
IS Semminary WS00/01

1

The Impact of Aspect-Oriented
Programming on Future

Application Design

Andrei Popovici
Information and Communication Research Group

IS Seminar Jan. 17th, 2001

IS Semminary WS00/01

2

Outline
• The software world

– components, objects, languages

• Aspects in the software world
– the need for aspects

– what are aspects

– when to use them
– how to work with aspects

• implementation techniques
• available tools

• The impact of aspects
– throughout a components lifetime

– community-specific adaptations

– application-aware environments (or contexts)

• Related
– research areas and CS topics

SE, PL

Ubi

IS Semminary WS00/01

3

The software world

• Component:
– unit of independent deployment
– has no persistent state
– subject to 3rd party composition

» [1]

• Object:
– unit of instantiation
– encapsulates state & behavior
– unique identity

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

4

Decomposing components

• Component: typically constructed using one
language

• Main decomposition paradigm
– functional, object-oriented
– the tyranny of the dominant decomposition

» [2]

• In practice: a deployed component consists of
many objects

Deployment ∈
Component Lifecycle

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

5

Preamble

What is the real world security-aspect of my life?
– lock the door of my flat in the morning
– unlock office, unlock terminal at work
– lock screen & lock office in the evening
– unlock the door of my place ..

1. Software world,
Component

2. Software aspect

3. Component
lifetime

Aspect ~ ad specere (lat.)

– to look at

– particular
appearance to eye
or mind

Aspect ~ ad specere (lat.)

– to look at

– particular
appearance to eye
or mind

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

6

Aspects motivation
• tyranny of the main decomposition unit (OO)

• Some concerns cannot be expressed in a
modular way
– Where is logging in org.apache.tomcat ?

• Not in one place

• Not even in a few

• Not in related places

• Not in one place

• Not even in a few

• Not in related places

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

7

Cost of tangled code

• Redundancy
– same fragment in more places

• Difficult to reason about
– the big-picture of tangling is

not clear

• Difficult to change
– have to find all the code

involved
– the to be sure to change it

consistently
» [3]

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

8

A O P = ..

• Aspects are well-modularized crosscutting
concerns

• Crosscutting concerns
– have a clear purpose
– define module boundaries, lines of data-flow, set

of methods, points of resource utilization

• Weaving: add aspect functionality to existing
component
– hundreds of places changed at a time

Aspect + =

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

9

 pointcut touche (ctx): (ContextManager | BaseInterceptor) &
 receptions(* addContext (Context ctx))

after trackCtxChanges : touche (ctx)
{ Logger.log(“Context changed to” + ctx); }

 pointcut touche (ctx): (ContextManager | BaseInterceptor) &
 receptions(* addContext (Context ctx))

after trackCtxChanges : touche (ctx)
{ Logger.log(“Context changed to” + ctx); }

Each time ContextManager or BaseInterceptor receives an
addContext call

Everything which happens in the class ContextManager

Action to take every time a point defined by the crosscut ‘ touche’
is reached

AOP example
• Problem: track context changes

(tomcat example)

ContextManager

addContext

BaseInterceptor

addContext

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

10

AOP taxonomy

• Joinpoints = all relevant points in the
execution of a program

• Pointcuts = a named set of join-points (S)
– S & S, S | S, (S), !S

• Aspect = pointcut + advice action
• Advice action = similar to component block

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

11

Pointcut definitions
Some examples of primitive pointcuts:

– * addContext(Context) matches CtxMgr.addContext(Context)
– * *(Context) matches CtxMgr.setContext(Context)

too
– * *(..) matches all methods of all classes
– public *(..) matches all public methods
– CtxMgr matches everything which happens in

the class CtxMgr

Action specificators:
– (around(before(normal execution)after)around)finally

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

12

AOP implementation
• Most implementations assert Java as component

language
• Source preprocessing

– semantically aware preprocessor (AspectJ [5], HyperJ[4])

• Object instrumentation
– change object-code at load-time
– e.g., exchange class-loader in the JVM (JOIE [6])

• Monitored runtime environment
– Prose

Bytecode transformation example for Java

Component
class files

Bytecode
transformation

rules

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

13

AOP usage
• AOP is used for:

– synchronization (e.g., COOL [7])
– logging, error handling
– distribution concerns (e.g., RIDL [7])
– contracts (pre- and post-conditions)

• ..and could be used for:
– context sensitiveness
– transactional processing
– join/setup/leave/teardown actions

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

14

When to use AOP
-the lifecycle of a component-

Design and
implementation

 release

Deployment
environment

 delivery

Adapt.

