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Abstract

A distributed data-stream architecture finds
application in sensor networks for monitoring
environment and activities. In such a network,
large numbers of sensors deliver continuous
data to a central server. The rate at which the
data is sampled at each sensor affects the com-
munication resource and the computational
load at the central server. In this paper, we
propose a novel adaptive sampling technique
where the sampling rate at each sensor adapts
to the streaming-data characteristics. Our ap-
proach employs a Kalman-Filter (KF)-based
estimation technique wherein the sensor can
use the KF estimation error to adaptively ad-
just its sampling rate within a given range,
autonomously. When the desired sampling
rate violates the range, a new sampling rate
is requested from the server. The server allo-
cates new sampling rates under the constraint
of available resources such that KF estima-
tion error over all the active streaming sensors
is minimized. Through empirical studies, we
demonstrate the flexibility and effectiveness of
our model.

1 Introduction

As sensor networks grow in size, bandwidth allocation
becomes increasingly critical. A sensor network needs
to allocate its bandwidth to maximize total informa-
tion gain. A desirable bandwidth allocation scheme
should distribute the given bandwidth such that it
is sensitive to streaming data characteristics, query
precision, available resources (communication, power,
CPU), and sensor priority (data from some sensors
might be more important than others) [9, 2]. We can
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further motivate this research using the following two
examples.

• Wireless sensor-networks are being used for habi-
tat monitoring applications. In [11], sensors regis-
tering light, temperature, and sound are deployed
in burrows of Storm Petrels (a seabird) for mon-
itoring purposes. During the day time, the bur-
rows are expected to be empty, and thus we can
have a low sampling rate. However, if some un-
usual measurements are recorded at some burrows
(say abrupt increase in sound levels), it would be
desirable to collect samples from them more fre-
quently than the other burrows.

• In video surveillance applications like [6], multi-
ple cameras are mounted at key locations to mon-
itor activities of vehicles and people in a parking
lot. If a camera shows a vehicle exhibiting unex-
pected behavior (random swirling, speeding), the
camera’s sampling rate should be increased by de-
creasing the sampling rates of the other cameras
that are not observing abnormal behavior.

A näıve solution to the above-mentioned problems
is over-sampling [12]. However this comes at increased
cost of resources, namely:

• CPU — The CPU at the central server might
have to process unnecessary data from numerous
sources, but this would not affect the result sig-
nificantly.

• Network Bandwidth — The communication chan-
nel would be transmitting unnecessary data.
Moreover, in cases of low bandwidth networks the
option of over-sampling might not be available at
all.

• Power Usage — Power conservation is critical for
wireless sensors. Over-sampling leads to increased
power consumption of a sensor’s measuring de-
vices, radio transmitter, and processing unit.



There has been a significant amount of work in the
sensor-network resource management. The key aspect
that differentiates this work from the prior efforts lies
in data collection (sensing). We adjust sampling rates
(sensing rates) at sensors to adapt to data characteris-
tics. Traditional methods (e.g., load-shedding [17] and
adaptive precision setting [13]) collect data at a peak
sampling rate and then determine whether collected
data should be dropped to conserve resources. Even
though the filtering and load-shedding approaches can
reduce bandwidth consumption in the transmission
phase, excessive sampling rates incur high cost in data
collection and processing (to determine what data to
drop) at the sensors. The adaptive sampling scheme
proposed in this paper adjusts the data collection rate
according to data characteristics. Therefore, resources
are conserved and better utilized working only on data
relevant to the queries.

Our general and adaptive sampling approach ad-
justs the sampling interval SI (the time interval be-
tween two consecutive samples) collectively. At the
sensors, the SI is adjusted depending on the stream-
ing data characteristics. The remote source is allowed
to modify the sampling interval independently within
a specified Sampling Interval Range (SIR). If the de-
sired modification in the SI is more than that allowed
by the SIR, a new sampling interval is requested from
the server. At each sensor, we use the Kalman Filter
estimator to predict the future values of a stream based
on those seen so far. Large prediction errors signify un-
expected behavior of the streaming data or an interest-
ing event. The sampling interval is adjusted based on
the prediction error. At the server, new sampling in-
tervals are allocated to the requesting sensors based on
available bandwidth, network contention, and stream-
ing source priority.

