
67

Chapter 9

The Chipcon Radio Module

9.1 Introduction

The BTnode features a Chipcon CC1000 radio module � the same radio that is used in the popular MICA
mote platform, allowing those two platforms to communicate over a common radio channel. In contrast to
the Bluetooth radio module (which was covered in one of the previous sections), the CC1000 is very simple:
you can either send a radio signal, or listen for incoming signals from other nodes. As there is no automatic
frequency hopping as in Bluetooth, we neither have discovery phases nor master-slave relationships. There
is no default packet format or standardized access interface (like HCI or L2CAP) � using simple commands
like �turn radio on� and �send this data�, we can pretty much send out anything we please. However, this
newfound freedom also comes at a price: Without the complex Bluetooth synchronization, we will need to
take care of limiting access to the shared broadcast medium (i.e., the radio channel) ourselves. Otherwise,
if two or more nodes in range of each other decide to send at the same time, their signals will interfere with
each other (this is called a �collission�) and none of the sent data can be received.1

Regulating access to a shared communication medium is done by a �medium access control� (MAC) layer.2

The MAC layer is responsible for deciding who gets access to the physical layer at any one time. It also
detects transmission errors and provides addressing capabilities, i.e., it veri�es whether a received packet
was actually intended for the receiving station. BTnut comes with one particular MAC-layer implementation
for its Chipcon radio, based on Berkeley's B-MAC protocol [7]. The B-MAC protocol o�ers a very energy
e�cient way of regulating medium access, which is especially suited for sensor networks, called clear channel
assignment (CCA). It also o�ers an equally low-power oriented approach to listening for incoming data,
called low power listening (LPL). Just as any other MAC protocol, B-MAC detects transmission errors for us,
handles acknowledgements, and provides an addressing scheme. Overall, however, B-MAC is a rather simple
protocol that minimizes protocol overhead while providing essential support for low-power communication.3

9.2 Accessing the CC1000

Three main modules (and a number of helper modules)4 implement control of the CC1000 radio on our
BTnode. The low-level access to the radio (i.e., the physical layer) resides in cc1000.c, the B-MAC protocol
(the data-link layer) is implemented in bmac.c, and the high-level routines for sending and receiving data
are in ccc.c. This modular setup allows the use of multiple MAC protocols, though so far only a single one
is available. Figure 9.1 gives an overview of the dependencies. Unless you want to program your own MAC-

1Note that they don't even have to be in range of each other, if a third, receiving node �sees� both of them. This is known
as the hidden terminal problem.

2In the ISO/OSI network reference model, the physical layer (layer one) would be our Chipcon radio, while the MAC would
be situated in layer two, the data link layer.

3Its authors explicitly encourage the implementation of more sophisticated MAC protocols on top of B-MAC [7].
4Speci�cally, the B-MAC protocol uses cca.c to implement the clear channel assignment, while crc.c provides CRC error

checking.



68 CHAPTER 9. THE CHIPCON RADIO MODULE

layer, you will only need to include both ccc.h and bmac.h. The next three sections will explain initialization
the radio, sending data, and receiving data.

bmac

crc

ccc

includes

Application

includes includes

btn-hardware

includes

. . .

cca

includes

cc1000

includes

ccc_init(mac_interface)

references

Figure 9.1: CC1000 Modules.

9.2.1 Initialization

Initializing the CC1000 radio is done in the ccc_init function, which takes as its single argument a
mac_interface structure, i.e., a reference to a MAC protocol to be used for communication. Consequently,
we will �rst need to initialize our MAC library, which will create a matching instance of such a mac_interface
structure for us. The relevant code thus looks like this:

#include <cc/bmac.h>

#include <cc/ccc.h>

#define NODE_ADDRESS 0x0001;

static void init_radio (void) {

int res;

/* initialize bmac */

res = bmac_init(NODE_ADDRESS);

if (res != 0) { /* bmac initialization failed - halt system */ }

bmac_enable_led(1);

/* bmac_interface defined in bmac.h */

res = ccc_init(&bmac_interface);

if (res != 0) { /* cc1000 initialization failed - halt system */ }

}

Notice that we need to supply a node address for B-MAC initialization. This address will be used by the
MAC layer to �lter out packets addressed to other nodes, i.e., we will only receive packets addressed either
directly to this node, or those sent to a broadcast address. More details about addresses can be found below.

