
 �

Querying the Physical World

Philippe Bonnet, Johannes Gehrke and Praveen Seshadri1

Cornell University

Ithaca, NY 14853

{bonnet,johannes,praveen}@cs.cornell.edu

In the next decade, millions of sensors and small-scale mobile devices will integrate processors,

memory and communication capabilities. Networks of devices will be widely deployed for

monitoring applications. In these new applications, users need to query very large collections of

devices in an ad-hoc manner. Most existing systems rely on a centralized system for collecting

device data. These systems lack flexibility because data is extracted in a predefined way; also,

they do not scale to a large number of devices because large volumes of raw data are

transferred. In our new concept of a device database system, distributed query execution

techniques are applied to leverage the computing capabilities of devices, and to reduce

communication. In this paper, we define an abstraction that allows us to represent a device

network as a database and we describe how distributed query processing techniques are applied

in this new context.

1 Introduction

1.1 Device Networks

The widespread deployment of sensors, actuators and mobile devices is transforming the physical

world into a computing platform. We will soon find computing power, memory and communication

capabilities on temperature sensors and motion detectors, on door locks, light bulbs and alarms, on

every cellular phone, in every vehicle, and soon in every person’s wallet or key ring. Emerging

networking techniques ensure that devices are interconnected and accessible from local- or wide-area

networks [EGH00].

Using this new computing platform, users interact with portions of the physical world. In a large class

of applications, users monitor phenomena in a given environment. Examples of monitoring

1 Praveen Seshadri is currently on leave at Microsoft: 3/1102 Microsoft, One Microsoft Way, Redmond,
WA. pravse@microsoft.com.

 �

applications include gathering information in a disaster area, supervising items in a factory warehouse,

or controlling vehicle traffic in a large city [S99][E+99].

Let us take the concrete example of an existing flood detection system. For about twenty years now, the

ALERT system has been deployed in several US states (http://www.alertsystems.org). A typical

ALERT installation consists of several types of sensors in the field: rainfall sensors, water level sensors,

weather sensors, etc. A predefined set of data is regularly extracted from each sensor, transferred to a

central site and stored in a database system. Users query the database system through a graphical user

interface. Here are some example queries that users can express: “For each rainfall sensor, display the

average level of rainfall for 1999”, “Display the current level of rainfall for all sensors in Tompkins

County”, or “Every hour, display the location of the sensors where the level of rainfall is greater than

250mm”.

1.2 Query Processing over Device Networks

The example of the flood detection system emphasizes that monitoring is best described in a declarative

manner – users submit queries concerning a device network regardless of its physical structure or its

organization. In monitoring applications, users typically ask three kinds of queries:

• Historical queries: these are typically aggregate queries over historical data obtained from the

device network, e.g. “for each rainfall sensor, display the average level of rainfall for 1999.”

• Snapshot queries: these queries concern the device network at a given point in time, e.g.

“retrieve the current rainfall level for all sensors in Tompkins County.”

• Long-running queries: these queries concern the device network over a time interval, e.g.,

“For the next 5 hours, retrieve every 30 seconds the rainfall level for all sensors in Tompkins

County.”

The existing ALERT system implements a warehousing approach, where data are extracted from the

devices in a predefined way and stored in a centralized database system that is responsible for query

processing. This warehousing approach is well suited for aggregate queries asked over historical data; it

has however two major limitations:

1. The warehousing approach dissociates access to devices from the query workload. For

instance, in an emergency situation, a fire department might require that specific data be accessed

in a group of sites in order to decide on actions to take: “every minute, display the rainfall level

obtained from all sensors in Tompkins County”. This long-running query cannot be answered in a

traditional system if data is extracted from the sensors too infrequently. One solution would be to

 �

continuously extract all data from each device and transfer them to the database server. This

solution is not feasible in practice because it might not be possible to extract all data from a sensor

(e.g., a camera takes measurements in only one direction and it is not possible to measure data in

all directions simultaneously) or because it is too expensive to transmit a continuous flow of raw

data through the device network.