We consider a simple network model to conduct the
experiments, where all the streaming sources connect
to a single network channel. The server continuously
monitors the usage of this network channel and allo-
cates new bandwidth based on its availability. These
kinds of networks are prevalent in video surveillance,
object tracking and process control (automated meter
reading, building automation). Extending our current
architecture to multi-hop sensor networks is a part of
future research.

The main contributions of our work can be summa-
rized as below:

• We propose a model which, is adaptive to adjust
the sampling rate based on the input data charac-
teristics and general to map to linear (as well as
non-linear) problems without many major modi-
fications.

• Our method utilizes the given bandwidth judi-
ciously such that more important sources get more
bandwidth by reducing the bandwidth of less im-
portant ones.

• Our method allows the capability at the remote
site to adjust the sampling rate (to a certain
extent) independently without the central server
mediation to improve response time.

• Finally, we propose an optimal estimation scheme
(Kalman Filter) that can be used on the sensor
side to assess data arrival characteristics.

2 Related Work

The resource management problem in data streaming
has been studied mainly from the perspective of data
filtering [5, 13]. It has been shown that using adaptive
precision bounds [13], unusual trends in the streaming
data can be captured (the data is updated to the server
only when it falls out of an adaptive precision bound)
at low communication costs. However, due to uniform
sampling, the approach does not have the capability to
utilize a given bandwidth to maximize the information
gain.

The adaptive sampling approach proposed in [10]
considers only the network channel contention while
adjusting the sampling rate. The sensors check for the
network channel contention before putting the data on
it and reduce the sampling rate if the contention and
data-tuple drop rate is high. This reduces the overall
load on the network channel and achieves a better de-
livery rate at the server. The proposed approach does
not utilize the network channel judiciously, and it uses
adaptive sampling only when the network channel be-
comes congested and requires load-shedding.

The use of adaptive sampling and bandwidth man-
agement in sensor networks has been very well moti-
vated in [12, 3, 14, 9]. However a scalable method ap-
plicable in a distributed environment is still not avail-
able.

As we have discussed in Section 1, the problem of
adaptive sampling is not the same as that of load-
shedding [17]. First, to the best of our knowledge, none
of the load-shedding techniques have yet used predic-
tion/estimation models. Second, while load-shedding
modules are activated only when the load on the sys-
tem increases beyond what it can handle, adaptive
sampling modules are executed during the lifetime of
a stream. In the event of network congestion, the
load-shedding module would reduce the data transmis-
sion rate of the sensor by randomly dropping tuples,
whereas an adaptive sampling technique would reduce
the data collection rate in such a way that higher pri-
ority data receive a higher proportion of the available
bandwidth.

3 The Kalman Filter

The Kalman Filter was introduced in 1960 by R. E.
Kalman [7] as a recursive solution to the discrete-data
linear filtering problem. Since then, it has found ap-
plication in the fields of data smoothing, process es-



timation, and object tracking, to name a few. The
traditional Kalman Filter is a linear algorithm that
estimates the internal state of a system based on a
prediction/correction paradigm. Below, we provide
a brief overview of the Kalman Filter’s mathematical
formulation, for more details refer [18].

The Kalman Filter comprises a set of mathematic
equations that provide a recursive solution to the least-
squares method. The system model is represented in
the form of the following equations:

xk+1 = φkxk +wk (1)

zk = Hkxk + νk (2)

where

xk = state vector of the process

φk = state transition matrix relating xk

to xk+1

wk = process model noise

zk = measurement vector

Hk = matrix relating system state and

measurement vector

νk = measurement noise

k = discrete time index

The prediction x̂k is based on a linear combination
of previous prediction/estimation and the weighted
prediction error. This error is called innovation ψk,
which is calculated as follows:

ψk = zk −Hkx̂
−
k . (3)

The value of the weight is called Kalman Gain Kk

which is adjusted with each measurement. The pre-
diction is calculated as follows:

x̂k = x̂−
k +Kkψk. (4)

Applying the least-square method we get

Kk = P−
k H

T
k ( HkP

−
k H

T
k +Rk)−1. (5)

Pk = (I −KkHk)P−
k . (6)

where, Pk and Rk are the error covariance and mea-
surement noise covariance matrices respectively (the
superscript denoting the a priori state of the matri-
ces).

