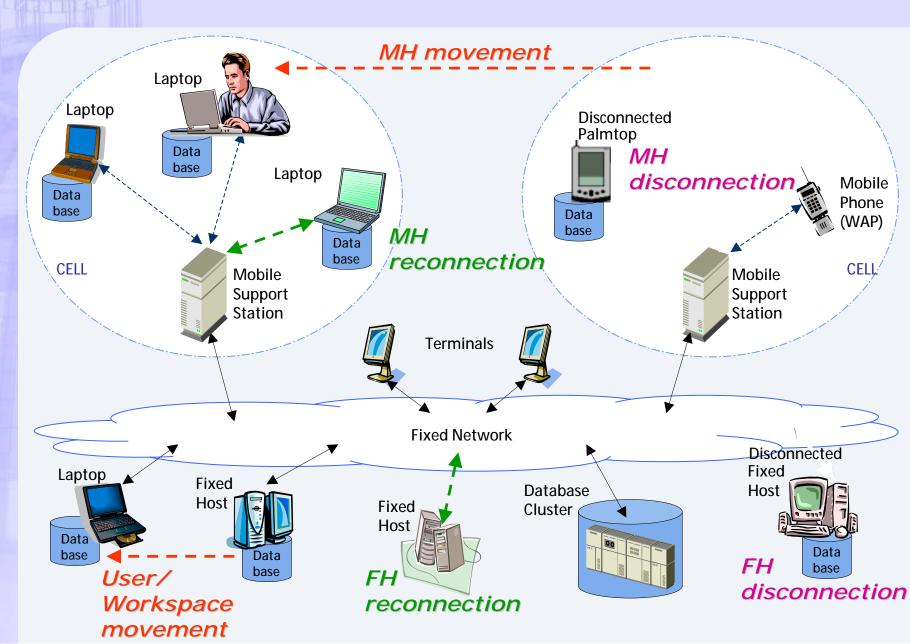
Mobile Transactions and Synchronization

Can Türker ETH Zurich

Seminar "Ubiquitous Information", 28.11.2001

... towards Pervasive Computing


- Gartner Group: "by 2003 more than 137 million business users
 will be involved in some form of remote work"
- Accenture: "by 2005 over 500 million mobile devices will offer Internet access"
- Conclusions
 - mobile hosts (MH; laptops, palmtops, smart phones, etc.) outstrips fixed hosts (FH; personal computers, desktops, etc.)
 - the way information is created and processed will change within this increasingly ubiquitous network
- Need
 - infrastructure to coordinate concurrent information access and processing in the presence of mobile hosts and users

Characteristics of Mobility

- Mobile information sources and consumers
 - physical access point to the network may change: sources as well as consumers may move
 - sources as well as consumers may be disconnected
- User and Context Awareness
 - tracking/monitoring information sources and consumers
 - consumer's information needs may shift with location change
- Data management techniques have to be revisited

Resource Limitations (Bandwidth, Memory, Computing Power,)	Optimization + Careful Resource Sharing
Scalability	Resource sharing
Correctness Concerns	Transactional Guarantees
Combining Many Sources	Data Integration

