57

Chapter 8

Sensors

While the BTnode has been designed for conducting research in Wireless Sensor Networks (WSNs), it does
not carry any onboard sensors. This is in contrast to other WSN-platforms, such as the TmoteSky, which
(optionally) comes with three onboard sensors (temperature, light, and humidity). The reason for not
including a fixed set of sensors lies in its added flexibility: depending on the particular application, BTnodes
can be equipped with seperate “sensor-boards” that contain only the required set of sensors and which can
be directly connected to one of the external connector sockets on the BTnode.

Working with sensors on the BTnode thus requires us to choose either a pre-made sensor board, or to
connect our own set of sensors directly to one of the BTnode’s connectors. In this tutorial, we will use the
BTsense sensor board, developed as part of the 2006 Wireless Sensor Network lecture at the ETH Zurich’s
Inst. of Pervasive Computing. It has been specifically designed to contain both analog (light) and digital
(temperature and motion) sensors, as well as an actuator (buzzer). It is connected through the BTnode’s
“Debug Connector” (called J2) on the side, and is designed to be attached (e.g., with some plaster material)
to the side of the BTnode. Figure B3] shows the top of the board. In particular, the BTsense board features
the following sensor and actuators (rev 1.1):

1. Microchip TC74 digital (12C) temperature sensor [5]

2. Taos TSL252R analog light sensor [8]

3. Napion AMN1 digital (binary) motion sensor (passive IR) [9]
4. muRata 7TBB-12-9 piezoelectric buzzer [6]

(backside) .

Figure 8.1: The BTsense revl.1 sensor board.

Another popular alternative for connecting sensors to the BTnode is the set of boards developed at Teco in
Karlsruhe. These boards have an extension connector that fits directly into the USB programming board.



58 CHAPTER 8. SENSORS

They come in several sizes (the largest, spart, being sold out by now) and differ in the number of sensors
they offer. The spart board additionally featured a separate microcontroller that would relieve the BTnode
Atmega of any sensor related management tasks, though making its usage somewhat more difficult. The
currently available ssmall boards are available in a “medium” and “large” size and feature:

e Microchip TC74 digital (I>C) temperature sensor

Taos TSL2500 analog light sensor

MAX8261 OP capacitive microphone

ADXL210 2-axis acceleration sensor

Second ADXL210 for combined 3-axis acceleration sensor (only on “full” version of the board)

solder plates for optional pressure sensor, humidity sensor, second temp. sensor, speaker, etc.

e Two LEDs

In order to be able to gather sensor data on our BTnode, we first need to understand how its processor, the
ATmegal28L, receives and processes external data, and then how we can use BTnut to use this information
in our program.

8.1 ATmegal28L I/O-Ports and Registers

The ATmegal28L microprocessor features 53 programmable I/0 lines. It is through these lines that all
communication to and from the processor takes place. While all 53 lines can be used in a totally generic
fashion (i.e., they can both be used to output a bit, as well as reading input bits), all of them also have
at least one so-called “alternate function”, i.e., they are connected to a specific on-chip feature such as the
analog-digital converter, the UART, a hardware timer, or an external interrupt signal. It is up to the
programmer — either from within the OS, or as part of the application — to properly choose how a particular
I/0 line should be used: as a generic output line, as part of an ADC conversion, to monitor an input line
and throw an interrupt whenever it changes, to control a set of digital sensors via a sensor-bus such as the
I2C-interface, etc.

Figure shows all 64 pins of the ATmegal28L. PA though PG are the seven available I/O ports, with
ports A through F having 8 pins each, while port G has only five pins. Each port is represented through
three registers each, which together provide — for each pin of each port — access to its I/O functionality:
the Data Direcion Register (DDRx) (where z stands for A through G) defines whether a particular pin on a
port will be used for input or output, while the Data Register (PORTx) and Port Input Pin (PINx) register
(among other features) provide access to output and input values of each pin, respectively. Page 84 of the
ATmegal28L manual [I] gives an overview of all I/O port registers.

Additionally, more than one hundered registers can be used to enable or disable a certain “alternate function”
of each pin. For example, the ADCSRA register controls the analog-digital converting unit — like turning it on
and off, and starting a conversion — while the ADMUX register controls which of the potential input pins (pins
0 through 7 of port F) are to be used during the conversion.

Each of these registers (see the ATmegal28L manual [I] on page 364 for a complete list) is provided to the
programmer as a so-called hardware register. While programmers typically understand the term “register”
to be a processor register — a small amount of very fast on-chip memory that is used to hold intermediate
values during a computation in a very efficient manner — hardware registers are much more common in
embedded systems programming. They often look and feel like being just another memory value, yet they
physically control access to various devices. The avr-libc defines mnemonic identical to the ones used in
the ATmegal28L manual as shorthands, in order to allow statements of the form “enable ADEN in the ADCSRA
register” instead of “set bit 7 of register 0x0026 to 1”.

