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In the next decade, millions of sensors and small-scale mobile devices will integrate processors, 

memory and communication capabilities. Networks of devices will be widely deployed for 

monitoring applications. In these new applications, users need to query very large collections of 

devices in an ad-hoc manner. Most existing systems rely on a centralized system for collecting 

device data. These systems lack flexibility because data is extracted in a predefined way; also, 

they do not scale to a large number of devices because large volumes of raw data are 

transferred. In our new concept of a device database system, distributed query execution 

techniques are applied to leverage the computing capabilities of devices, and to reduce 

communication. In this paper, we define an abstraction that allows us to represent a device 

network as a database and we describe how distributed query processing techniques are applied 

in this new context. 

1 Introduction 

1.1 Device Networks 

The widespread deployment of sensors, actuators and mobile devices is transforming the physical 

world into a computing platform. We will soon find computing power, memory and communication 

capabilities on temperature sensors and motion detectors, on door locks, light bulbs and alarms, on 

every cellular phone, in every vehicle, and soon in every person’s wallet or key ring. Emerging 

networking techniques ensure that devices are interconnected and accessible from local- or wide-area 

networks [EGH00].  

Using this new computing platform, users interact with portions of the physical world. In a large class 

of applications, users monitor phenomena in a given environment. Examples of monitoring 

                                                           
1 Praveen Seshadri is currently on leave at Microsoft: 3/1102 Microsoft, One Microsoft Way, Redmond, 
WA. pravse@microsoft.com. 



 �

applications include gathering information in a disaster area, supervising items in a factory warehouse, 

or controlling vehicle traffic in a large city [S99][E+99].  

Let us take the concrete example of an existing flood detection system. For about twenty years now, the 

ALERT system has been deployed in several US states (http://www.alertsystems.org). A typical 

ALERT installation consists of several types of sensors in the field: rainfall sensors, water level sensors, 

weather sensors, etc. A predefined set of data is regularly extracted from each sensor, transferred to a 

central site and stored in a database system. Users query the database system through a graphical user 

interface. Here are some example queries that users can express:  “For each rainfall sensor, display the 

average level of rainfall for 1999”, “Display the current level of rainfall for all sensors in Tompkins 

County”, or “Every hour, display the location of the sensors where the level of rainfall is greater than 

250mm”. 

1.2 Query Processing over Device Networks 

The example of the flood detection system emphasizes that monitoring is best described in a declarative 

manner – users submit queries concerning a device network regardless of its physical structure or its 

organization. In monitoring applications, users typically ask three kinds of queries:  

• Historical queries: these are typically aggregate queries over historical data obtained from the 

device network, e.g. “for each rainfall sensor, display the average level of rainfall for 1999.”  

• Snapshot queries: these queries concern the device network at a given point in time, e.g. 

“retrieve the current rainfall level for all sensors in Tompkins County.” 

• Long-running queries: these queries concern the device network over a time interval, e.g., 

“For the next 5 hours, retrieve every 30 seconds the rainfall level for all sensors in Tompkins 

County.” 

The existing ALERT system implements a warehousing approach, where data are extracted from the 

devices in a predefined way and stored in a centralized database system that is responsible for query 

processing. This warehousing approach is well suited for aggregate queries asked over historical data; it 

has however two major limitations: 

1. The warehousing approach dissociates access to devices from the query workload. For 

instance, in an emergency situation, a fire department might require that specific data be accessed 

in a group of sites in order to decide on actions to take: “every minute, display the rainfall level 

obtained from all sensors in Tompkins County”. This long-running query cannot be answered in a 

traditional system if data is extracted from the sensors too infrequently. One solution would be to 
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continuously extract all data from each device and transfer them to the database server. This 

solution is not feasible in practice because it might not be possible to extract all data from a sensor 

(e.g., a camera takes measurements in only one direction and it is not possible to measure data in 

all directions simultaneously) or because it is too expensive to transmit a continuous flow of raw 

data through the device network. 

2. The warehousing approach uses valuable resources to transfer large amounts of raw data 

from devices to the database server. Excessive resources are consumed at each device and on the 

network when transmitting large volumes of data. First, it is in general not necessary to extract data 

from the whole device network to answer a given query. In our example, the group of sensors 

sending data back to the database server should be reduced to sensors located in Tompkins County. 

Second, modern devices include processing capabilities that could be used to process data locally 

and thus reduce data transfer and energy consumption.  

Our alternative to a warehousing approach is a distributed approach where the query workload 

determines the data that are extracted from remote sites, and where possibly portions of queries are 

executed on devices. This approach allows the database system to control the resources that are used. It 

is primarily targeted at snapshot and long-running queries; in addition aggregate queries over historical 

data could be evaluated against materialized data stored on some devices instead of a centralized server. 

We call a database system that enables distributed query processing over a device network a device 

database system. We study such systems in the COUGAR Device Database Project at Cornell 

University. 

The DataSpace project at Rutgers (http://www.cs.rutgers.edu/dataman/) recognized the advantages of 

the distributed approach over the warehousing approach for querying device networks [IG99]. In a 

DataSpace, devices encapsulating data can be queried, monitored and controlled. Network primitives 

are developed to guarantee that only relevant devices are contacted when a query is evaluated.  

