scale
- vulnerable to failures

Technical Challenges

- High diversity and large numbers of devices
 - device density varying, unevenly distributed
 - increased probability that device faults occur
- Transient short-lived relationships
 - high degree of fluctuation regarding communication, interaction, cooperation, position
- Spontaneity of relations and interactions
 - initative devices, proactive behaviour
 - spontaneous establishment/cancelling of interconnection/interaction/cooperation

Coordination Problem

- Decentralized coordination of autonomous devices
 - number of active units increases tremedously
 - ever smaller, more heterogeneous and more specialized devices → uneven conditions
 - device capabilities (resources and energy) diminish
 - inherent system dynamics seem to prevent
 - centralized management
 - global system snapshot
- Scalability
 - number of sensors vs. communication costs
 - today's wireless sensor protocols do not scale well

Example: Terminodes Project

- Terminodes = terminal + node (EPFL NCCR)
- Self-organized wide area mobile ad-hoc network
 - public environment, run by users, non-authority based
 - potentially very large, unevenly distributed
 - highly co-operative (task solving)
- Terminode (local & remote) routing
 - Key issues: mobility, scalability, geographic coverage
 - local vs. remote routing (relative vs. geographic pos.)
 - maintain multiple paths, keep track of friendly devices
- Not covered
 - practical scalability experiments, e.g. considering radio interference (250m range per node), energy efficiency

Terminode Routing Simulation

Town area 1

Setting:

- town & highway mobility model
- (no random waypoints)
- peer-to-peer communications
- 600 terminodes
- 30 traffic flows

Results:

Packet delivery rate up to 80% vs. 10% in trad. MANETs.

Persistent/Intrinsic Problems

- Robustness and Availability
- Security related
 - lack of confidentiality due to limited cryptographic device capabilities
 - vulnerable "on the air" communication
- Privacy related
 - talkative proactive devices
 - lack of awareness and control over information and data flow, e.g. in smart spaces
 - user tracking/surveillance

Where Fault Tolerance Comes In

- Fault Tolerance as well-known means to increase overall robustness
- BUT: Do classic FT models and terminologies still hold in ubiquitous environments?
 - what is a transaction/checkpointing in UC?
 - what is consistency of state/data? ...

Boundary Conditions for FT

In Traditional DCS In Ubicomp Systems	
 reliable communication 	– unreliable communication
 infrastructure networks 	 ad-hoc wireless networks
– topology rather static 🧹	 topology very dynamic
 long-lived relationships 	 short-lived relationships
 global snapshot viable 	 local snapshots only
 faults occur rarely 	 faults are common
 resourcefulness 	 scarcity of resources
 – capable devices 	 simple specialized devices
There's a big discrepancy!	

Classic FT fit for Ubicomp?

- Enormous shift in boundary conditions challenges classic FT solutions:
- (a) Basic FT building blocks become inapplicable?
 - e.g., stable storage, reliable communication, reliable atomic broadcast, ...
- (b) Do today's fault tolerant mechanisms and distributed algorithms still work in Ubicomp?
 - e.g., consistent state recovery, checkpointing, leader election, ...
- Many open questions promising field for future work

Research Challenges

- Intensified coordination problem
 - prediction/assessment of global predicates?
 snapshot of global system state impossible?
 - role of device specialization?
- Self-stabilizing systems and algorithms
 - local optimization and organization?
- Formalization of and adequate models for fault tolerance in Ubicomp
- High redundancy as an advantage

Further Problematic Characteristics

- Faults are part of the game (normality)
 - increased fault probability with growing number of small and simple devices
- Pervasion of everyday life
 - pervades objects and environment
 - no way to escape
 - potentially high reliance of users
- Invisibility and concealment
 - hidden contact and interaction
 - unobtrusive, not perceptible to user

Further Research Challenges

- A trustworthy Ubicomp system that justifies reliance should meet the user's expectations
- Evidence that reliability in Ubicomp is interwoven with other disciplines
 - e.g., security, privacy, trust
- Is there a more holistic reliability model that respects the new circumstances?
 - fault tolerance and redundancy helps to achieve robustness (technology-based view point)
 - what about other properties such as pervasiveness, invisibility, concealment of actions etc.?

Research in Progress

- Ad-hoc networks
 - reliable communication (technical wireless aspects)
 - scalable ad-hoc routing
 - self-organization
 - security
- Masking Uneven Conditioning
 - harmonize huge differences in smartness in different environments
- Localized Scalability
 - physical distance vs. relative physical proximity
- Invisibility in Ubicomp
 - minimize user distraction, meet user's expectations

Conclusion & Discussion

- Characteristics of Ubicomp systems differ significantly from traditional distributed systems
- It seems very likely that classic solutions for reliable distributed systems do no longer hold in ubiquitous environments
- What are the ramifications? Is there even a more holistic reliability model conceivable?
- What means exist to assess and quantify reliability in this new context?
- Discussion!