T Actually: these are precompiler definitions, which can be found in avr/io.h.



8.2. SENSOR TYPES 59

Th0 =
O=200
P~ =
O =N M g W O I~ . =
D00QO00QO ST a
[alalNalalalalyaiyal aon
Q  unETTTE g LTS
=] = =
Setderoprieerz8exy
<« 0<<o0oooooaon C>Sana
NOO00O0N0O00000000000Mn0
__ 333858 8BIZFS32
PENC1 o 48 [ PA3 (AD3)
RXDO/(PDI) PEO [] 2 47 [ PA4 (AD4)
(TXDO/PDO) PE1 [ 3 46 [ PAS (AD5)
(XCKO/AINO) PE2 [] 4 45 [ PA6 (AD6)
(OC3A/AIN1) PE3 [] 5 44 [ PA7 (AD7)
(OC3B/INT4) PE4 (|6 43 [] PG2(ALE)
(OC3C/INTS) PE5 []7 42 [ PC7 (A15)
(T3/INT6) PES (] 8 411 PC6 (A14)
(ICP3/INT7) PE7 [ 9 40 [1 PC5 (A13)
(SSyPBo []10 39 [1 PC4 (A12)
(SCK) PB1 [] 11 38 [1 PC3 (A11)
(Mosl)PB2 [ 12 37 [0 PC2 (A10)
(MISO) PB3 [ 13 36 [1 PC1 (A9)
(OC0) PB4 [ 14 35 [ PCO (A8)
(OC1A)PB5 ] 15 34 [1 PG1(RD)
OCIB)PBELI 16 ) 0 0 v ot oo o 16 © e @ o o w o3 PGOWR)
A NN AN AN AN AN N NN OO
o000 UoUoooooooogo
533Eg23785882885
m&&mggg‘iuma&mmmm
o8 glE Eksrascerw
- EEEEQLXERE
&y 0 A 2222060 ——
o 00 S SES X
gFF A ==
oo
8 2@ XK

Figure 8.2: Ports of the ATmegal28L [1.

Exercise 80 Use the ATmegal28L user manual [I to find out which pins have the alternate function of
serving as the data (SDA) and clock (SCL) line of the so-called “two-wire interface” (TWI). Find out what
bit needs to be set in which hardware register in order to enable TWI support in the ATmegal28L.

Exercise 81 Locate the schematic for the BTsense sensorboard on the BTnode Web site at jwww. btnode.
ethz. ch| (search under Hardware Reference) and find out to what ports and pins each of the three sensors
— the light, temperature, and motion sensor — are connected.

When using any kind of sensor platform with a BTnode, we thus first need to know how an individual
sensor is connected to our microprocessor. Analog sensors will most certainly be connected (or have to be
connected) to one of the ADC input pins, while digital ones either use TWI or are connected to a generic
input pin. Knowing how and where a sensor is connected, we then need to understand the sensor’s output,
i.e. what information is delivered from the sensor to the input pin. This can be found in each sensor’s
datasheet. Last not least, we must then properly query these sensor values in our program: either by simply
polling a sensor value repeatedly; using a timer to do this repeated polling for us; or by setting an interrupt
to occur whenever a sensor value changes.

The following sections will describe each sensor type in turn, before outlining two possible ways of querying
sensor values: polling and interrupts.

8.2 Sensor Types

BTnodes support three types of sensors: digital bus (I?C) sensors, digital logic-level sensors, and analog
sensors. Each type needs to be connected to different pins, each type needs a different way to read out a
value. The sections below describe in detail how a generic sensor would need to be read out. However,
for certain sensor platforms such as the BTsense sensor board, higher-level support is available in form
of dedicated functions, alleviating the need for direct manipulations of the individual ATmegal28L ports.
Nevertheless, knowing the general principle of sensor read out should certainly foster overall understanding.


www.btnode.ethz.ch
www.btnode.ethz.ch

60 CHAPTER 8. SENSORS

8.2.1 Digital I?C-Bus Sensors

The IQC—busE] was originally developed by Philips Semiconductors in the 1980s to simplify communication
among various chips within TV-sets. It is a simple Master-Slave-bus, with a 7-bit address space that supports
up to 112 slave devices (16 addresses of the possible 128 are reserved)ﬂ The biggest advantage of the 12C-
protocol is its abilitiy to allow a single microcontroler the control of more than hundred devices with only
two I/O-pins. The ATmegal28L used in the BTnode supports the I?C-protocol in hardware, which greatly
simplifies control of I?C-compatible devices. However, as I2C is a registered trademark of Philips, Atmel
calls this TWI (“two wire interface”).

The two wires of the I?C-bus are called SDA (data) and SCL (clock). Communication is always initiated by
the master and is only between the master and a single slave. The clock is controlled by the master (this is
handled by the ATmegal28L for us) — it tells the slave when it should read a value from SDA (i.e., when
SCL is high)E] This allows the use of the I?C-protocol also without fixed hardware or real-time clocks.

