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Outline
• The software world

– components, objects, languages

• Aspects in the software world
– the need for aspects

– what are aspects

– when to use them
– how to work with aspects

• implementation techniques
• available tools

• The impact of aspects
– throughout a components lifetime

– community-specific adaptations

– application-aware environments (or contexts)

• Related
– research areas and CS topics

SE, PL

Ubi
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The software world

• Component:
– unit of independent deployment
– has no persistent state
– subject to 3rd party composition

» [1]

• Object:
– unit of instantiation
– encapsulates state & behavior
– unique identity
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Decomposing components

• Component: typically constructed using one
language

• Main decomposition paradigm
– functional, object-oriented
– the tyranny of the dominant decomposition

» [2]

• In practice: a deployed component consists of
many objects

Deployment ∈
Component Lifecycle
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Preamble

What is the real world security-aspect of my life?
– lock the door of my flat in the morning
– unlock office, unlock terminal at work
– lock screen & lock office in the evening
– unlock the door of my place ..

1. Software world,
Component

2. Software aspect

3. Component
lifetime

Aspect ~ ad specere (lat.)

– to look at

– particular
appearance to eye
or mind

Aspect ~ ad specere (lat.)

– to look at

– particular
appearance to eye
or mind
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Aspects motivation
• tyranny of the main decomposition unit (OO)

• Some concerns cannot be expressed in a
modular  way
– Where is logging in org.apache.tomcat ?

• Not in one place

• Not even in a few

• Not in related places

• Not in one place

• Not even in a few

• Not in related places
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Cost of tangled code

• Redundancy
– same fragment in more places

• Difficult to reason about
– the big-picture of tangling is

not clear

• Difficult to change
– have to find all the code

involved
– the to be sure to change it

consistently
» [3]
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A O P = ..

• Aspects are well-modularized crosscutting
concerns

• Crosscutting concerns
– have a clear purpose
– define module boundaries, lines of data-flow,  set

of methods, points of resource utilization

• Weaving: add aspect functionality to existing
component
– hundreds of places changed at a time

Aspect + =
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 pointcut touche ( ctx ): ( ContextManager  | BaseInterceptor ) &
                    receptions( *  addContext (Context ctx ))

after trackCtxChanges : touche ( ctx )
{ Logger.log(“Context changed to” + ctx ); }

 pointcut touche ( ctx ): ( ContextManager  | BaseInterceptor ) &
                    receptions( *  addContext (Context ctx ))

after trackCtxChanges : touche ( ctx )
{ Logger.log(“Context changed to” + ctx ); }

Each time ContextManager  or BaseInterceptor  receives an
addContext call  

Everything which happens in the class ContextManager  

Action to take every time a point defined by the crosscut ‘ touche’
is reached 

AOP example
• Problem: track context changes

(tomcat example)

ContextManager

addContext

BaseInterceptor

addContext
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AOP taxonomy

• Joinpoints = all relevant points in the
execution of a program

• Pointcuts = a named set of join-points (S)
– S & S, S | S, (S), !S

• Aspect = pointcut + advice action
• Advice action = similar to component block
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Pointcut definitions
Some examples of primitive pointcuts:

– * addContext(Context) matches CtxMgr.addContext(Context)
– * *(Context) matches CtxMgr.setContext(Context)

too
– * *(..) matches all methods of all classes
– public *(..) matches all public methods
– CtxMgr matches everything which happens in

the class CtxMgr

Action specificators:
– (around(before(normal execution)after)around)finally
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AOP implementation
• Most implementations assert Java as component

language
• Source preprocessing

– semantically aware preprocessor (AspectJ [5], HyperJ[4])

• Object instrumentation
– change object-code at load-time
– e.g., exchange class-loader in the JVM (JOIE [6])

• Monitored runtime environment
– Prose

Bytecode transformation example for Java

Component
class files

Bytecode 
transformation

rules
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AOP usage
• AOP is used for:

– synchronization (e.g.,  COOL [7])
– logging, error handling
– distribution concerns (e.g., RIDL [7])
– contracts (pre- and post-conditions)

• ..and could be used for:
– context sensitiveness
– transactional processing
– join/setup/leave/teardown actions

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related



IS Semminary WS00/01

14

When to use AOP
-the lifecycle of a component-

Design and 
implementation

 release

Deployment 
environment

         delivery

Adapt.

Change   factorsDeployment
adaptations

    Late adaptations

Aspects are currently
used in this stage
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 AOP for late adaptations
• Late adaptations in response to environment

changes
• Environment changes:

– policy/organizational changes
• access control, security, privacy

– special case: information spaces, mobile computing
• recurring deployment-like adaptations

–  service/usage-specific
• principal initiating a service call
• time and context of a service call

– asynchronous environment changes
• location, level of service, usage of system resources
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Scenarios like .. (1)
I don’t

undestand

•

Community specific keys, encryption algorithms and rules

(K,f)

(K,f)

(K,f)
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Scenarios like.. (2)

Get part#2

Get sub-part#A,#B

Get SW Y

• Upload Mini-TM
functionality in
each node of the
community

• Glue (normal)
service calls with
TM coordination

• Control
resources

..an open-air fair-trade

Get SW X

•

..by inserting a coordination aspect into the
participant’s component
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Scenarios like.. (3)

• A robotic environment:
– remote controlled devices + sensors

• Consider JINI setup for Lego Mindstorms
» [8,9]

• Weave an aspect into all proxies  of all
services that logs
– what commands were  issued, at what point in

time, by  whom

• Applications:
–  replay  parts of the history
–  query the past (is this a  factoid aspect ?)
–  perform inverse operations
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A.O. Contexts

• Application-aware-context:
– base station (associated to the context) uploads

and weaves at runtime (dynamically) aspects into
all components joining the environment

– withdraw aspects at runtime

• Context awareness:

• Many of the current approaches :
– intelligence (adaptation capability) located in the

mobile system
– context is passive (e.g., provides location-info)

allows a mobile computing device to adapt to changing environment conditionsallows a mobile computing device to adapt to changing environment conditions
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Community-specific
adaptations

• Community-specific adaptations
–  a group of nodes decides decides to consistently

change its behavior (e.g., virtual community)

• AOP seems to be a good choice
– consistent changes
– do aspects have to be component-specific [11] ?

• What’s the competition doing?
– design patterns for consistent changes (factory) (-)
– replacement of implementation/libraries (--)
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Related work

• Enterprise Java Beans
– deployment adaptations

• Corba QOS
– system properties around functional calls [11]

• Meta-Object Protocols
– open language definitions (in practice: extremely

abstract and hard to understand)[10]

• Configurable/open operating systems
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Discussion

• Impact on application development?

• What adaptations are really orthogonal?
• How to deal with component-specific

adaptations

• Security problems for run-time extensions?
• To what extent is AOP relevant for a world in

which computer use tends to become
pervasive?

• What about adaptations of (dumb) devices?
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Who’s who

• Xerox Parc: AspectJ
– Kikzales, Lopes

• U. of Twente: composition filters (Sina)
– Aksit et al.

• IBM: HyperJ/multidimensional sep. of concerns
– Osherr, Tarr

• N.E.U: adaptive applications
– Lieberherr
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The end?
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AspectJ Case Study

Ad-Hoc Access Control on Printer
Services