2. The warehousing approach uses valuable resources to transfer large amounts of raw data

from devices to the database server. Excessive resources are consumed at each device and on the

network when transmitting large volumes of data. First, it is in general not necessary to extract data

from the whole device network to answer a given query. In our example, the group of sensors

sending data back to the database server should be reduced to sensors located in Tompkins County.

Second, modern devices include processing capabilities that could be used to process data locally

and thus reduce data transfer and energy consumption.

Our alternative to a warehousing approach is a distributed approach where the query workload

determines the data that are extracted from remote sites, and where possibly portions of queries are

executed on devices. This approach allows the database system to control the resources that are used. It

is primarily targeted at snapshot and long-running queries; in addition aggregate queries over historical

data could be evaluated against materialized data stored on some devices instead of a centralized server.

We call a database system that enables distributed query processing over a device network a device

database system. We study such systems in the COUGAR Device Database Project at Cornell

University.

The DataSpace project at Rutgers (http://www.cs.rutgers.edu/dataman/) recognized the advantages of

the distributed approach over the warehousing approach for querying device networks [IG99]. In a

DataSpace, devices encapsulating data can be queried, monitored and controlled. Network primitives

are developed to guarantee that only relevant devices are contacted when a query is evaluated.

1.3 Device Database Systems

In this paper, we explain our new concept of a device database system, an area that we consider a very

fruitful direction for new research. In Section 2, we describe database abstractions for representing

devices and we illustrate how queries are formulated in SQL with minimal additions to the language. In

Section 3, we use an example to show how distributed query processing techniques are applied in the

new context of a device database system. We use an analytical model to illustrate the benefits of our

approach.

We would like to point out that the methods described in this paper represent the first generation of our

system [BS00]. The core components of the first generation COUGAR system are implemented and

 �

fully functional. We demonstrated the system at the Intel Computing Continuum Conference

[ICCC00]. Note that in this paper we do not address several of the specific research challenges that lie

ahead, such as new query processing strategies to leverage computing capabilities on the devices, query

processing strategies that adapt to changing conditions in the network, decentralized meta-data

management, and administration; we overview these issues as we conclude in Section 4.

2 Device Database Systems

We call a physical object with computing and communication capabilities a device. Some devices

embed computing and communication capabilities (e.g., WINS sensor nodes [PK00], Smart Dust

Motes [KKP99], cell phones or Smartcards) while others are composed of a physical object connected

to an external computer (e.g., a door actuator connected to a desktop computer). Devices are

interconnected and accessible from a local- or wide-area network. Some devices are stationary, others

are mobile; some devices are always connected to the network, others intermittently. In this paper we

concentrate on stationary devices.

2.1 Database Abstractions for Representing Devices

In the warehousing approach, discussed in Section 1, devices are not part of the database system. They

are accessed using a predefined extraction procedure that populates relations in the centralized database

system. Our goal in a device database system is to access devices directly when processing queries. We

thus need to represent devices in the database system.

Let us first refine our definition of devices. We consider that each device is a mini-server that supports

a set of functions and can process portions of the queries directly at the device2. A function either (a)

acquires, stores and processes data or (b) triggers an action in the physical world. Both kinds of

functions return results (at least a status report or an error message). We distinguish between

synchronous and asynchronous functions. Synchronous functions return results immediately, on-

demand; they are used to monitor continuous phenomena, e.g., a function that returns the rainfall level.

Asynchronous functions return results after an arbitrary period of time; they are used to monitor

threshold events; e.g., a function that detects an abnormal rainfall level. Functions provided by an

intermittently connected device can only return results when the device is connected; they are

2 Embedding a database server on a device is realistic. All major database vendors propose database servers
for palm-sized PCs, which represent the processing capabilities that we can expect from all devices in a
near future.

 �

asynchronous functions. Stationary devices, e.g. rainfall sensors, may support both synchronous and

asynchronous functions.