Movements and Disconnections

Abstractions

Abstraction of Data Storage

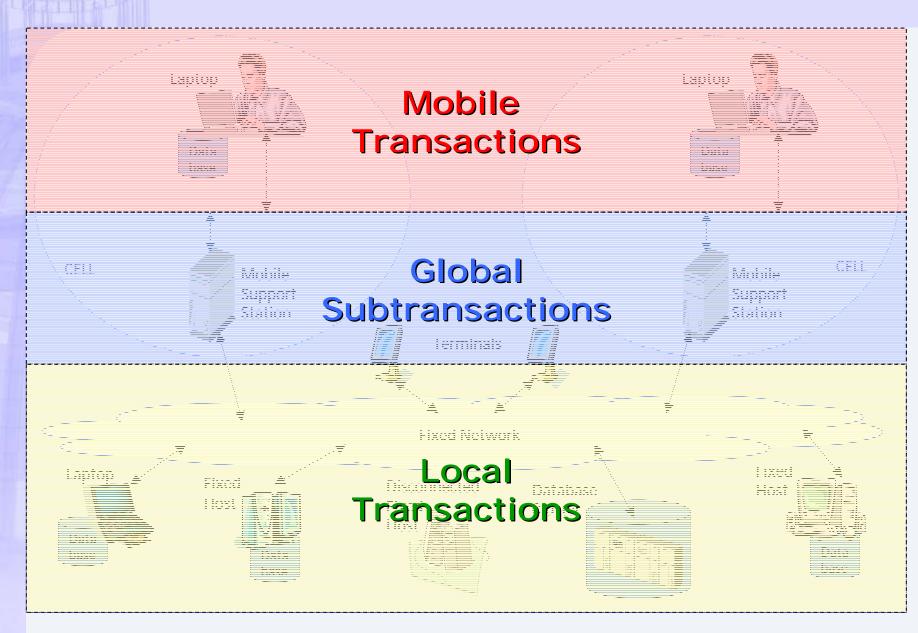
Abstraction of Concurrency & System Failures (Relational) DBMS

DBMS & TP-Monitors with Concurrency Control & Recovery

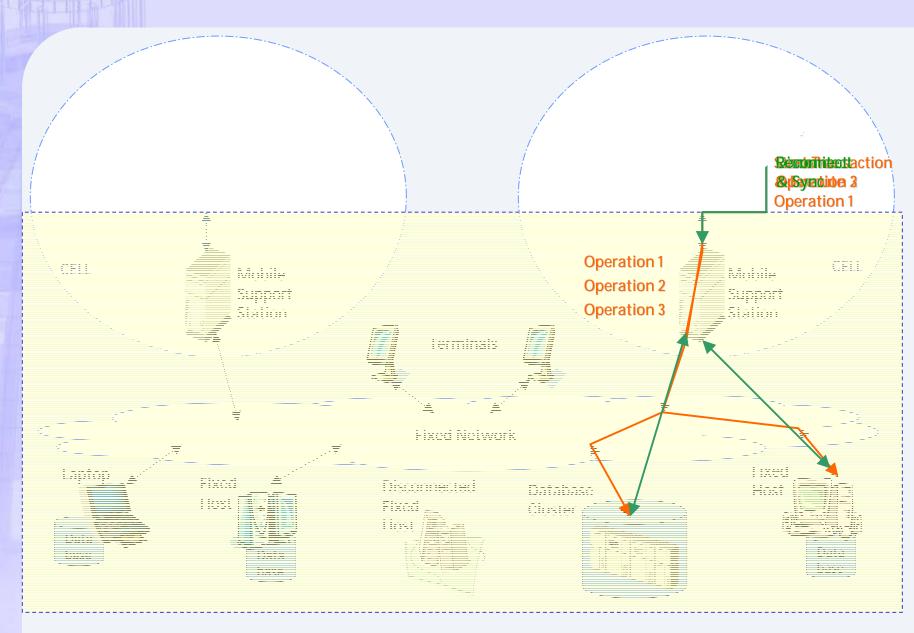
Abstraction of Method Implementations Object-relational DBMS with Object Methods, Triggers & Stored Procedures

Abstraction of Distribution, Heterogeneity & Autonomy Distributed & Federated DBMS, Data Integration, Conflict Resolution

Abstraction of Movements & Disconnections Mobile DBMS, Context Maintenance, Replication & Synchronization, Profiling