In order to poll an I?C-sensor in BTnut, we need to know its address on the I?C-bus. Addresses are defined
in the corresponding header file (hopefully conflict-free) — in btsense/btsense.h for the BTsense board,
and under extras/teco_ssmall for the TeCo-ssmall board (both of which use the I2?C-compatible TC74
temperature sensor [3]).

Also, we need to know the corresponding I?C-command that needs to be issued through the TwMasterTransact-
function. This information can be found in the sensor’s datasheet — for the TC74, the datasheet lists 0x00
as the command code for reading a temperature value.

Explanation TWI-Communication in BTnut :

NutOS comes with a simple two wire interface (TWT) library that works also on our ATmegal28L. The most
important commands are TwInit to initialize the interface, and TwuMasterTransact to send commands to,
and receive data from, the individual sensors.

TwInit takes a sole argument a 7-bit slave address, in order to allow (in theory) our master to also act as
a slave to other masters on the bus. However, as the current implementation does not support slave mode
for the ATmegal28L, the parameter can safely be ignored (set it to 0, for example).

TwMasterTransact takes as a first argument the (slave) device address, followed by two variables each for
sending and receiving data: (the address of) the variable where the command can be found, followed by its
length, and the (address of the) variable where the received data should be put, followed by the maximum
number of bytes to receieve. A final argument indicates a timeout value, which is currently not supported
(will be ignored). It returns the number of bytes received, or -1 in case of error.

#include <dev/twif.h>
void main(void) {
// set TWI pins (Port D Pins 0 and 1) as Input w/ Pull-Up

cbi(DDRD, DDDO); cbi(DDRD, DDD1); sbi(PORTD, PDO); sbi(PORTD, PD1);
TwInit(0); // parameter currently ignored

u_char tw_cmd = 0x00; // "read temperature"-command
u_char t; // holds return value (temperature)

if (TwMasterTransact(BTSENSE_I2C_TC74, &tw_cmd, 1, &t, 1, 0) == -1) {
printf ("Error while reading sensor: %i\n", TwMasterError()); }

212C is pronounced “i-square-c”, sometimes also “i-two-c”.

3The address space can optionally be extended to 10 bit and 1008 devices (1024-16), though this is not supported on the
BTnode.

4During a high SCL level, SDA levels must be stable. Level changes on SDA during a high SCL indicate special START
and STOP commands that a master uses to initiate or end a command.



8.2. SENSOR TYPES 61

The TwInit function simply initializes the software stack — it does not configure the corresponding AT-
megal28L ports for us. We therefor need to make sure that both of our TWI ports (i.e., pins 0 and 1 of Port
D) are both configured for input (using the DDRD register) and have pull-ups enabled (using the PORTD) [

Explanation Pull-ups:

Pull-ups are resistors in an electronic circuit that ensure that, given no other input, a circuit assumes a
default value. The I?C-protocol requires that when IDLE (i.e., when no devices use it), the bus remains in
a logic HIGH state. This is achieved by inserting so-called pull-up resistors into the circuitry, which have
the effect that as soon as at least one device puts a LOW value onto the bus, the whole circuit will be
pulled to a logic LOW state. This allows other devices to detect communication on the bus.

Each of the 53 I/O-pins of the ATmegal28L can have pull-ups enabled or disabled, using the PORTx register.

Also notice that the TwMasterTransact function references both the command variable and the result
variable, i.e., it is not just for sending a command to a TWI-compliant device, but also for receiving its
result.

Exercise 82 Locate the TC74 datasheet off the BTsense documentation page on the BTnode Web site and
find all supported I2C-commands (with their corresponding command codes).

8.2.2 Digital Logic-Level Sensors

Another type of digital sensor is that of the logic-level sensor. While also digital, it simply responds in
a binary fashion: logical 1 and 0 (VCC and Ground) represent “on” or “off”, “detected” or “not detected”,
“critical” or “not critical”. Such sensors do not need (and do not support) special communication protocols
such as I2C. Instead, we can directly connect them to one of the available I/O pins of the ATmegal28L,
configure the corresponding port-pin as “input” (using the DDRx register, cf. section and read its value
from the PINx register.

Explanation Reading logic-level data in BTnut :

Knowing to which pin a particular binary input is connected, we can easily define this pin as an input pin
and read out its value. BTnut offers the setbit and clearbit functions — sbi and cbi — that set and clear
individual bits of a selected register, respectively.

BTnut contains macros for all ATmegal28L ports and pins, allowing for a convenient way of setting or
clearing individual bits in a register. These macros are identical to the identifiers given in the ATmegal28L
reference manual [1I] — see page 364 for an overview of all registers and pins.