We need to represent the set of functions provided by devices at the database level. We distinguish two

levels of representation:

1. User representation: How are devices modeled in the database schema?

2. Internal representation: How are devices represented internally?

2.1.1 User Representation

Today’s object-relational and object-oriented databases support Abstract Data Type (ADT) objects that

are single attribute values encapsulating a collection of related data [S98]. Note that there are natural

parallels between devices and ADTs. Both ADTs and devices provide controlled access to

encapsulated data through a well-defined interface. We build upon this observation by modeling each

type of device in the network as an ADT. The public interface of the ADT corresponds to the specific

functions supported by the device. An actual ADT object in the database corresponds to a physical

device in the real world.

Let us model the database schema corresponding to the flood detection example from Section 1.

We consider a simplified schema that consists of the following relation:

RFSensors(Sensor, X, Y)

A record in the RFSensors relation has three attributes. The first attribute, called Sensor, is an ADT

that represents the physical rainfall sensors. The actual sensor data is located on the rainfall sensor;

the ADT Sensor provides functions for accessing the data. For example, Sensor.getRainfallLevel()

returns the current level of rainfall measured in mm. The other two attributes denote the location of

the sensor according to some coordinate system.

2.1.2 Internal Representation

Before discussing the internal representation of ADT functions, let us recall some background

knowledge about query processing and the internals of a database system. Query processing classically

proceeds as follows. The database system accepts a query, produces a query execution plan, executes

this plan against the database and produces the answer. The execution plan is the internal blueprint for

evaluating a query. It combines algebraic operators (e.g., selection, projection, and join operators in the

relational algebra), which serve as the basic building blocks for manipulating data (i.e., relations which

are sets of records).

 �

In object-relational database systems, ADT functions are either represented as expressions [S98] or as

joins involving virtual relations [C98]3. When an expression containing an ADT function is evaluated, a

(local) function is called to obtain its return value. It is assumed that this return value is readily available

on-demand. This assumption does not hold in a device database system for two reasons. First, functions

corresponding to device ADT functions may incur high latency due to their distant location from the

database server. Second, some device functions are asynchronous and thus a call to such a function

may incur an arbitrary delay.

A virtual relation is a tabular representation of a function. A record in a virtual relation (called a

virtual record) contains the input arguments and the output argument of the function it is associated

with4. Such relations are called virtual because they are not actually defined in the database schema, as

opposed to base relations. In COUGAR, we use virtual relations for the internal representation of

device functions.

If a device function M takes m arguments, then the schema of its associated virtual relation Attrs(VR)

has m+3 attributes, where the first attribute corresponds to the unique identifier of a device (i.e., the

identifier of an actual device ADT object), attributes 2 to m+1 correspond to the input arguments of M,

attribute m+2 corresponds to the output value of M and attribute m+3 is a time stamp corresponding to

the point in time at which the output value is obtained5. We assume global time. Each time stamp thus

determines a position in an ordered domain shared across all devices. As a consequence, each virtual

relation could be considered as a sequence [SLR95].

In our example, the database schema consists of one base relation (RFSensors) and of a virtual relation

VRFSensorsGetRainfallLevel for the function getRainfallLevel(). Since this function takes no input

arguments, the virtual relation has three attributes: Sensor, Level, and TimeStamp, i.e., the identifier of

the Sensor device, the Level of rainfall measured and the associated TimeStamp.

Note that a virtual relation has specific properties:

• A virtual relation is append-only: New records are inserted in a virtual relation when the associated

device function returns a result. Records in a virtual relation are never updated or deleted.

• A virtual relation is naturally partitioned across all devices represented by the same device ADT.

Each device function contributes to a portion of the virtual relation it is associated to.

3 Table functions defined in IBM DB2 associate a user-defined function with a virtual relation.
4 We assume without loss of generality that a device function has exactly one return value; an extension to
the general case is straightforward.
5 Note that for mobile devices, we might integrate the location of the device as an additional attribute in the
virtual relation.

 �

The latter observation has an interesting consequence: a collection of devices is internally

represented as a distributed database. Virtual relations are partitioned across a set of devices. Base

relations are either stored on a central database server or partitioned across devices6.