The bmac_enable_led command activates LED feedback for sending and receiving, i.e., the BMAC layer
will light the green (outermost) LED when listening, the blue (innermost) LED when sending or receiving,
and the red LED in case of CRC errors.

Exercise 67 Write a program that activates the CC1000 as described above, including the BMAC LED acti-
vation, before going in an endless NutSleep. What do you observe? Add terminal access to your application
and integrate the Nut/OS command set (using nut_cmds_register_cmds). Check the output of the nut

threads command.



9.2. ACCESSING THE CC1000 69

9.2.2 Sending Data

Once we have initialized the radio, we can use the ccc_send command (part of ccc.h) to send out data.

#define MAX_PACKET_SIZE 8

#define PACKET_TYPE 0x01 /* application-specific, 0-255 */

pkt = new_ccc_packet(MAX_PACKET_SIZE);

void _cmd_send_ushort(char* arg) {

int val;

pkt->length = 4;

if (sscanf(arg,"%u",&val)==1) {

sprintf(pkt->data,"%u", val));

if (ccc_send(BROADCAST_ADDR, PACKET_TYPE, pkt)) {

/* send failed (<> 0 indicates error) */

}

}

}

ccc_send takes as input the intended receiver's address, the type of packet that should be sent, and the
packet itself. Packets not only contain payload, but also source and destination information, an explicit
size (length), as well as a packet type. We can use the new_ccc_packet function to obtain a pointer to an
empty packet struct, with memory allocated up to the given size (PACKET_SIZE in our example code above).
However, we still need to explicit specify the actual length of each packet that gets sent, by setting the
length attribute accordingly.

Exercise 68 Lookup the source code of the ccc_send in the BTnut sources. How is sending data imple-
mented? Why is ccc_send not doing the actual data transmission? Lookup the corresponding *_send

function in bmac.c and explain.

Explanation Addressing in B-MAC :
For each packet sent using ccc_send, a destination address must be given. The B-MAC implementation uses
a two-tiered 16-bit address structure, composed of 211 (i.e., 2048) clusters with 25 − 1 (i.e., 31) individual
addresses each. A reserved broadcast address, BROADCAST_ADDR (0xFFFF), can be used to address all nodes
in all clusters. Each cluster (except for cluster 2047) also has a multicast address, which is simply the
�highest� address in the cluster. Table 9.1 gives an overview.
In practice, the cluster address of a particular node does not matter much: As long as nodes are in range of
each other, nodes from any cluster can send and receive data from nodes from any other cluster. Clusters
are simply a means to form subgroups of nodes that can easily communicate among each other using a
cluster-speci�c broadcast (called a �cluster-multicast�). Special care must be taken with such multicast
addresses (i.e., addresses that are multiple of 32 minus one: 31, 63, 95, . . . ), as data sent to such an address
will be received by all other nodes in this particular cluster. When accidentially assigning such an address
to a node (e.g., using bmac_init(63)), all packets sent to it will also be delivered (by the B-MAC layer) to
all other nodes in this particular cluster (e.g., 32 through 62 in this case). Also note that cluster 2047 does
not have an individual multicast address, as 0xFFFF is actually used as a broadcast address for all nodes.
In order not to accidentially assign multicast addresses to nodes, use the following macro to compose an
address from separate node and cluster IDs:

#define address (node, cluster) (((cluster) << 5) | (node))

When using ccc_send, we will need to take care of properly packaging our data. In case of binary data,
this means making sure that multi-byte data (e.g., 16-bit shorts) are put in a well-de�ned order, otherwise