// define pin 5 of port B as an input pin in port B’s DDR register
cbi (DDRB, DDB5); // ’0’ means input pin

// read out all 8 pins of port B
u_char current_value_port_b = PORTB;
if (PORTB & (1<<PB5)) {

// pin 5 is set

}

In many situations, it is important not simply to know a logic-level sensor’s current value, but instead to
know when it changes. The ATmegal28L offers various interrupts that can be configured to observe an input
pin for change, and trigger a program interruption whenever the output of such a logic-level sensor changes.
More about such interrupts can be found in section below.

Exercise 83 Write a program that continously reads out (and prints) the value from the BTsense (logic-level)
motion sensor. If you do not know to which port it is connected, see ez. above.

5See page 65 of the ATmegal28L user manual [I] for an overview of I/O-Port configuration.



62 CHAPTER 8. SENSORS

8.2.3 Analog Sensors

Analog sensors do not simply deliver an “off” /“on” value, but output a different voltage level for each possible
sensor reading. In order to use this information in a program, this voltage level needs to be sampled into a
binary value, typically between 0-255 (i.e., 8 bit resolution), though up to 10 bits resolution are supported
on the ATmegal28L.

Digitizing analog data on the ATmegal28L is generally simple: its built-in Analog-Digital Converter (ADC)
supports up to 8 different analog input channels (two of which optionally amplify the signal 10 or even 200
times), noise cancellation, and either single or continuous conversion modes. One only needs to properly
setup the various needed parameters, trigger a conversion, and subsequently read out the resulting digital
values. Each of these steps can be controlled through one or more ATmegal28L registers.

Explanation Using the ATmega128L ADC:

ADC setup is performed through the ADC Control and Status Register (ADCSRA), where for example the
ADC can be enabled and disabled (bit 7, ADEN), and single conversions can be triggered (bit 6, ADSC). The
ADC Multiplexer Selection Register (ADMUX) allows the selection of input pins, as well as voltage reference
and input gain setup. Note that before configuring the ADC, it should be turned off (i.e., the ADEN bit in
ADCSRA should be cleared).

After starting a single conversion, the result is written to two registers, ADCL and ADCH. In order to know
when the conversion is finished and these values can be read, one can simply check the value of the ADSC bit,
in the ADCSRA register: as soon as it is cleared, the result of the single conversion can be read. Alternatively,
one can setup an ISR for the ADC interrupt (sig_ADC, see table below) or wait for its corresponding
flag (ADIF in the ADCSRA register) to be set. The default setup will put the LSB into ADCL and bits 8 and
9 into ADCH.

cbi(ADCSRA, ADEN); // disable ADC

ADCSRA = 0; // stop ADC & conv., no free-runn, no irq, def. prescaler
ADMUX = 0; // AREF, ADLAR cleared, ADCO input
sbi(ADCSRA, ADEN); // enable ADC

sbi(ADCSRA, ADSC); // start single conversion
// wait until conversion is finished

while (bit_is_set(ADCSRA, ADSC));

// find result in ADCL and ADCH
NutEnterCritical();

result = ADCL | (ADCH << 8);
NutExitCritical();

Note that its is important that reading out the final value is not temporarily suspended by a system interrupt
(see more on interrupts in section below), otherwise we might get a skewed result.

Exercise 84 Use the above skeleton-code to write a program reading out the BTsense board’s light sensor (if
you do not know to which port it is connected, see ex. above).

In BTnut, the above ADC functions are encapsulated in the dev/adc.h library. All of the above mentioned
functions — disabling, enabling, and configuring the ADC, as well as reading out converted values — can be
achieved with a set of dedicated functions and corresponding constants, thus increasing code legibility and
portability. However, in its current version (v1.7 of Jan 25, 2006), the adc.c-library is unable to cope with
concurrent use, making it practically unusable. This is because other threads might concurrently use the
ADC for other purposes (e.g., to measure current battery voltage), thus reconfiguring the ADC repeatedly. In
order to get reliable measurements, it is imperative to assert that the current ADC configuration still matches
the desired one, and correct it if otherwise. Until adc.c is updated, the wsnlab/wsnlab.h library offers the
adc2_init and adc2_read functions, which are much more robust than their dev/adc.h counterparts and
also support configuration validation.



8.3. READING SENSOR DATA 63

Explanation Using the ADC in BTnut:

As part of the ETH Zurich’s 2006 Wireless Sensor Networks Lecture at the Dept. of Computer Science,
a more convenient set of ADC access functions has been developed that has yet to be folded back into
the main BTnut code trunk. The functions adc2_init and adc2_read are (for now) defined in a separate
WSNLab library wsnlab/wslnab.h. In contrast to the regular dev/adc.h library, these functions support
ADC context switches, i.e., the concurrent use of the ADC by other threads.