The Cougar System consists of a front-end server connected to a set of devices. The front-end includes

a full-fledged database server. Devices include a lightweight query execution engine that is responsible

for accessing virtual relations and for processing query fragments that involve these virtual relations

2.2 Queries over a Device Database

Recall from Section 1 that we consider historical queries, snapshot queries and long-running queries

over a device network. Historical and snapshot queries are naturally formulated as declarative queries

in SQL. Long running queries are also formulated in SQL with little modifications to the language. We

add clauses for specifying the duration of a long-running query; the choice of syntax is arbitrary.

Because of space limitation, we do not describe the complete query semantics here; the interested

reader is referred to Bonnet et al. [B+99] for details. Note that long-running queries involving time

windows (in particular aggregates over time windows) are best expressed using temporal extensions to

the relational model [T+93][DRS99] or using a sequence model [SLR95].

Let us give an example of long-running query based on the flood detection application presented in

Section 1.

Query Q: “Retrieve every 30 seconds the rainfall level if it is greater than 50 mm”.

SELECT R.Sensor.getRainfallLevel()

FROM RFSensors R

WHERE R.Sensor.getRainfallLevel() > 50

 AND $every(30);

The function $every(30) specifies that a new record is inserted every 30 seconds into the append-only

virtual relation corresponding to the function RFSensor.getRainfallLevel(). This record is propagated

within the query execution plan chosen for the long-running query and possibly a new answer is

generated. Note that a long-running query is not evaluated by repeatedly executing the declarative

query over the new records inserted in the virtual relations (this would be a form of polling and it would

introduce an arbitrary delay in the processing of device data).

6 It is particularly interesting to partition a base relation that references a device ADT in a system where
devices frequently join or leave the network; partitioning the base relation thus avoids maintaining
centralized information concerning the devices currently in the system.

 �

3 Query Processing in a Device Database System

In this section, we concentrate on a simple example to give an overview of query processing and show

the benefits of the distributed query processing approach versus a warehousing approach. Because of

space limitation, we do not cover here all the issues related to query processing in a device database

system. We first define new performance metrics and then discuss our example.

3.1 Performance Metrics

When processing a query, a database system first constructs an execution plan. The query optimizer is

responsible for generating the execution plan that minimizes a given cost function.

The traditional performance metrics in a database system are throughput and response time.

Throughput is the average number of queries processed per unit of time; it depends on the total work

performed in the system to evaluate a query. Response time is the time needed by the system to

produce all answer records to a query.

For long running queries in a device database system, the traditional performance metric of query

response time becomes obsolete: The query will always run for a given time interval, with varying

resource usage.

We define two new metrics that correspond to the performance goals of a device database system:

1. Resource Usage: The total amount of energy consumed by the devices when executing a

query. Resource usage is expressed in Joules.

2. Reaction time: the interval between the time a function, called on device, returns a value and

the time the corresponding answer is produced on the front-end. Reaction time is expressed in

seconds.

The problem now is (a) to define cost models for resource usage and reaction time and (b) to obtain and

maintain correct settings for the system parameters from the cost model, i.e., settings that actually

reflect the status of a given device database system over time.

3.2 Example

Our goal in this section is not to cover all issues related to query processing in a device database

system, but to illustrate how existing distributed database techniques can be applied in this new context

[ML86], [Y85]. We discuss the characteristics of device database systems with respect to existing

distributed database system and use an analytical model to illustrate the benefits of our approach.

 �

Query Q1: “Retrieve every 30 seconds the rainfall level if it is greater than 50 mm”.

SELECT VR.value

FROM VRFSensorsGetRainfallLevel VR, RFSensors R

WHERE VR.Sensor = R.Sensor AND VR.value > 50

 AND $every(30);

We use as our example the query Q1, which is the result of rewriting query Q using the virtual relation

VRFSensorsGetRainfallLevel. This query could be used to monitor the evolution of rainfall in flooded

areas. We consider a system with 200 devices; the cardinality of relation R is therefore 200 records.

Query Q1 is run as a long-running query with a duration of 4 hours; the rainfall level is measured every

30 seconds – as a result, up to 480 virtual records are inserted into each partition of the virtual relation.