70 CHAPTER 9. THE CHIPCON RADIO MODULE

Address Node ID Cluster ID

0x0000 0 0
0x001E 30 0
0x001F ALL 0
0x0020 0 1
0x002E 30 1
0x002F ALL 1

. . . . . . . . .
0xFFC0 0 2046
0xFFDE 30 2046
0xFFDF ALL 2046
0xFFE0 0 2047
0xFFFE 30 2047
0xFFFF ALL ALL

Table 9.1: Cluster Addresses. The B-MAC layer divides the 16-bit address space into clusters with 31 nodes
each. One address per cluster is reserved for so-called cluster-multicast, while the highest address (0xFFFF)
broadcasts to all nodes in all clusters.

the receiver might accidentially reverse those bytes during decoding. This is because not all microprocessors
(nor compilers, for that matter) represent multi-byte values in the same order. Intel chips have traditionally
arranged multi-byte values in memory by beginning with the least signi�cant byte (LSB) �rst, i.e., the value
0x1234 stored at, say, memory address 0x3201, would have the value 34 at 0x3201 and value 12 at 0x3202.
This is called �little-endian� order. Consequently, beginning with the most signi�cant byte (MSB) �rst
would store value 12 at 0x3201 and value 34 at 0x3202. This is called �big-endian� order. This �endianness�
becomes crucial when exchanging multi-byte data (e.g., integers) between platforms, e.g., through binary
�les (an image) or over the network.5

Explanation Network Byte Order :
As long as the data we send is picked up by identical hardware running identical software built using the
same compiler, we can ignore byte order, as both sender and receiver will use the same representation.
However, for exchanging data between di�erent platforms, or between software from di�erent generations,
vendors, or compilers, agreeing on a common byte order is crucial. For network exchanges (e.g., over
Ethernet, but also wirelessly), the commonly agreed upon network byte order uses big-endianness. There
are standard C-functions, htons (host-to-network-short) and ntohs (network-to-host-short), to convert
between this network byte order (where the most signi�cant byte is put �rst) and the �host byte order�,
i.e., whatever the current host's and/or used compiler's order is.

void _cmd_send_ushort(char* arg) {

int val;

pkt->length = 2;

if (sscanf(arg,"%u",&val)==1) {

// put two-byte value (in network order) into packet

*((u_short*) &pkt->data[0]) = htons((u_short) val);

// /* alternatively, do this manually: */

// pkt->data[0] = val>>8; // high byte

// pkt->data[1] = val&0xFF; // low byte

if (ccc_send(BROADCAST_ADDR, PACKET_TYPE, pkt)) {

/* send failed (<> 0 indicates error) */

}

}

}

5Notice that the concept of endianness is less important with regards to the individual bits, as access to bits is usually not
given directly, but through well de�ned logical operators that work independant of the actual representation.



9.2. ACCESSING THE CC1000 71

The second argument to ccc_send is a packet types. Packet types allow us to simplify packet receiption, as
each di�erent type can trigger a di�erent reception function, so-called packet handlers. This is explained in
the following section.

9.2.3 Receiving Data � The ccc_rec Receiver Thread

As we have seen in exercise 67 above, calling ccc_init automatically activates a ccc_rec thread that will
repeatedly listen for incoming packets on the CC1000 radio. The ccc_rec thread is started with the relatively
high priority of 16, in order to prevent delaying packet reception. This thread listens on a speci�c event
handler for incoming data packets (as signaled by the B-MAC low power listening implementation), and in
turn calls type-speci�c packet handlers for each received packet.

Packet handlers are registered using the ccc_register_packet_handler function and must implement the
void pkt_handler(ccc_packet_t *pkt) interface. An example is shown below:

void pkt_handler(ccc_packet_t *pkt) {

u_short i;

if (sscanf(pkt->data,"%u",&i) == 1) {

printf ("Received Value: '%u'\n", i);

} else { /* error parsing stringified data packet */ }

}

#define PACKET_TYPE 0x01

int main (void) {

...

ccc_register_packet_handler(PACKET_TYPE, pkt_handler);

...