The advantage of using the Kalman Filter is that it
gives satisfactory results even when we cannot model
the process accurately (i.e., when the values of matri-
ces νk and φk are unknown) and that the innovation
sequence can be used to evaluate the performance of
the estimation process.

There is a wide spectrum of filtering solutions
available which work on the estimation/correction
paradigm and can be substituted for Kalman Filter in
our proposed architecture. However, we support the
use of Kalman Filter as it can be easily customized to
provide good results on a wide range of streaming sen-
sor data and produce unbiased estimates even when
the incoming data have high variance. Biased algo-
rithms (like Exponential Weighted Moving Average,
EWMA) might not be the best choice when incoming
data has high variance. Error estimates can be fur-
ther improved using more sophisticated solutions like
Particle Filter [8] or condensation (conditional density
propagation) [4] as they work on non-Gaussian noise
processes and multi-modal state propagation. Such
algorithms are likely to provide better results as real-
life data are not Gaussian, however this performance
upgrade comes at increased cost of computational re-
sources. Most of the sensing devices have limited com-
putational capacity and selecting the best filtering so-
lution is subject to the availability of the resources.
The advantage of using Kalman Filter here is that the
computational complexity can be easily manipulated
by adjusting the number of state variables in the state
propagation equation.

4 Our Approach

We now present our adaptive sampling approach in a
distributed stream environment. We consider an envi-
ronment where numerous sensors continuously stream
updates to a central server. For example, a system
of sensors that continuously measure the location of a
moving object in two dimensions (one sensor for each
object). Our adaptive approach would distribute the
available bandwidth automatically in such a way that
sensors monitoring objects showing increased activity
have shorter time intervals between successive (low
sampling interval) measurements whereas those with
reduced activity have longer time intervals (high sam-
pling interval). This way, the trajectory generated at
the server by interpolating the measurements from the
sensors would be closer to the original trajectory than
that obtained by performing uniform sampling.

To maintain simplicity, we do not assume the pres-
ence of any data filtering or load-shedding modules in
our discussion. Thus, the data-sampling interval is the
same as the data-transmission interval of the sensor.
We interpret the sampling interval as the number of
time units between two successive measurements.

There are two main modules in the system, one
on the sensor side and the other on the server side.
Due to the space limitations, we describe each of them
only briefly. To simplify our discussion, we assume in
this paper that the tuple size over all the sources is
the same, and hence the bandwidth consumption is
directly proportional to the sampling interval at the
streaming sources.



4.1 Source Side Module

Let SIi denote the current sampling interval at source
Si (i is the ith source) which, is the number of time
units between two consecutive measurements. Let
SIRi denote the range within which, the sampling
interval can be adjusted by the source without any
server mediation and SI last

i denote the latest value of
sampling interval received from the server. (We cur-
rently assume static SIRi’s.) Let SIdesired

i denote the
desired sampling interval based on the KF prediction
error. Sensor Si need not contact the server for addi-
tional bandwidth provided that

(SI last
i − SIRi/2) ≤ SIdesired

i ≤ (SI last
i + SIRi/2).

(7)
If SIdesired

i satisfies Equation 7 then SIi takes the
value of SIdesired

i . This scheme helps the source to
capture unexpected data trends immediately as the
server grants over the network could be delayed due
to network congestion or unavailability of resources.
Each data tuple sampled by Si is forwarded to a
Kalman Filter KFi which, provides with the innova-
tion ψi

t value (Section 3). The estimation error δi at
any instant t is then calculated as:

δi
t = sqrt(trace(ψi

t(z
i
t)
−1)2). (8)

We multiply the innovation (error in prediction) by the
inverse of the measurement matrix to get the fractional
error (ψi

t and zi
t are column matrices). We take the

square of the matrix to eliminate any negative values.
Finally the square root of the trace gives the fractional
error over all the variables in the measurement matrix.