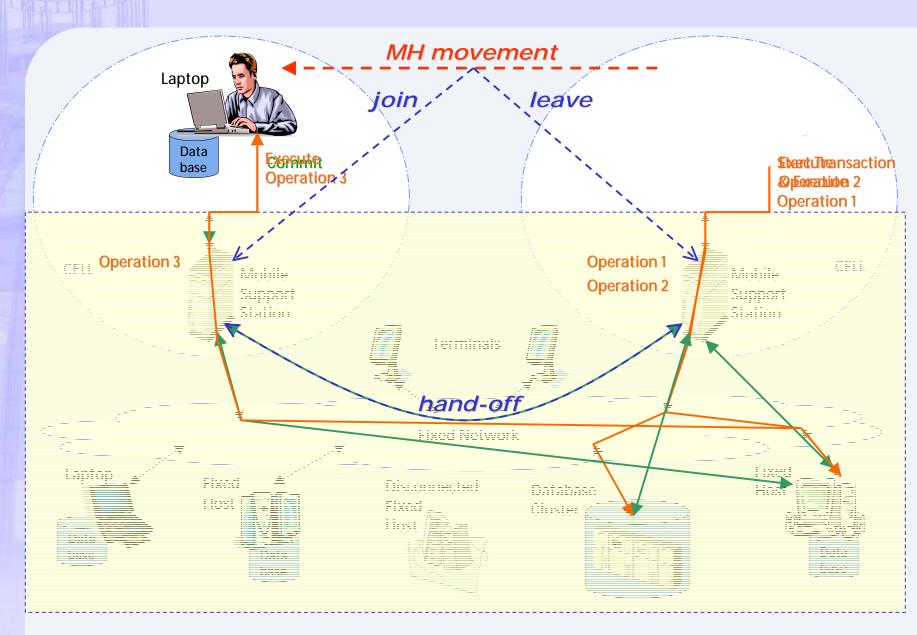

Transparency of Mobility

- <u>Challenge</u>: information access and processing everywhere and at anytime while supporting
 - transparent disconnections and
 - transparent movements of users and information components
- How much transparency is indeed needed and reasonable?


Characteristics of Transactions

- Logically related set of operations executed under certain guarantees, e.g.,
 - atomicity
 - consistency
 - isolation
 - durability
- Advanced transaction models rely on multi-tier transactions
 - increase parallelism by exploiting application semantics
 - parent-child relationships
- Mobile Transactions involve execution/initiation on MH
 - ACID cannot be supported generally
 - nevertheless: certain transactional guarantees shall be ensured always and everywhere

Transaction Tiers


Disconnection-resistant Transactions

Disconnections

- "<u>The flight worker</u>": Working in the "intended" disconnected mode requires some lazy replication techniques
 - updates are precommitted locally transparent to the user?
 - precommitted updates are propagated asynchronously when reconnected to the network
 - conflicts may occur
 - conflict resolution when a conflict arises
- Conflict detection via timestamps, version vectors, etc.
- Conflict handling
 - optimistic (resolution): function-based, manual
 - pessimistic (avoidance): primary copy, ROWA, quorum

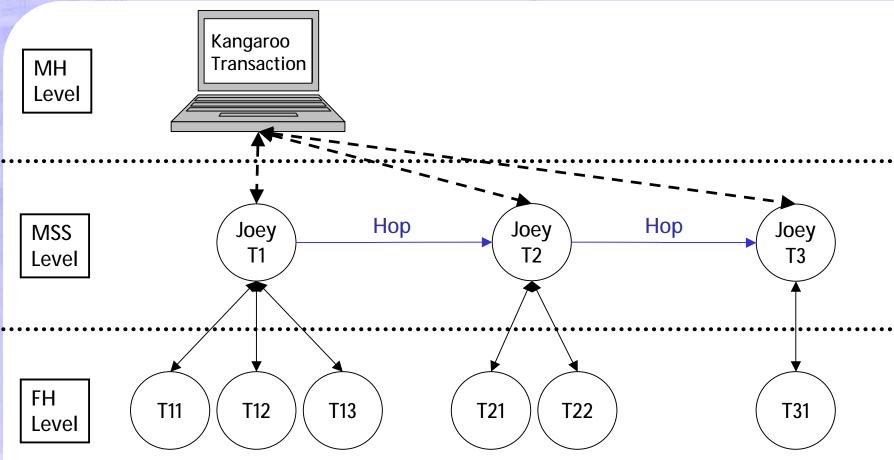
Movement-resistant Transactions

Movements

- "<u>The train/tram/bus worker</u>": Working while physically moving requires transparent support of cell migration and "unintended" disconnections
 - create subtransactions on several mobile support stations
 - coordinate these substranactions correctly
 - wireless communication and cost issues

transparent to the user?