1.3 Device Database Systems 

In this paper, we explain our new concept of a device database system, an area that we consider a very 

fruitful direction for new research. In Section 2, we describe database abstractions for representing 

devices and we illustrate how queries are formulated in SQL with minimal additions to the language. In 

Section 3, we use an example to show how distributed query processing techniques are applied in the 

new context of a device database system. We use an analytical model to illustrate the benefits of our 

approach. 

We would like to point out that the methods described in this paper represent the first generation of our 

system [BS00]. The core components of the first generation COUGAR system are implemented and 
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fully functional. We demonstrated the system at the Intel Computing Continuum Conference 

[ICCC00]. Note that in this paper we do not address several of the specific research challenges that lie 

ahead, such as new query processing strategies to leverage computing capabilities on the devices, query 

processing strategies that adapt to changing conditions in the network, decentralized meta-data 

management, and administration; we overview these issues as we conclude in Section 4. 

2 Device Database Systems 

We call a physical object with computing and communication capabilities a device. Some devices 

embed computing and communication capabilities (e.g., WINS sensor nodes [PK00], Smart Dust 

Motes [KKP99], cell phones or Smartcards) while others are composed of a physical object connected 

to an external computer (e.g., a door actuator connected to a desktop computer). Devices are 

interconnected and accessible from a local- or wide-area network. Some devices are stationary, others 

are mobile; some devices are always connected to the network, others intermittently. In this paper we 

concentrate on stationary devices.  

2.1 Database Abstractions for Representing Devices 

In the warehousing approach, discussed in Section 1, devices are not part of the database system. They 

are accessed using a predefined extraction procedure that populates relations in the centralized database 

system. Our goal in a device database system is to access devices directly when processing queries. We 

thus need to represent devices in the database system.  

Let us first refine our definition of devices. We consider that each device is a mini-server that supports 

a set of functions and can process portions of the queries directly at the device2. A function either (a) 

acquires, stores and processes data or (b) triggers an action in the physical world. Both kinds of 

functions return results (at least a status report or an error message). We distinguish between 

synchronous and asynchronous functions. Synchronous functions return results immediately, on-

demand; they are used to monitor continuous phenomena, e.g., a function that returns the rainfall level. 

Asynchronous functions return results after an arbitrary period of time; they are used to monitor 

threshold events; e.g., a function that detects an abnormal rainfall level. Functions provided by an 

intermittently connected device can only return results when the device is connected; they are 
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asynchronous functions. Stationary devices, e.g. rainfall sensors, may support both synchronous and 

asynchronous functions. 

We need to represent the set of functions provided by devices at the database level. We distinguish two 

levels of representation: 

1. User representation: How are devices modeled in the database schema? 

2. Internal representation: How are devices represented internally? 

2.1.1 User Representation 

Today’s object-relational and object-oriented databases support Abstract Data Type (ADT) objects that 

are single attribute values encapsulating a collection of related data [S98]. Note that there are natural 

parallels between devices and ADTs. Both ADTs and devices provide controlled access to 

encapsulated data through a well-defined interface. We build upon this observation by modeling each 

type of device in the network as an ADT. The public interface of the ADT corresponds to the specific 

functions supported by the device. An actual ADT object in the database corresponds to a physical 

device in the real world.   

Let us model the database schema corresponding to the flood detection example from Section 1. 

We consider a simplified schema that consists of the following relation: 

RFSensors(Sensor, X, Y) 

A record in the RFSensors relation has three attributes. The first attribute, called Sensor, is an ADT 

that represents the physical rainfall sensors. The actual sensor data is located on the rainfall sensor; 

the ADT Sensor provides functions for accessing the data. For example, Sensor.getRainfallLevel() 

returns the current level of rainfall measured in mm. The other two attributes denote the location of 

the sensor according to some coordinate system.  

2.1.2 Internal Representation  

Before discussing the internal representation of ADT functions, let us recall some background 

knowledge about query processing and the internals of a database system. Query processing classically 

proceeds as follows. The database system accepts a query, produces a query execution plan, executes 

this plan against the database and produces the answer. The execution plan is the internal blueprint for 

evaluating a query. It combines algebraic operators (e.g., selection, projection, and join operators in the 

relational algebra), which serve as the basic building blocks for manipulating data (i.e., relations which 

are sets of records).  
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In object-relational database systems, ADT functions are either represented as expressions [S98] or as 

joins involving virtual relations [C98]3. When an expression containing an ADT function is evaluated, a 

(local) function is called to obtain its return value. It is assumed that this return value is readily available 

on-demand. This assumption does not hold in a device database system for two reasons. First, functions 

corresponding to device ADT functions may incur high latency due to their distant location from the 

database server. Second, some device functions are asynchronous and thus a call to such a function 

may incur an arbitrary delay.  

A virtual relation is a tabular representation of a function. A record in a virtual relation (called a 

virtual record) contains the input arguments and the output argument of the function it is associated 

with4. Such relations are called virtual because they are not actually defined in the database schema, as 

opposed to base relations. In COUGAR, we use virtual relations for the internal representation of 

device functions.  