Si maintains a sliding window of size Wi that holds
the last Wi values of the estimation error. If ni

j is the
jth element of the sliding window at Si (ni

1 being the
latest element), total error ∆i over the sliding window
is calculated as:

∆i =

j=Wi∑
j=1

ni
j/j

j=Wi∑
j=1

1/j

. (9)

Equation 9 ensures that the newer values in the win-
dow have higher weight.

User parameters λi and θi control the dynamics of
SIi. Each time ∆i is calculated, a new sampling in-
terval SInew

i is generated as follows:

SInew
i = SIi + θi ∗ (1− efi). (10)

where fi = ∆i−λi

λi
. Equation 10 ensures sharp fall and

gradual rise in the sampling interval due to the expo-
nential factor that helps improving the response time
of the system. If SInew

i satisfies Equation 7, then the
sampling interval is assigned this new value; otherwise,

a new sampling interval is requested from the server.
The source requests the change is the sampling interval
∆SIi such that

∆SIi = SInew
i + SIRi/2. (11)

In addition the source also sends the fractional error fi

for each request of decrease in the sampling interval.

4.2 Central Server module

We now discuss the sampling rate allocation policy at
the central server. The allocation algorithm is exe-
cuted each time a request for decrease in sampling in-
terval (increase in the sampling rate) is received from
a streaming source. The server maintains a variable
Ravail that holds the amount of communication re-
source available at any time. When a source reports
about an increase in its sampling interval, the server
immediately adds the proportional amount of resource
units to Ravail and sends an acknowledgment to the
source. Any request for a decrease in a sampling in-
terval is added to a job-queue that is processed con-
tinuously by a separate thread.

Each job Jp in the job-queue has 5 attributes which,
are described below:

1. Fractional error fp is received from the source
when it sends a request.

2. Request Reqp is the units of resource requested.

3. History hp is the age of the request in the job-
queue. Its value is incremented by unity each time
the job-queue is processed.

4. Grant gi is the fraction by which, the Reqp has
been satisfied so far.

5. Query Weight wp the weight of the streaming
source from the query evaluator.

Assuming that the error fp is reduced to zero if re-
source request Jp is satisfied completely, we can for-
mulate a linear optimization problem, minimizing the
total error over all the jobs. If Jp is allocated Ap units
of resources, then the residual error after satisfying
the job is proportional to (1 − Ap/Reqp). Jobs hav-
ing higher fp, hp, and wp are given more priority than
others, whereas the priority varies inversely with gp.
We normalize each attribute by dividing it by the sum
of its value in all the jobs in the job-queue. Thus the
objective function can be formulated as:

min
Ap

(
fpP

fp
∗ hpP

hp
∗ wpP

wp
∗

P
gp

gp
∗

(
1− Ap

Reqp

))
(12)

s.t.
{ ∑

Ap ≤ Ravail

0 < Ap ≤ Reqp
(13)

Constraints in Equation 13 ensure that the sum of the
allocated resources is less than that of the total avail-
able and that each grant is less than its request. Once



the optimization problem is solved, the resource units
are distributed to the requesting sources and the job-
queue attributes are updated accordingly.

5 Results

In this section we present the preliminary results of our
distributed adaptive sampling system. We performed
the experiments on data produced by the oporto real-
istic spatio-temporal data generator [15]. We recorded
the trajectories (in 2 dimensions) of 12 shoals produced
by the generator for 3, 000 time units. Oporto pro-
duces data with uniform distribution and some of the
trajectories were more complex than the others.

We implemented our system and conducted the ex-
periments on a Pentium III processor workstation with
256MB of RAM on a 10/100 Mbps LAN. The coding
was done on JDK 1.2.4, using JAMA [1] matrix pack-
age for matrix operations and OR-Objects [16] package
to solve the LP problem.