- "<u>The home worker</u>": Resume and/or continue work at another host (mobile or fixed)
 - continue transactions
 - create new subtransactions (within the existing workspace / transaction sphere)


Issues of Mobile Transaction Models

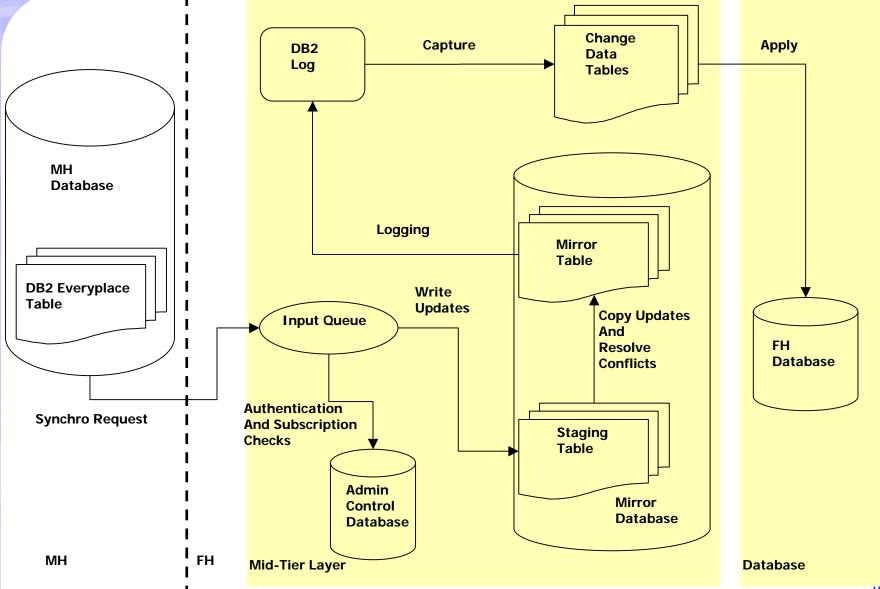
- MH may have transaction processing capabilities
 - MH may run transactions locally
 - MH may only initiate transactions on FH
- MH may change location and network connection while transactions are being executed
 - split computations
- MH may disconnect while transactions are being executed
 - long-lived processes
 - data replication

Characteristics of Advanced Transaction Models

- closed vs. open
 - child's results are visible to the parent only or to all?
- <u>vital</u> vs. non-vital
 - parent's commitment depends on the child's commitment?
- <u>dependent</u> vs. independent
 - child's commitment depends on the parent's commitment?
- substitutable vs. <u>non-substitutable</u>
 - does there exists an alternative transaction?
- compensatable vs. <u>non-compensatable</u>
 - are the results semantically undoable?

An Example of a Mobile Transaction Model: Kangaroo Transactions

- On disconnect: JTs and Ts can complete but no more Ts are created
- On reconnect: the T resumes
- Hand-offs: new JT runs on the new MSS (transaction split)


An Example of a Mobile Transaction Model: Kangaroo Transactions

- Builds on open nested and split transaction models
- Supports mobility and disconnections
- MH starts a Kangaroo Transaction (KT)
 - A *Joey* Transaction (JT) is started at the connected MSS
 - Trun on the FH (as open nested transaction)
 - If the MH changes location, the previous JT is split and a new JT runs on the new location MSS
 - JT1 can commit independently from JT2
- If JT1 fails:
 - Compensating mode: undoes the entire KT
 - Split mode:
 - Previously committed JTs are not compensated
 - No new JTs are initiated
 - Current child transactions are committed or aborted upon decision of the local DBMS