#include <wsnlab/wsnlab.h>

static u_short my_adc_handle; // saves ADC context
int main (void) {

my_adc_handle = adc2_init( ADC2_MODE_SINGLE_CONVERSION,
ADC2_PRESCALE_DIV2,
ADC2_CHANNELO,
ADC2_REF_AREF );

for (53) {
val = adc2_read(my_adc_handle); // read from prev. saved context
printf ("%d\n",val);
NutSleep (1000) ;
}
}

Optional Exercise 85 Reimplement ex. using the wsnlab.h library referenced above. How does the
library support ADC-context switches? Find the sourcecode of wsnlab.c and find out.

8.3 Reading Sensor Data

Depending on the type of sensor that we want to read out, different reading strategies might be appropriate.

8.3.1 Polling

Polling is the simplest yet least efficient way of reading sensor values. The simplest way would be to wrap the
reading in a loop, potentially in a separate thread in order to allow the main program to continue executing
other tasks. However, this approach ties up a lot of processing power and uses up precious energy when
running under battery power. In most cases, one would want to at least include a NutSleep statement within
the loop, to ensure that sensor readings only happen seconds or minutes apart (not milliseconds), e.g., for
recording light or temperature values across several hours.

Instead of looping and repeatedly calling NutSleep, we can also let BTnut do the work for us, by using the
NutTimerStart function described in section above. By utilizing BTnut timers, repeated requests for
sensor data can be scheduled over the course of hours, days, or even weeks. Given the 32-bit resolution of
the NutTimerStart function, both one-shot and periodic timers of up to 49 days can be installed.

8.3.2 Interrupts

BTnut timers are a less resource intensive way of “manually” polling (e.g., in a loop) a sensor value. They
are well suited for periodic measurement tasks, e.g., for documenting the temperature every 10 minutes over
the course of a day. Sometimes, however, it is necessary to quickly react to a change in the measured data.
Instead of increasing the polling frequency (and thus tying up CPU cycles), we can use an interrupt to get
automatically notified of changing values.

The ATmegal28L offers eight external interrupt request lines (i.e., pins that can automatically trigger the
execution of a particular code snippet) and several internal interrupts (i.e., for monitoring internal processes,



64 CHAPTER 8. SENSORS

Mode Description

NUT IRQMODE LOWLEVEL Signal as long as level is low
NUT_TRQMODE FALLINGEDGE | Signal when level changes to low
NUT IRQMODE RISINGEDGE Signal when level changes to high
NUT_ TRQMODE EDGE Signal whenever level changes

Table 8.1: BTnut external interrupt modes

such as the above-mentioned counter overflows). Table lists selected signals in BTnut— for a complete list
of interrupts, see section Interrupt Vectors in the ATmegal28L manual [I]. When interrupts are enabled, the
processor will automatically interrupt the normal program flow and execute a previously registered interrupt
service routine (ISR). As ATmegal28L interrupts always have a higher priority than regular program code,
they will be executed almost immediately when their interrupt condition holds true, allowing for almost
real-time handling of events.

Explanation Using interrupts in BTnut :

In order to activate a particular interrupt in BTnut, we simply need to register an interrupt handler, a
so-called interrupt service routine, with the corresponding interrupt signal. The NutRegisterIrqHandler
function takes a signal, an ISR, and an optional argument to be passed to the ISR. Before assigning a new
ISR, the interrupt in question should be turned off (using NutIrgDisable); afterwards it should of course
be turned on (usign NutIrqEnable).

For external interrupts, which allow monitoring the logical level of up to eight input pins (INTO through
INT7), we need to additionally clear its DDRx port bit (to define the pin as an input pin), and define for
what kind of levels or level changes we want an interrupt. This is done with the NutlrgSetMode function,
which takes an external interrupt signal and a trigger mode as input (again, this should be set before the
input is enabled). Table summarizes the various ways the pin level can be monitored.

#include <dev/irqreg.h>

void my_interrupt6_handler (void* arg) {
static u_char my_variable = 0; // static variables for persistance

}

NutIrqusable( &sig_INTERRUPT6 )

cbi (DDRE, DDE6); // define pin E6 as input
NutRegisterIrqHandler(&sig_INTERRUPT6, my_interrupt6_handler, NULL);
NutIrqSetMode ( &sig_INTERRUPT6, NUT_IRQMODE_EDGE );

NutIrqEnable( &sig_INTERRUPT6 ) ;

What happens if an interrupt occurs during such an ISR? BTnut does not support stacked interrupts, so the
current ISR will first be finished. When the system exists an ISR and finds another interrupt waiting (i.e.,
its corresponding interrupt bit is set) it will continue with executing the ISR of the next interrupt. However,
while the current ISR was still running, there might have actually been multiple identical interrupts —e.g. a
certain value crossed a threshold not only once (and threw an interrupt), but twice, or more often. As there
is only one flag to indicate whether an interrupt has fired, there is no way to know how many interrupts
have been missed during the execution of the current ISR. It is therefor important to keep the code inside an
ISR as short as possible, in order to minimize the chances of missing out on important other interrupts, e.g.,
incoming packets on the Chipcon or Bluetooth radio. Another factor that should not be underestimated is
the time it takes the system to switch between the main program and an ISR — typically tens or hundreds
of CPU cycles, in order to save the current system state and switch to an ISR (and again back to the main
program).