3.2.1 Distributed Query Execution Plans

 SQL queries usually have a large space of possible execution plans. These are obtained by considering

various shapes for the tree of relational operators, by permuting the position of relational operators in

this tree, by choosing various implementations for a relational operator (in particular, each database

system implements a set of join methods, e.g. nested loop, sort-merge, hash-join, semi-join), and by

permuting the relative position of sub-trees [RG99]. In a distributed context, the execution plan reflects

the distributed nature of the database: it is composed of query fragments, i.e. sub-trees of relational

operators, assigned to execution sites. Three more dimensions are thus added to the space of possible

execution plans: What are the candidate execution sites? How are query fragments associated to

execution sites? What is the strategy for transferring data from one site to another?

Figure 1 presents four execution plans for Q1. Each plan is a tree of relational operators that manipulate

base and virtual relations. Plan T represents the execution plan that would be generated for Query Q1 in

a traditional system such as ALERT. Data extracted from the devices are materialized in the relation

VR that is located on the front-end (represented as a gray rectangle). The execution plan is a simple tree

composed of one join operator between relation R and relation VR (using joining condition R.Sensor =

VR.Sensor AND VR.value > 50). This join is executed on the front-end.

The other execution plans illustrate the use of distributed database techniques in a device database

system. Plan A is also a simple tree where R is joined on the front-end with relation VR partitioned

across a set of devices (represented as white rectangles). This execution plan is evaluated as follows.

The front-end asks each device to measure rainfall level and to transfer the resulting virtual records

back to the front-end. (Virtual records are produced once on each site for a snapshot query, and

 ��

repetitively for a long-running query). Each virtual record arriving on the front-end is then joined with

relation R.

�)LJXUH����([HFXWLRQ�3ODQV�IRU�4XHU\�4��

Intuitively, this execution plan is not optimal: all devices with rainfall sensors transmit data to the front-

end while the query only concerns the sensors which measure a rainfall level greater than 50. An

alternative execution plan pushes the join to the devices thus trading increased processing on devices

for reduced network traffic. Instead of pushing the join between R and VR to each device, Plan B

defines a semi-join between relation R and the partitions of the virtual relation VR located on the

devices [Y85]. The semi-join projects out the joining attribute from relation R (here the device id

Sensor) and sends the resulting relation to all devices – a semi-join avoids transferring the complete

relation R to all devices. On the devices, whenever the rainfall level is measured, a virtual record is

generated and it is joined with the portion of relation R sent by the front-end (using joining condition

Traditional: Plan T Plan A

Plan B Plan C

VR

R

VR
VR

R

VR
VR

VR

VR

R

R Materialized VR

R

 σ

VR

 σ

VR

 σ

VR

 ��

R.Sensor = VR.Sensor and VR.value > 50). If the joining condition is verified then the virtual record is

sent back to the front-end where it is joined with complete records from relation R (not only the joining

attribute). Only the sensors whose rainfall level is greater than 50 send data back to the front-end.

A third execution plan only pushes the selection (VR.value > 50) onto the devices; only records that

verify this condition are sent back to the front-end where they are joined with relation R. Plan C

represents this execution plan. Compared to Plan B, there is no subset of relation R transmitted to the

devices. We compare the resource usage of these three execution plans in the next section.

3.2.2 Analytical Model

 We use a simple analytical model to compare the costs of the three execution plans identified in the

previous section. We assume a multi-cluster, single hop WINS network [PK00]. There are 20 clusters

each containing 10 devices. We consider the total energy consumed per sensor node as the linear

combination of CPU costs, the cost of a memory access, the cost of sending a message and the cost of

sending N bytes on the network:

Cost in Joules = Wcpu * CPU + Wram * RAM + Wsend * NbMsgs + Wbdw * SizeMsgs

The weight factors are used to transfer all components of the cost into Joules. Table 2 lists the weight

factors we used for our experiments; the factors were obtained by W. Kaiser and G.Pottie through

measurements in a WINS network composed of sensor nodes from Sensoria Corp. [PK00]. The energy

needed by the processor to operate dominates the energy needed by the RAM, so we set Wram = 0.