}

Explanation B-MAC Packet Handlers:
A packet handler is always assigned to a single packet type, and will thus only be called when the ccc_rec
thread not only received a properly addressed packet, but also one with a matching type. These types are
(currently) application speci�cy, i.e., you need to de�ne the necessary type IDs (from 0�255) yourself. For
example, an application might decide to de�ne several such types in order to di�erentiate between status
messages, sensory data, and routing information:

#define SENSOR_DATA 0x01

#define ECHO_REQUEST 0x04

#define ECHO_REPLY 0x05

#define ROUTING_TBL 0x09

Exercise 69 Write a small chat program, consisting of a terminal command �say�, which simply sends o�
its arguments via broadcast, and a corresponding packet handler that listens for such packets and writes their
source and contents to stdout in a chat-program fashion (e.g., �[45] says: Hello world�).

Optional Exercise 70 Extend the program from ex. 69 to take an address for the �say� command (e.g.,
�say 345 hello world�). Use �say all� or an additional �shout� command to initiate broadcasts.

Exercise 71 Write a program that periodically (e.g., every 2-4 seconds) sends out PING_TYPE packets to the
broadcast address. A speci�c packet-handler for these packets should print out a brief message everytime it
receives such a packet. Install your program on two BTnodes and observe them on two separate terminals.



72 CHAPTER 9. THE CHIPCON RADIO MODULE

Explanation The B-MAC Packet struct :
A Chipcon packet is de�ned as shown below. It not only contains the actual packet payload, but also
information about the packet's sender (pkt->src).

struct ccc_packet_t {

/** source of the packet */

u_short src;

/** destination of the packet */

u_short dst;

/** payload length */

u_short length;

/** packet type */

u_char type;

/** payload data */

u_char data[0];

}

Exercise 72 Change your program from ex. 71 so that PING_TYPE packets are only sent out after no packet
has been received for some time (use a timer). Upon reception of a PING_TYPE package, a PONG_TYPE package
should be sent out, and vice versa (make sure that the timer is reset after a packet has been received). Print
corresponding �ping� and �pong� messages upon sending each packet type. Watch the output of both nodes over
two separate terminals, occasionally reseting one node to see whether your program works in both directions.
Don't forget to reset the timer upon packet reception.

Attention: CC1000 reception6 using battery power is extremely unreliable in the current BTnut release
(1.8). This is a software problem and should hopefully be �xed in future releases. Until then, we recommend
using either USB power when trying to receive data of the CC1000, or explicitly disabling the sleep mode
using NutThreadSetSleepMode(SLEEP_MODE_NONE);.

9.3 Advanced Topics

Two interesting features of the CC1000 radio are that both its frequency and its power output can easily be
adjusted, allowing for example frequency-hopping schemes or minimal-power transmissions.

9.3.1 Power Control

Transmission power can be set using the cc1000_set_RF_power function, which can be found in cc1000.h.
It accepts a value from 0 to 255, with 0 being no power, 1 being the minimal power, and 255 representing
maximum transmission power.

#include <cc/cc1000.h>

void rfpower_cmd(char *arg)

{

u_short num;

u_char num2;

if (( sscanf(arg, "%u", &num) != 1 ) || num > 255 )

{

printf("usage: rfpower <0..255>\n");

cc1000_get_RF_power( &num2 );

printf( "Current RF power level is %u.\n", num2 );

return;

6Sending data, however, works �ne both under battery and USB power.



9.3. ADVANCED TOPICS 73

}

printf( "Setting RF power to %u...\n", num );

cc1000_set_RF_power( num );

}

Exercise 73 Write a program to measure the transmission distance for di�erent power levels, i.e., �nd out
how far away a signal sent with tranmission power 1, 2, or 3 can be still received, or how much power is
necessary to contact a node at, say, 5 meter distance, or in another room.

Optional Exercise 74 Change your program from ex. 72 so that PING_TYPE packets include as payload
the sender's current power level, initially set to its maximum of 255. Upon receiving such a packet, the
receiver should print this information to STDOUT and acknowledge it with a PONG_TYPE packet. Receiving a
PONG_TYPE packet should lower a sender's transmission power before sending out another PING_TYPE packet.
Take two nodes and measure various distances that certain power levels can achieve.

Optional Exercise 75 Extend your program from ex. 73 so that it will build a neighborhood table of the
closest n neighbors and their �power-level� distances.