This uninterruptability of ISRs is sometimes also needed within the main program. For example, certain
16-bit registers of the ATmegal28L need to be written to in an atomic fashion, e.g., either both bytes get



sig COMPARATOR

Analog comparator

sig INTERRUPTO

External interrupt 0

sig INTERRUPT1

External interrupt 1

sig INTERRUPT?2

External interrupt 2

sig INTERRUPT3

External interrupt 3

sig INTERRUPTA

External interrupt 4

sig INTERRUPT5

External interrupt 5

sig INTERRUDT6

External interrupt 6

sig INTERRUPT7

External interrupt 7

8.3. READING SENSOR DATA 65
Signal Description
sig ADC ADC conversion complete

sig SPI SPI interrupt entry

sig INPUT CAPTURE1 Timer 1 input capture
sig. INPUT CAPTURE3 Timer 3 input capture
sig. OUTPUT _COMPAREO Timer 0 output compare
sig. OUTPUT COMPARE1A | Timer 1A output compare
sig OUTPUT COMPAREI1B | Timer 1B output compare
sig. OUTPUT COMPARELC | Timer 1C output compare
sig OUTPUT COMPARE2 Timer 2 output compare
sig. OUTPUT COMPARE3A | Timer 3A output compare
sig. OUTPUT COMPARE3B | Timer 3B output compare
sig. OUTPUT_COMPARE3C | Timer 3C output compare
sig. OVERFLOWO Timer 0 overflow

sig. OVERFLOW1 Timer 1 overflow

sig. OVERFLOW?2 Timer 2 overflow

sig. OVERFLOW3 Timer 3 overflow

sig. UART0 RECV UARTO receive complete
sig. UART1 RECV UART1 receive complete
sig. UART0 TRANS UARTO transmit complete
sig. UART1 TRANS UART1 transmit complete
sig. UARTO DATA UARTO data register empty
sig. UART1 DATA UART1 data register empty

Table 8.2: Selected BTnut interrupt signals

written or none. If an interrupt occurs in the middle of such an assignment, the already written first byte
might not be the same anymore by the time program control returns to the main program. BTnut offers
the NutEnterCritical and NutExitCritical functions (in <sys/atom.h>) to allow main program code
to run uninterrupted. As with ISR code, these parts of code should be as short as possible, in order not
to loose any interrupt signals. Note that NutExitCritical does not simply re-enable interrupts. Instead,
NutEnterCritical saves the current interrupt state before disabling them, so that NutExitCritical can
restore whatever state previously existed. If interrupts were disabled before calling NutEnterCritical, they
still stay disabled even after calling NutExitCritical.

8.3.3 Hardware Timers and Actuators

While adequate for issuing periodic sensor readings, the use of NutTimerStart has two important drawbacks:
it only has a resolution of milliseconds, and actual code execution is thread-based, i.e., it might be delayed
(potentially indefinitely) due to higher priority threads or non-yielding threads. In order to use more real-
time and fine-grained timers, the integrated hardware timers of the ATmegal28L can be used directly. This
becomes important when driving actuators, e.g., the buzzer of the BTsense sensor board, or controlling
motors based on pulse-width modulation (PWM).



66 CHAPTER 8. SENSORS

The ATmegal28L processor features two 8-bit and two 16-bit timers (Timer0 and Timer2, and Timerl and
Timer3, respectively). These simply work as counters, i.e., they continuously count from 0 to 255 (or 65535)
and begin again from 0 afterwards. Whenever the counter overflows (i.e., starts again at 0), an overflow
interrupt can be triggered, which allows a program to periodically execute a certain command. While
Timer0 is already in use in BTnut to drive its timer functions (e.g., NutTimerStart, but also NutSleep), the
remaining timers are available for use in your BTnut program.

Using a number of processor registers, one can customize the behavior of these counters. For example, by
writing to the OCRx register (x being 0, 1, 2, or 3), we can set the so-called TOP value, i.e., the value at
which an interrupt should be triggered. One can also switch a timer to the so-called Clear Timer on Compare
(CTC) mode, where it restarts counting at zero whenever the counter reaches the TOP value (otherwise it
continues to the 8-bit or 16-bit maximum)ﬁ Counters run at most with the speed of the main CPU — which
runs at about 7.37MHz in the case of the ATmegal28L on the BTnodeE] Using a so-called prescaler, the
counter can be slowed by factors of 8, 64, 256, or 1024. This can be set in the Timer/Counter Control
Register TCCRxn (with x being 0, 1, 2, or 3, and n being A, B, or C for the two 16-bit counters only).