Overview of Mobile Transaction Models

Subtransaction Types & Mobility Support	Open	Closed	Non-vital	Independent	Substitutable	Compensatable	Temporal	MH Disconnection	MH Movement	MH Usage	User Profiling
Reporting-/Co-Txs Chrysanthis 93	\checkmark	\checkmark			✓	\checkmark			✓	Н	
Isolation-Only Txs Lu & Satyanarayanan 94		\checkmark						\checkmark		Н	
MDSTPM Txs Yeo & Zaslavsky 94	\checkmark	~	~		~	~		\checkmark		L	
Weak/Strict Txs Pitoura & Bhargava 94	\checkmark	\checkmark	~		\checkmark	\checkmark		\checkmark	\checkmark	Н	
Kangaroo Txs Dunham et al. 97	\checkmark					\checkmark		\checkmark	~	L	
Pro-Motion Walborn & Chrysanthis 97	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Η	\checkmark
Toggle Txs Dirckze & Gruenwald 98	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	L	
Moflex Txs Ku & Kim 00	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	L	

IBM DB2 Everyplace

Т

An Example of a Commercial Mobile Database Approach: IBM DB2 Everyplace

- DB2 Everyplace, relational database residing on the MH
- DB2 Everyplace Sync Server
- Master database on the FH
- Replication is asynchronous and on demand
 - entire tables, subsets of columns/rows, views, joins, unions
- Synchronization by publish and subscribe
 - *Refresh propagation*: all data are sent to subscribers
 - Incremental propagation: only changes are propagated to the subscribing MHs
- Conflicts are handled by checking the version of each record in each table in the replication subscription
- No savepoints, No transaction nesting

Overview of Commercial Mobile DB Approaches

Subtransaction Types & Mobility Support	Savepoints	Tx Nesting
IBM DB2 Everyplace		
Informix Cloudspace		
Microsoft SQL Server CE		\checkmark
Oracle Lite		
Sybase Anywhere		\checkmark

- only a few supports nested Txs (closed, vital, dependent)
- no compensating / alternative Tx
- "basic" data replication and synchronization techniques
- no transaction mobility (hand-offs)

HotSync

- MH stores data as records in PalmDBs
 - each PalmDB is associated with an application
 - each record has a set of status bits indicating whether the record has been created, modified, or deleted since last sync
- FH maintains it's own copies of the PalmDBs, including it's own versions of the status bits
 - also maintains a snapshot of each PalmDB taken immediately after most recent sync
 - runs HotSync Manager
- MH initiates synchronization (fast vs. slow sync)
- <u>Problem:</u> No support for synchronizing with multi-user concurrent data sources
 - no notion of "interest" in a subset of the records in a database
 - no notion of *transaction* at all

- Industry Consortium with most major players: Ericsson, Nokia, Motorola, Palm, Psion, IBM, ...
- Goal: enabling cross-format, cross-system synchronization
- Simple architecture
 - MH is intermittently connected und FH is continuously available
- Consists of a standard set of message types, each represented as an XML document
- Conflict resolution is dealt with abstractly
 - only standard status codes to implement typical policies are given

Two-way	MH and FH exchange only modified records, MH sends first
Slow-sync	MH sends all records
One-way, MH only	MH sends only modified records to FH
Refresh, MH only	MH sends entire DB to FH
One-way, FH only	FH sends only modified records to MH
Refresh, FH only	FH sends entire DB to MH
FH Alerted	FH initiates sync

- Mobile transactional coordination has to deal with
 - weak connectivity and frequent disconnections
 - asynchronous, dynamic replication with profiling
 - publish & subscribe for data recharging & propagation
 - large-scale replication
 - user interaction / feedback
 - long-running tasks and decentralized commitments
 - real-time constraints
- Commercial mobile database approaches mostly neglect the latter issues

Open Questions

- Where to implement the abstraction of disconnections and movements?
 - Do we really need extensions to transaction models?
 - Can we model mobility issues as additional steps of an overall transactional process?
 - Which part is only "network staff"?
- Design of mobile transactional applications
 - How to appropriately express mobility issues?
 - connection duration and costs
 - disconnection times
 - data and function interests
 - consistency requirements