The cost per record of a join or a selection is NbInstPerComp instructions. We do not model the cost of

invoking the device function. The cost per message is due to synchronization between the sending and

receiving nodes. We consider that nodes are 30 meters from each other. In this case the cost of sending

1000 bytes is 0.23J (note that the capacity of a battery on a WINS sensor node is 3.5E4 Joules). We

further assume that the size of each virtual record is 50 bytes.

Wcpu 0.000001 J/instruction

Wram 0

Wsend 0.059 J/msg

Wbdw 0.23 J/ Kbytes

NbInstPerComp 5000

7DEOH����3DUDPHWHUV�DQG�VHWWLQJV�IRU�PRGHOLQJ�UHVRXUFH�XVDJH

We study resource usage on sensor nodes directly involved in the query (i.e., the nodes on which a

partition of the virtual relation is located) – we do not consider resource usage on the nodes that are

traversed for communication purposes. Each sensor node satisfies the condition in query Q1 (Vr.value

> 50) with a certain probability. We trace the resource usage in the two extreme cases, i.e., for sensor

 ��

nodes which are always located outside a flood area and whose rainfall level is thus never greater than

50 and for sensor nodes that are always located inside a flood area.

Figure 2 traces the resource usage expressed in Joules as a function of time (given that the rainfall level

is measured every 30 seconds) for nodes always located outside a flood area. With Plan A, data is sent

back to the front-end whenever it is generated. With Plan B and respectively Plan C a join and

respectively a selection are pushed to the device. As a result, the condition on the rainfall level is

checked on the devices and none of the devices located outside a flood are sends data back to the front-

end. Plan B pays the initial cost of transferring a fragment of relation R to the devices. This initial cost

is amortized (compared to Plan A) during the lifespan of a long-running query.

0

1000

2000

3000

4000

5000

6000

7000

0 5000 10000 15000 20000

time in sec

co
st

 in
 J

o
u

le
s

Plan A

Plan B

Plan C

�

)LJXUH����5HVRXUFH�XVDJH�IRU�VHQVRUV�ORFDWHG�RXWVLGH�D�IORRG�DUHD�

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 5000 10000 15000 20000

time in seconds

co
st

 in
 J

o
u

le
s

Plan A

Plan B

Plan C

�

)LJXUH����5HVRXUFH�XVDJH�IRU�VHQVRUV�ORFDWHG�LQVLGH�D�IORRG�DUHD��

 ��

Figure 3 traces the resource usage expressed in Joules as a function of time (given that the rainfall level

is measured every 30 seconds) for nodes always located inside a flood area. With all plans, data is

always sent back to the front-end. The initial cost of Plan B is here never amortized. Plan C and Plan A

have almost similar curves – this illustrates that the cost of performing a selection is low compared to

the cost of sending data.

In this example, pushing a selection as in Plan C is the optimal choice. This is intuitive since the query

filters out uninteresting events generated on the devices. Pushing the selection allows the device

database system to trade efficiently increased processing on the devices for reduced communication.

4 Conclusions

In the near future, devices with processing and communication capabilities will be deployed in the

physical world, providing a powerful computing platform. The first generation of the Cornell Cougar

systems demonstrates that the application of database technology to this new computing platform

shows much promise for providing flexible and scalable access to large collections of devices. Our

work has introduced a set of research problems, and we overview here shortly some of the questions

that our ongoing research is addressing:

a) Meta-data management: Current distributed database optimizers assume global knowledge, i.e.

the optimizer has access to exact meta-information about the complete system. In a device database

system, we cannot assume that a single site maintains global knowledge about the system because

of the large scale and dynamic nature of a device network, and because it would incur a significant

administration overhead. How can we maintain meta-data in a decentralized way and how can we

utilize this information to devise good query plans?

b) Query processing. Query processing should take advantage of the computing capabilities at the

devices in order to minimize the total amount of resources consumed in the device network while

minimizing reaction time. In addition, conditions in a device network change over time. Devices

fail, move or disconnect, the network topology may evolve, and batteries are used and recharged.