We initialized different streaming sources with dif-
ferent trajectories but the same initialization parame-
ters using a linear KF model [5]. All the sources had
to wait until the sliding window was full. We ran the
simulation until one of the sources had read all the
3, 000 records. The tuples received at the server with
their timestamps were then used to create the com-
plete trajectory using linear interpolation for both X
and Y coordinates. We evaluated the performance of
our system based on an effective resource utilization
(ERU) metric ξ which, is calculated as

ξ = η ∗m (14)

where m is the fraction of messages exchanged between
the source and the server, to the total number of tuples
read by the source, where η is the mean fractional error
between the actual trajectory and that generated by
interpolation. While calculating m we considered the
number of tuples forwarded by the source, messages for
bandwidth allocation and acknowledgment messages
from the server to the source. In all the experiments
θi=2, the initial sampling interval was five tuples and
none of the sources were allowed to skip more than 12
tuples in the adaptive sampling module. We studied
the affect of the number of sources, sliding window size
Wi and λi on the ERU . Results shown in Figures 1,
2, and 3 were obtained using Wi = 5 and λi = 0.6.

Figure 1 shows the mean fraction of messages for-
warded to the main server against the number of
sources. In this figure m is low for a small number
of sources, but as the number of sources increases, it
rises and stabilizes around 0.12. In all the cases the
number of messages is less than or equal to that sent
using uniform sampling.

Figure 2 shows that the fractional error using adap-
tive sampling is always less than that using uniform
sampling, except when the number of sources is one.
This is because we initialize the experiments with same
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Figure 2: η on varying # of streaming sources

sampling interval for both uniform and adaptive meth-
ods. Thus if the number of sources is one, then we
cannot beat the uniform sampling method.

Figure 3 shows change in ERU on varying the num-
ber of sources. The trend is similar to that in Fig-
ure 2. We observe that our approach outperforms the
uniform sampling method even when the number of
sources is high. There are some unusual results when
the number of sources is five and seven. This is be-
cause the trajectories for these sources of input data
may be unusually simple/complex.

Figure 4 shows the affect of parameter λi on the
ERU . Resource utilization is high for very low values
of λi because although the error rate would be low, the
number of messages would be very high. We observed
lower ERU when λi varied around 0.4 and 1.2. This is
because at lower values of λi the error is low and thus
ERU is low, on slightly higher values, although the
error is high, the value of m drops down significantly
enough to reduce the resource utilization below that of
uniform sampling. However at further increasing the
value of λi, ηi starts to dominate and the ERU starts
to increase.

The effect of varying the sliding window size is
shown in Figure 5. It is observed that at low values
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of Wi give better ERU . As the window size increases,
the ERU approaches constant value.

6 Conclusions and Future Work

In this paper we have proposed an adaptive sampling
technique based on a Kalman Filter estimation of er-
ror as an alternative to commonly used uniform sam-
pling techniques. We motivated the need for adap-
tive sampling techniques in a sensor network environ-
ment, where network bandwidth is a valuable resource.
Adaptive sampling was shown to be desirable not only
to conserve resources but also to improve the overall
quality of results (minimize the fractional error be-
tween the actual and the interpolated results).

We discussed some of the preliminary results in Sec-
tion 5 to show the effectiveness of our approach. We
observed that when we choose the input parameters
judiciously, our system can provide performance up-
grade as much as three to four times as compared to
uniform sampling (Figure 3). We have also shown the
effect of different input parameters on the system per-
formance which, suggests that further research needs
to be conducted to enable us to choose optimal param-
eters for the system.
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Our preliminary results are encouraging but further
research is indicated in the following directions:

• Extending the current architecture to multi-hop
sensor networks.

• Choosing appropriate window size.

• Developing efficient techniques to compute the er-
ror over the sliding window. In some cases expo-
nential decay methods might provide better re-
sults.

• Developing efficient algorithms to reduce the re-
quest/acknowledge message overhead between the
server and the sources. (Currently the message
overhead is high.)

• Developing algorithms to incorporate adaptive
SIRs in the current system.

• Testing the system performance on more real life
data sets.
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