IS Semminary WS00/01

The Impact of Aspect-Oriented
Programming on Future
Application Design

Andrei Popovici
Information and Communication Research Group

IS Seminar Jan. 17th, 2001

Outline

The software world
— components, objects, languages

Aspects in the software world
— the need for aspects
— what are aspects
— when to use them

— how to work with aspects
* implementation techniques
» available tools

The impact of aspects

— throughout a components lifetime

— community-specific adaptations

— application-aware environments (or contexts)
Related

— research areas and CS topics

IS Semminary WS00/01

Ubi

Intro IS Semminary WS00/01
Aspects
Applications

The software world

« Component:
— unit of independent deployment

— has no persistent state
— subject to 3rd party composition
» [1]
* Object:
— unit of instantiation
— encapsulates state & behavior

— unique identity

Intro IS Semminary WS00/01
Aspects
Applications
Related

Decomposing components

« Component: typically constructed using one
language
e Main decomposition paradigm

— functional, object-oriented
— the tyranny of the dominant decomposition
» [2]
 In practice: a deployed component consists of

many objects \

Deployment [
Component Lifecycle

IS Semminary WS00/01

Intro
Aspects

-
Relaed Preamble
1. Software world,
Aspect ~ ad specere (lat.) Component
— tolook at
_ particular 2. Software aspect ‘\
appearance oeye 3. Component
ormind lifetime \ \
What is the real world security-aspect of my life?

— lock the door of my flat in the morning
— unlock office, unlock terminal at work
— lock screen & lock office in the evening
— unlock the door of my place ..

Intro IS Semminary WS00/01

Aspects
Applications

Aspects motivation

 tyranny of the main decomposition unit (OO)

e Some concerns cannot be expressed in a

modular way

— Where is logging in org.apache.tomcat ?

* Not in one place

i « Not in related places

 Not even in a few

Intro IS Semminary WS00/01
Aspects

Applications

Related

Cost of tangled code

« Redundancy g =
— same fragment in more places E =

= e

« Difficult to reason about = we—

— the big-picture of tangling is = =
not clear _ =

 Difficult to change

— have to find all the code E &=

involved = =

. =% = =

— the to be sure to change it = —— =

consistently
» [3]

Intro IS Semminary WS00/01

Aspects
Applications A O P _—
Related .-

* Aspects are well-modularized crosscutting
concerns

e Crosscutting concerns
— have a clear purpose
— define module boundaries, lines of data-flow, set
of methods, points of resource utilization
 Weaving: add aspect functionality to existing
component
— hundreds of places changed at a time

- + ‘

Intro

Aspects
Applications
Related

AOP example

* Problem: track context changes
(tomcat example)

Each time ContextManager or Baselnterceptor receives an
addContext call

IS Semminary WS00/01

ContextM anager

addContext

Basel nter ceptor

addContext

Everything which happens in the class ContextManager

Action to take every time a point defined by the crosscut touche’

is reached

Intro IS Semminary WS00/01

Aspects
Applications
Related

AOP taxonomy

« Joinpoints = all relevant points in the
execution of a program

Pointcuts = a named set of join-points (S)
~S&S,S|S,(9),!S

Aspect = pointcut + advice action

Advice action = similar to component block

10

Intro
Aspects
Applications
Related

IS Semminary WS00/01

Pointcut definitions

Some examples of primitive pointcuts:

* addContext(Context)
* *(Context)

* *()
public *(..)
CtxMgr

Action specificators:
— (around(before(normal execution)after)around)finally

matches CtxMgr.addContext(Context)

matches CtxMgr.setContext(Context)
too

matches all methods of all classes
matches all public methods

matches everything which happens in
the class CtxMgr

11

Intro IS Semminary WS00/01

Aspects
Applications
Related

AOP implementation

« Most implementations assert Java as component
language

e Source preprocessing
— semantically aware preprocessor (Aspectd [5], HyperJ[4])

e Object instrumentation
— change object-code at load-time
— e.g., exchange class-loader in the JVM (JOIE [6])

. Monitored runtime environment Bytecodetransformation example for Java

a

Bytecode
— Prose Compo_nentgk el B — tran)gformation
class files loader S
> rules
| bytecodes
- ¥

engine

execution
‘ 12
//

Intro IS Semminary WS00/01

Aspects
Applications
Related

AOP usage

 AOP is used for:
— synchronization (e.g., COOL [7])
— logging, error handling
— distribution concerns (e.g., RIDL [7])
— contracts (pre- and post-conditions)

e ..and could be used for:
— context sensitiveness

— transactional processing
— Join/setup/leave/teardown actions

13

IS Semminary WS00/01

Intro

e When to use AOP

Related

Aspectsare currently =tha |ifecycle of a component -

used in this stage
N .
> release .
; @ J
Design and delivery
implementation

N

Late adaptations
Deployment

I —

Deployment Change factors m@

adaptations

14

Intro IS Semminary WS00/01

Aspects
Applications
Related

AQOP for late adaptations

o Late adaptations in response to environment
changes

e Environment changes:

— policy/organizational changes
e access control, security, privacy

— special case: information spaces, mobile computing
» recurring deployment-like adaptations

— service/usage-specific
 principal initiating a service call
 time and context of a service call

— asynchronous environment changes
 location, level of service, usage of system resources 15

Intro IS Semminary WS00/01

Scenarios like .. (1)
undestand
I

Community specific keys, encryption algorithms and rules

16

Intro IS Semminary WS00/01
Aspects

Applications
Related

Scenarios like.. (2)

..an open-air fair-trade

e Upload Mini-TM
functionality in
each node of the
community

e Glue (normal)
service calls with
TM coordination

e Control
resources

..by inserting a coordination aspect into the
participant’s component

17

Intro IS Semminary WS00/01

Aspects

Applications ScenarlOS Ilke (3)

Related

e A robotic environment:
— remote controlled devices + sensors

e Consider JINI setup for Lego Mindstorms
» [8,9]

 Weave an aspect into all proxies of all

services that logs

— what commands were issued, at what point in

time, by whom

* Applications:

— replay parts of the history

— query the past (is this a factoid aspect ?)

— perform inverse operations

18

Intro IS Semminary WS00/01

Aspects

Applications A . O _ CO ntexts

Related

* Application-aware-context:

— base station (associated to the context) uploads
and weaves at runtime (dynamically) aspects into
all components joining the environment

— withdraw aspects at runtime
e Context awareness:

allows a mobile computing device to adapt to changing environment conditions

 Many of the current approaches.

— Intelligence (adaptation capability) located in the
mobile system
— context Is passive (e.g., provides location-info) .

Intro IS Semminary WS00/01

Aspects

e COmmMunity-specific
adaptations

o Community-specific adaptations
— agroup of nodes decides decides to consistently

change its behavior (e.g., virtual community)
 AOP seems to be a good choice
— consistent changes
— do aspects have to be component-specific [11] ?

 What's the competition doing?
— design patterns for consistent changes (factory) (-)

— replacement of implementation/libraries (--)

20

Intro IS Semminary WS00/01

Aspects
Applications
Related

Related work

* Enterprise Java Beans
— deployment adaptations

« Corba QOS
— system properties around functional calls [11]

 Meta-Object Protocols

— open language definitions (in practice: extremely
abstract and hard to understand)[10]

Configurable/open operating systems

21

Intro IS Semminary WS00/01

Aspects
Applications
Related

Discussion

e Impact on application development?
« What adaptations are really orthogonal?

 How to deal with component-specific
adaptations

e Security problems for run-time extensions?

 To what extent is AOP relevant for a world In
which computer use tends to become
pervasive?

 What about adaptations of (dumb) devices?

22

Intro
Aspects

IS Semminary WS00/01

Applications

Related

Who's who

Xerox Parc: AspectJ
— Kikzales, Lopes

U. of Twente: composition filters (Sina)
— Aksit et al.

IBM: HyperJd/multidimensional sep. of concerns
— Osherr, Tarr

N.E.U: adaptive applications
— Lieberherr

23

Intro IS Semminary WS00/01
Aspects
Applications
Related

References

* [1] Szypersky C: Component Software, Beyond Object-Oriented Programming, Addison-
Wesley, 1997,

* [2]P. Tarr, H Osherr, W. Harryson, S. Sutton: N Degrees of Separation: Multi-Dimensional
Separation of Concerns. Proceedings of the 21st International Conference on Software
Engineering, May 1999

* [3] http://aspectj.org/documentation/papersAndSlides/OOPSLA-2000-demo _files/frame.htm
e [4] http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm

* [5] http://www.aspectj.org

* [6] The Java Object Instrumentation Environment -- http://www.cs.duke.edu/ari/joie/

* [7] D:Alanguage Framework for Distributed Programming Technical Report , Xerox Palo
Alto Research Center, Number SPL97-010, P9710047, February 1997.

e [8] http:www.legominstorms.de
e [9] Jan Newmarch: Jini and Mindstorms, www.canberra.edu.au/java/mindstorms
* [10] Gregor Kiksales: The Art of Meta-Object Programming

* [11] J. Zinky, D. Bakken, R.Schantz: Architectural Support for Quality of Service of CORBA
Objects. Theory and Practice of Object Systems, April 1997

24

The end?

IS Semminary WS00/01

25

IS Semminary WS00/01

Aspectd Case Study

Ad-Hoc Access Control on Printer
Services

26