Optional Exercise 76 Implement a multi-hop �ooding protocol on the BTnodes. You will need to set the
power level to a reasonably small number, e.g., 2-3. All packets will be sent to the broadcast address, and
contain a packet ID that allows nodes to detect packets they already sent (in order to avoide reduplicating
packets). Test your protocol by �ooding your network with a certain LED pattern, i.e., use a terminal to
initiate a certain LED pattern, which will be set on each receiving node (before sending the packet on to other
nodes).

9.3.2 Frequency Control

The CC1000 radio supports a wide variety of frequencies, primarily in the ISM-bands7 at 315, 433, 868, and
915 MHz. However, it can be also tuned to almost any frequency between 300 and 1000 Mhz [2].

During B-MAC initialization, the radio is set to 868.5 MHz. However, if desired, one can use the
cc1000_set_frequency function (in cc1000.h) to set it to pretty much any frequency within the 915 and
868 MHz bands.8 Note that the cc1000_set_frequency function takes the desired frequency in Hz (to avoid
fractional values) and returns the actual frequency that has been set (as not all frequencies can be achieved
on the CC1000):

#include <cc/bmac.h>

#include <cc/ccc.h>

#include <cc/cc1000_defs.h>

#include <cc/cc1000.h>

#define address (node, cluster) (((cluster) << 5) | (node))

#define NODE_ADDRESS address (27, 34); /* node #27, cluster #34 */

static void init_radio (uint32_t desiredFrq) {

uint32_t actualFrq;

/* This does *not* yet work with B-MAC in BTnut 1.8!! */

bmac_init(NODE_ADDRESS); /* inits radio to 868.5 MHz */

actualFrq = cc1000_set_frequency(desiredFrq); /* reset radio frequency */

printf ("[init_radio] set cc1000 to %lu Hz\n", actualFrq);

ccc_init(&bmac_interface);

}

7ISM stands for �Industrial, Scienti�c, Medial� and denotes frequency spectrums that can be used without acquiring a license
�rst.

8This does not yet work together with the B-MAC protocol in the current BTnut release (1.8).



74 CHAPTER 9. THE CHIPCON RADIO MODULE

This is still considered experimental, compatibility with bmac.h will hopefully soon be established � you
might want to try using the latest version from CVS to see if it has already been �xed. If it is, you could
try the following exercises (these will most likely not work with release 1.8!):

Exercise 77 Manually set the frequency of one of your nodes to 868.5 Mhz, the B-MAC default frequency.
Observe the actual frequency that the CC1000 gets tuned to (as returned by cc1000_set_frequency) and
compare. Can you still receive packets sent from this node on a node that is not manually tuned? Explain
why this works or does not work.

Optional Exercise 78 Extend your program from ex. 72 so that each packet also contains the frequency
on which the next packet should be sent (use cc1000_set_frequency together with a small set of prede�ned
frequencies that both programs share). Take packet-loss into account, i.e., make sure that a lost packet will
not put the two nodes permanently out of synch.

9.3.3 Measuring Signal Strength

The CC1000 additionally o�ers access to RSSI (Receive Signal Strength Indication) information. However,
as this data is available only in analog form, we will need to use on of the available ADCs (digital/analog
converter) on the Atmega128 in order to obtain a digital readout. Access and usage of the ADCs is covered
in the sensor chapter of this tutorial (see chapter 10). The many layers between our main program and
the BTnut CC1000 modules further complicate matters: by the time one of our packet handlers gets called,
packet reception has already �nished, so reading out RSSI data at this point will most likely only measure
the channel's background noise.9 Even if noise levels are all you want, measuring RSSI in your own program
will most certainly interfere with B-MAC's CCA routines, requiring careful coordination of ADC registers
in order not to mix up di�erent RSSI readings.

Optional Exercise 79 Where would we need to measure RSSI in order to obtain the signal strength with
which a particular packet was received? Look trough the three modules ccc.c, bmac.c, and cc1000.c and
speculate on the best place to add RSSI measurements to a data packet's struct.

9B-MAC's clear channel assignment (CCA) feature actually requires measuring the current noise level on the channel, which
is implemented by averaging a number of RSSI measurement. See the corresponding BTnut source code in btnut/cc/cca.c.