Thus query plans have to adapt dynamically to changing network conditions and have to show a

certain degree of robustness against device failures. In addition, for long-running queries the

conditions in the device network might change significantly while the query runs.

 Acknowledgements

We thank Stephane Bressan and Tobias Mayr who helped debug earlier versions of this paper as well

as the reviewers for helpful comments. This paper benefited from interactions with the SensIT

 ��

community. In particular, Bill Kaiser provided valuable information concerning the Sensoria WINS

network. This work is sponsored by the Defense Advanced Research Projects Agency (DARPA) and

Air Force Research Laboratory, Air Force Material Command, USAF, under agreement number F-

30602-99-0528, by the National Science Foundation under Grant No. EIA 97-03470, by NSF Grant

IIS-9812020, and by a grant from Microsoft Research to Philippe Bonnet.

References

[BS00] Ph. Bonnet, P.Seshadri. Device Database Systems. Poster Paper. Proceedings of the International
Conference on Data Engineering ICDE’99, San Diego, CA, March, 2000.

[B+99] Ph.Bonnet, J.Gehrke, T.Mayr, P.Seshadri. Query Processing in a Device Database System. Cornell
Technical Report TR99-1775, October, 1999.

[C98] D. Chamberlain. A Complete Guide to DB2 Universal Database. Morgan Kaufmann. 1998.
[DRS99] A.Dekhtyar, R. Ross and V.S. Subrahmanian. Probabilistic Temporal Databases: Algebra,

January 1999, Univ of Maryland technical report CS-TR-3987, submitted to ACM Transactions
on Database Systems.

[EGH00] D.Estrin, R.Govindan, J.Heidemann (Editors): Embedding the Internet. Communications of the
ACM. Volume 43, Number 5. May 2000.

[E+99] D.Estrin, R.Govindan, J.Heidemann, S.Kumar: Next Century Challenges: Scalable Coordination
in Sensor Networks. Mobicom’99, Seattle, Washington: 263 – 270

[ICCC00] Intel Computing Continuum Conference. http://www.intel.com/intel/cccon/
[IG99] Tomasz Imielinski, Samir Goel: DataSpace - Querying and Monitoring Deeply Networked

Collections in Physical Space. MobiDE 1999: 44-51
[KKP99] J. M. Kahn, R. H. Katz and K. S. J. Pister, "Mobile Networking for Smart Dust", ACM/IEEE Intl.

Conf. on Mobile Computing and Networking (MobiCom 99), Seattle, WA, August 17-19, 1999
[ML86] L.F.Mackert, G.M.Lohman. R* Optimizer Validation and Performance Evaluation for Distributed

Queries. In Proceedings of the International VLDB Conference, pages 149-159, Kyoto, Japan,
August 1986. Management Systems. ICOD 1980: 204-215

[P99] The Cornell Predator Project: http://www.cs.cornell.edu/database.html
[PK00] G.Pottie, W. Kaiser: Wireless Integrated Network Sensors (WINS): Principles and Approach.

Communications of the ACM. Vol 43, Number 5. May 2000.
[RG99] R. Ramakrishnan and Johannes Gehrke. Database Management Systems, Second Edition.

McGrawHill 1999.
[S98] P. Seshadri. Enhanced Abstract Data Types in Object-Relational Databases. VLDB Journal 7(3):

130-140 (1998).
[S99] DARPA: SenseIT Project: http://www.darpa.mil/ito/research/sensit/background.html
[SLR95] P. Seshadri, M. Livny, R. Ramakrishnan: SEQ: A Model for Sequence Databases. ICDE 1995.
[S+91] U. Schreier, H. Pirahesh, R. Agrawal, C. Mohan: Alert: An Architecture for Transforming a

Passive DBMS into an Active DBMS. VLDB 1991: 469-478
[T+93] A. Tansel, J.Clifford, S.Gadia, S.Jajodia, A.Segev, R.Snodgrass: Temporal Database: Theory,

Design and Implementation. Benjamin/Cummings. 1993.
[Y85] C. T. Yu: Distributed Database Query Processing. Query Processing in Database Systems 1985:

48-61