Change factorsDeployment
adaptations

 Late adaptations

Aspects are currently
used in this stage

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

15

 AOP for late adaptations
• Late adaptations in response to environment

changes
• Environment changes:

– policy/organizational changes
• access control, security, privacy

– special case: information spaces, mobile computing
• recurring deployment-like adaptations

– service/usage-specific
• principal initiating a service call
• time and context of a service call

– asynchronous environment changes
• location, level of service, usage of system resources

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

16

Scenarios like .. (1)
I don’t

undestand

•

Community specific keys, encryption algorithms and rules

(K,f)

(K,f)

(K,f)

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

17

Scenarios like.. (2)

Get part#2

Get sub-part#A,#B

Get SW Y

• Upload Mini-TM
functionality in
each node of the
community

• Glue (normal)
service calls with
TM coordination

• Control
resources

..an open-air fair-trade

Get SW X

•

..by inserting a coordination aspect into the
participant’s component

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

18

Scenarios like.. (3)

• A robotic environment:
– remote controlled devices + sensors

• Consider JINI setup for Lego Mindstorms
» [8,9]

• Weave an aspect into all proxies of all
services that logs
– what commands were issued, at what point in

time, by whom

• Applications:
– replay parts of the history
– query the past (is this a factoid aspect ?)
– perform inverse operations

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

19

A.O. Contexts

• Application-aware-context:
– base station (associated to the context) uploads

and weaves at runtime (dynamically) aspects into
all components joining the environment

– withdraw aspects at runtime

• Context awareness:

• Many of the current approaches :
– intelligence (adaptation capability) located in the

mobile system
– context is passive (e.g., provides location-info)

allows a mobile computing device to adapt to changing environment conditionsallows a mobile computing device to adapt to changing environment conditions

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

20

Community-specific
adaptations

• Community-specific adaptations
– a group of nodes decides decides to consistently

change its behavior (e.g., virtual community)

• AOP seems to be a good choice
– consistent changes
– do aspects have to be component-specific [11] ?

• What’s the competition doing?
– design patterns for consistent changes (factory) (-)
– replacement of implementation/libraries (--)

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

21

Related work

• Enterprise Java Beans
– deployment adaptations

• Corba QOS
– system properties around functional calls [11]

• Meta-Object Protocols
– open language definitions (in practice: extremely

abstract and hard to understand)[10]

• Configurable/open operating systems

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

22

Discussion

• Impact on application development?

• What adaptations are really orthogonal?
• How to deal with component-specific

adaptations

• Security problems for run-time extensions?
• To what extent is AOP relevant for a world in

which computer use tends to become
pervasive?

• What about adaptations of (dumb) devices?

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

23

Who’s who

• Xerox Parc: AspectJ
– Kikzales, Lopes

• U. of Twente: composition filters (Sina)
– Aksit et al.

• IBM: HyperJ/multidimensional sep. of concerns
– Osherr, Tarr

• N.E.U: adaptive applications
– Lieberherr

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

24

References

• [1] Szypersky C: Component Software, Beyond Object-Oriented Programming, Addison-
Wesley, 1997,

• [2]P. Tarr, H Osherr, W. Harryson, S. Sutton: N Degrees of Separation: Multi-Dimensional
Separation of Concerns. Proceedings of the 21st International Conference on Software
Engineering, May 1999

• [3] http://aspectj.org/documentation/papersAndSlides/OOPSLA-2000-demo_files/frame.htm
• [4] http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm
• [5] http://www.aspectj.org
• [6] The Java Object Instrumentation Environment -- http://www.cs.duke.edu/ari/joie/
• [7] D:A language Framework for Distributed Programming Technical Report , Xerox Palo

Alto Research Center, Number SPL97-010, P9710047, February 1997.
• [8] http:www.legominstorms.de
• [9] Jan Newmarch: Jini and Mindstorms, www.canberra.edu.au/java/mindstorms
• [10] Gregor Kiksales: The Art of Meta-Object Programming
• [11] J. Zinky, D. Bakken, R.Schantz: Architectural Support for Quality of Service of CORBA

Objects. Theory and Practice of Object Systems, April 1997

Intro
Aspects
Applications
Related

Intro
Aspects
Applications
Related

IS Semminary WS00/01

25

The end?

IS Semminary WS00/01

26

AspectJ Case Study

Ad-Hoc Access Control on Printer
Services