Explanation Using a hardware timer in BTnut :

The ATmegal28L hardware timer/counter must be accessed directly through the corresponding hardware
registers. The four timer are started by setting their corresponding prescaler value to non-zero value (see
above). Also, one needs to set the count at which an interrupt and/or a reset to 0 should be triggered, as
well as indicate what counter mode should be used (normal, CTC, etc.).

#include <sys/atom.h>
u_char max = 128;

// set counter mode to CTC (see ATmegal28L manual p.156) in
// Timer/Counter2 Control Register TCCR2
sbi (TCCR2, WGM21); cbi (TCCR2, WGM20);

// set prescaler to 1024 (slowest timer possible), see p.157
sbi (TCCR2, CS22); cbi (TCCR2, CS21); sbi (TCCR2, CS20);

// make sure interrupts are turned off

NutEnterCritical();

// register interrupt handler to be called for 8-bit counterO
NutRegisterIrqHandler(&sig_OUTPUT_COMPARE2, my_timer2_handler, NULL) ;
// set TOP value (i.e., when interrupt should be triggered)

OCR2 = max;

// reset current counter value to zero

TCNT2 = 0x00; // no need to start anything - counter runs continuosly
// enable interrupts again

NutExitCritical();

Exercise 86 What type of counter do you need to generate waveforms for the 7TBB-12-9 buzzer of the BTsense
sensor board? You will have to take into account not only the desired signal frequency, but also the speed of
the processor and the possible values of the prescaler. Hint: The corresponding chapters in the ATmega128L
manual [T contain a formula for computing a timer/counter’s frequency.

When setting the 0Cx pins as output pins (using the corresponding port’s DDRx register), one can easily
connect a waveform output to a peripheral device, such as a buzzer or a motorE] The 0Cx pins can be used
in three different modes: CTC, Fast PWM, and Phase Correct PWM. In the already mentioned CTC mode,
the 0Cx pin can be set to simply alternate (toggle) between 0 and 1 whenever the TOP values is reached

6Further counter modes can be found in the corresponding chapter of the ATmegal28L manual [IJ.

"The exact processor speed can be obtained by calling u_long NutGetCpuClock(void).

8The two 8-bit counters 0 and 2 have only one such pin — 0C0O and 0C2, respectively — while the 16-bit counters 1 and 3
feature three such pins: 0C14, 0C1B, 0C1C and 0C34, 0C3B, 0C3C.



8.4. THE BTSENSE-LIBRARY 67

(see figure below). In Fast PWM mod the counter always counts from BOTTOM to MAX. The 0Cx
pin is cleared whenever the TOP value is reached, and set when the counter begins again at BOTTOM.
This ensures PWM-signals with constant periods (i.e., from BOTTOM to TOP) that have a pulse width of
exactly TOP (see figure below). Phase-correct PWM finally creates the high pulse of the PWM signal
always in the center of the period, not at its beginning flank, by counting from BOTTOM to TOP and back
again, and inverting the signal when reaching TOP (both upwards and downwards, see figure below).

When using a timer to drive an actuator connected to one of these pins, this has the advantage of not
needing a separate interrupt service routine to explicitly set a pin output to 1 or 0: the timer/counter’s
corresponding 0Cx/0Cxn will automatically alternate between 0 and 1 whenever the counter reaches its TOP
and/or BOTTOM value.

Explanation Putting a Waveform onto an I/0 pin in BTnut :

By connecting a device to the output pin of a 8-bit or 16-bit counter, we can directly modulate a corre-
sponding signal onto the pin. This only requires that we set the data direction register of this pin (i.e., to
define it as an “output” pin):

u_short max = 57535; // example

// set counter mode to CTC (see ATmegal28L manual p. 131) in
// Timer/Counterl Control Register TCCR1A
cbi (TCCR1A, WGMO3); sbi (TCCR1A, WGMO2);
cbi (TCCR1A, WGMO1); cbi (TCCR1A, WGMOO) ;

// set up output pin OCR1A to be toggled by counter
cbi (TCCR1A, COM1A1); sbi (TCCR1A, COM1A0);

// start counter with prescaler to 8 (example), see manual p. 135
cbi (TCCR1A, CS12); sbi (TCCR1A, CS11); cbi (TCCR1A, CS10);

// make sure interrupts are turned off
NutEnterCritical();

// no need for interrupt handler! simply set TOP value
OCR1 = max;

// reset current counter value to zero

TCNT1 = 0x0000;

// enable interrupts again

NutExitCritical();

// enable pin output for OC1A == PB5
sbi (DDRB, PB5);

Exercise 87 Describe the steps necessary to put a 440Hz signal onto an 0Czn pin.

