Abstandsmessung mit Schall und Funk

Steven Fluck (<u>steven@student.ethz.ch</u>)

Fachseminar: Verteilte Systeme SS2006 Betreuer: Kay Römer

Motivation und Einleitung

- Die meisten Lokalisierungstechniken basieren auf Trilateration
- Ohne Abstandsmessung keine Trilateration
- Erklärte Technologien sind in beinahe allen Lokalisierungsystem anzutreffen (Sensornetze, GPS, Ubisense, ...)

Übersicht

- Abstandsbestimmung mittels Laufzeit und Signalstärke
- Funk und Schall
- Empirische Analysen
- Zusammenfassung

Abstandsbestimmung mittels Laufzeit und Signalstärke

Abstandsbestimmung mittels Laufzeitmessung

- Time of Arrival (ToA)
- Time Difference of Arrival (TDoA)

Voraussetzungen

- Genaue Uhren
- Synchronisation der Uhren
- Verzögerungsfreie Signalverarbeitung

Abstandsbestimmung mittels Signalstärke

- Ausbreitungsmodell basiert
 - Direkt
 - Lernbasierte Algorithmen
- Messpunkt basiert

Messpunkte basiert

Voraussetzung

- Exaktes Model der Signalausbreitung
- Signalausbreitung möglichst Umgebungsunabhängig

Funk und Schall

Funksignale

- Meist im freien 2.4GHz oder 5.2GHz Band
- Sendeleistung gesetzlich reguliert (in der Schweiz 2.4GHz Band: 100mW; 5.2GHz Band: 200mW)
- Ausbreitung beinahe mit Lichtgeschwindigkeit
- Wellenlänge von 2-3GHz: 30-10cm
- Energieaufwändig für Sender und Empfänger

Schall

- 16-20kHz hörbarer Schall
- 20kHz IGHz Ultraschall
- Ausbreitungsgeschwindigkeit: ~343m/s
- Wellenlänge von 1m 1.5cm bei hörbarem Schall
- Energieaufwändig für Sender; Empfänger kann Energie des Signals verwerten

Welches Verfahren ist geeignet

	Funk	Schall
Signalstärke	Gute Ausbreitungsmodelle	Zu Umgebungsabhängig
Laufzeit	Schnelle Signalausbreitung, benötigt genaue Synchronisation	Langsame Signalausbreitung, einfache Synchronisation

Ausbreitung von Funksignalen (I)

- Reflexion
- Diffraktion
- Streuung
- Abblendung/Dämpfung
- Streuung der Verzögerung (Mehrwege Effekt)

Ausbreitung von Funksignalen (2)

- Ausrichtung der Antenne
- Bauweise der Antenne
- Kalibrierung
- Sich bewegende Objekte
- Interferenzen mit anderen Systemen

Ausbreitung von Schallsignalen (I)

- Reflexion
- Streuung
- Abblendung
- Streuung der Verzögerung

Ausbreitung von Schallsignalen (2)

- Meteorologische Einflüsse
 - Wind
 - Temperatur
 - Luftdruck
 - Luftfeuchtigkeit
- Atmosphärische Einflüsse
 - Temperaturunterschiede

Empirische Analysen

Empirische Analyse: Funk

- Auswahl von vielen
- Grosse Unterschiede der Qualität der Analysen
- Gute Qualität und gute Genauigkeit im Vergleich zu anderen Methoden
- RADAR

Vorgehen

- <u>Messpunkte</u> basiert
- Wahl des "nearest neighbor in signal space" (NNSS)
- (t,x,y,d) Tupel werden gespeichert (Zeit, Ort in 2D, Ausrichtung)
- Fingerprint der Signalstärke von 3 Basisstationen

Versuchsaufbau

- Punkte sind vorvermessene Messpunkte (70 Stück)
- Sterne sind WLAN Basisstationen

Messergebnisse (1)

Percentile

	Error Distance	25th	50th	75th
thod	Empirical	1.92m	2.94m	4.69m
Me	Strongest	4.54m (2.4x)	8.16m (2.8x)	l I.5m (2.5x)
	Random	10.37m (5.4x)	l 6.26m (5.5x)	25.63m (5.5x)
				Quelle: [2]

Probleme

- Sich bewegende Objekte
- Antennen Ausrichtung
- Umgebungsabhängigkeit
- Wahl der Messpunkte

Empirische Analysen Funk

Name	Methode	Messfehler
Ecolocation	direkt RSSI	~3m [3]
RADAR	Messpunkte	~3m (50% Perzentil)

Empirische Analyse: Schall

- Verwendung handelsüblicher Soundkarte
- Synchronisation mittels Funk
- Verwendung von Breitband, mittels Kodierung reflektierte Signale erkennen
- Messungen bei LoS, Erkennung wäre möglich z.B. mittels Kamera

Dienstag, 18. April 2006

Messergebnisse (I)

Messergebnisse (2)

Messergebnisse (3)

Probleme

- Line of Sight
- Temperaturunterschiede
- Ausrichtung Lautsprechers/Mikrofon

Zusammenfassung

- Sehr Störungsanfällig, viele Fehlerquellen
- Sehr wichtig, starke Entwicklung
- Schall genau aber nur bei vorhandener LoS
- Funk ungenauer aber grosses Einsatzgebiet
- Einsatzzweck bestimmt die zu verwendende Technik

Referenzen

- [1] L. Girod, D. Estrin: Robus Range Estimation Using Acoustic and Multimodal Sensing
- [2] P. Bahl, V.N.Pdamanabhan: RADAR: An In-Building RFbased User Location and Tracking System
- [3] D. Lymberopoulos, Q. Lindsey, A.Savvided: An Empirical Analysis of Radio Signal Strength Variability in IEEE 802.15.4 Networks using Monopole Antennas
- [4] K.Yedavali, B.Krishnamachari, S.Ravula, B.Srinivasan: Ecolocation: A Sequence Based Technique for RF Localization in Wireless Sensor Networks
- [5] J.S.Lamancusa: Engineering Noise Control (Course Material)

Dienstag, 18. April 2006

Dienstag, 18. April 2006