Optional Exercise 88 Desribe the steps necessary to put the same {40Hz signal onto an arbitrary 1/0 pin
of the ATmegal28L (e.g., pin PB/). What is the difference to the solution in ex. ?

8.4 The btsense-library

Many of the low-level details for querying sensor data off the BTsense sensor board have already been
encapsulated in dedicated functions as part of the BTsense-library. While it might still be necessary to use
BTnut timers, interrupts, or hardware timers to read out sensor values periodically and/or automatically,
these functions should greatly simplify the act of reading out each of the three sensors, as well as driving the
connected buzzer.

9PWM stands for Pulse Width Modulation.




68 CHAPTER 8. SENSORS

TCNTn /////;////////////
OCn
(Toggle)

(COMn1:0 = 1)

) | | | |
Period [ 1 T 2 g 3 | 4 |

Figure 8.3: Waveform generation in CTC mode [I]. Notice the variable signal periods due to varying TOP
values (horizontal bars).

Explanation Using the BTsense-library:

The BTsense-library offers three functions for reading out each of the three sensors, as well as a function for
driving the buzzer with a particular frequency. It takes care to properly set all required hardware registers,
as well as configure both the ADC and any necessary timer/counters. Note that the btsense_init function
requires a board revision identifier — typically this should be BTSENSE_REVSION_1_1.

#include <btsense/btsense.h>

int main(void) {
btnode_init(); // init hardware, uart, network
btsense_init( BTSENSE_REVISION_1_1 );

u_short light = btsense_sample_light();
printf ("Light Level: %d\n", light);
u_char motion = btsense_sample_motion();
printf ("Motion Level: %d\n", motion);
u_char temp; int err;
if (err = btsense_sample_temp (&temp)) {

// TWI error

printf ("TWI Error: %d\n", err);
} else {

printf ("Temperature Level: %d\n", temp);
}
// make a beep
btsense_sound (440); NutSleep (1000); btsense_sound (0);

for (;;) { NutSleep (5000) };

In addition to the BTsense-library, a number of helper functions are available via <wsnlab/wsnlab.h> — see
the source code for details.

Exercise 89 Write a program that converts the light levels detected by the light sensor into a corresponding
LED-meter, i.e., the brighter it is, the more LEDs light up.

Optional Exercise 90 FExtend the program from ez.|89 to also sound the buzzer at different frequency levels,
according to the detected light level.

Exercise 91 Write a program that indicates motion detection through LED or buzzer signaling. Instead of
repeatedly polling the current value of the motion sensor, you should use set up an interrupt service routine
to get triggered whenever the motion sensor’s signal changes. Describe the output you observe.



8.4. THE BTSENSE-LIBRARY 69

TCNTn

OCn (COMn1:0 = 2)

OCn I | | | |_| (COMn1:0 = 3)
Periodl-—1l2lﬂlal5lel?—-|

Figure 8.4: Waveform generation in Fast-PWM mode [I]. Periods are constant, signal width is according to
TOP value (horizontal bars).

TCNTn

OCn I_I | | I_ (COMN1:0=2)
QCn |_| I_l |_ (COMN1:0=3)
Period l 1 I 2 | I

Figure 8.5: Waveform generation in Phase-Correct-PWM mode [I]. Notice how signals are centered within
constant periods.

Exercise 92 FEzxtend the program from ex. above to send motion events via the radio to a receiving node,
which then prints out a corresponding line to the terminal.

Optional Exercise 93 Combine the motion sensors of several BTnodes in order to be able to detect the
direction of motion, e.q., along a corridor or on both sides of a door. Both nodes should send motion events
to a sink node, which then determines the direction of the motion and keeps an on-screen stalistic (e.g.,
how many people entered and exited a certain room). Tip: In order to limit the area that the motion sensor
covers, you can simply build a small paper cone and put it around the sensor.

Optional Exercise 94 Write a program that periodically reads out all available sensor values and sends
them wirelessly to a sink node, which is connected to a laptop or PC via USB. Try to save power by grouping
several measurements into a stngle transmission. The sink node should print out the comma-separated list
of values to STDOUT, which can then be easily captured into a file by using the terminal’s capture-to-file
function and then displayed graphically in Ezcel, OpenOffice Spreadsheet, or GNUplot.

Optional Exercise 95 FEzxtend the program from ez. to work with multiple BTnodes, i.e., prefiz each
nodes measurements with a node ID. Try to minimize packet loss, e.g., by sending packets repeatedly. Use
this setup to record one or two rooms over the course of an entire day. Prepare corresponding graphical plots.



70

CHAPTER 8. SENSORS




	Sensors
	ATmega128L I/O-Ports and Registers
	Sensor Types
	Digital I2C-Bus Sensors
	Digital Logic-Level Sensors
	Analog Sensors

	Reading Sensor Data
	Polling
	Interrupts
	Hardware Timers and Actuators

	The btsense-library