If a device function M takes m arguments, then the schema of its associated virtual relation Attrs(VR) 

has m+3 attributes, where the first attribute corresponds to the unique identifier of a device (i.e., the 

identifier of an actual device ADT object), attributes 2 to m+1 correspond to the input arguments of M, 

attribute m+2 corresponds to the output value of M and attribute m+3 is a time stamp corresponding to 

the point in time at which the output value is obtained5. We assume global time. Each time stamp thus 

determines a position in an ordered domain shared across all devices. As a consequence, each virtual 

relation could be considered as a sequence [SLR95]. 

In our example, the database schema consists of one base relation (RFSensors) and of a virtual relation 

VRFSensorsGetRainfallLevel for the function getRainfallLevel(). Since this function takes no input 

arguments, the virtual relation has three attributes: Sensor, Level, and TimeStamp, i.e., the identifier of 

the Sensor device, the Level of rainfall measured and the associated TimeStamp. 

Note that a virtual relation has specific properties: 

• A virtual relation is append-only: New records are inserted in a virtual relation when the associated 

device function returns a result. Records in a virtual relation are never updated or deleted. 

• A virtual relation is naturally partitioned across all devices represented by the same device ADT. 

Each device function contributes to a portion of the virtual relation it is associated to. 
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The latter observation has an interesting consequence: a collection of devices is internally 

represented as a distributed database. Virtual relations are partitioned across a set of devices. Base 

relations are either stored on a central database server or partitioned across devices6.  

The Cougar System consists of a front-end server connected to a set of devices. The front-end includes 

a full-fledged database server. Devices include a lightweight query execution engine that is responsible 

for accessing virtual relations and for processing query fragments that involve these virtual relations  

2.2 Queries over a Device Database  

Recall from Section 1 that we consider historical queries, snapshot queries and long-running queries 

over a device network. Historical and snapshot queries are naturally formulated as declarative queries 

in SQL. Long running queries are also formulated in SQL with little modifications to the language. We 

add clauses for specifying the duration of a long-running query; the choice of syntax is arbitrary.  

Because of space limitation, we do not describe the complete query semantics here; the interested 

reader is referred to Bonnet et al. [B+99] for details. Note that long-running queries involving time 

windows (in particular aggregates over time windows) are best expressed using temporal extensions to 

the relational model [T+93][DRS99] or using a sequence model [SLR95].  

Let us give an example of long-running query based on the flood detection application presented in 

Section 1. 

Query Q: “Retrieve every 30 seconds the rainfall level if it is greater than 50 mm”.  

SELECT R.Sensor.getRainfallLevel() 

FROM RFSensors R 

WHERE R.Sensor.getRainfallLevel() > 50 

    AND $every(30); 

The function $every(30) specifies that a new record is inserted every 30 seconds into the append-only 

virtual relation corresponding to the function RFSensor.getRainfallLevel().  This record is propagated 

within the query execution plan chosen for the long-running query and possibly a new answer is 

generated. Note that a long-running query is not evaluated by repeatedly executing the declarative 

query over the new records inserted in the virtual relations (this would be a form of polling and it would 

introduce an arbitrary delay in the processing of device data). 

                                                           
6 It is particularly interesting to partition a base relation that references a device ADT in a system where 
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centralized information concerning the devices currently in the system. 
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3 Query Processing in a Device Database System 

In this section, we concentrate on a simple example to give an overview of query processing and show 

the benefits of the distributed query processing approach versus a warehousing approach. Because of 

space limitation, we do not cover here all the issues related to query processing in a device database 

system. We first define new performance metrics and then discuss our example. 

3.1 Performance Metrics 

When processing a query, a database system first constructs an execution plan. The query optimizer is 

responsible for generating the execution plan that minimizes a given cost function.  

The traditional performance metrics in a database system are throughput and response time. 

Throughput is the average number of queries processed per unit of time; it depends on the total work 

performed in the system to evaluate a query. Response time is the time needed by the system to 

produce all answer records to a query.  

For long running queries in a device database system, the traditional performance metric of query 

response time becomes obsolete: The query will always run for a given time interval, with varying 

resource usage.  

We define two new metrics that correspond to the performance goals of a device database system: 

1. Resource Usage: The total amount of energy consumed by the devices when executing a 

query. Resource usage is expressed in Joules. 

2. Reaction time: the interval between the time a function, called on device, returns a value and 

the time the corresponding answer is produced on the front-end. Reaction time is expressed in 

seconds. 

The problem now is (a) to define cost models for resource usage and reaction time and (b) to obtain and 

maintain correct settings for the system parameters from the cost model, i.e., settings that actually 

reflect the status of a given device database system over time. 

3.2 Example 

Our goal in this section is not to cover all issues related to query processing in a device database 

system, but to illustrate how existing distributed database techniques can be applied in this new context 

[ML86], [Y85]. We discuss the characteristics of device database systems with respect to existing 

distributed database system and use an analytical model to illustrate the benefits of our approach. 
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Query Q1: “Retrieve every 30 seconds the rainfall level if it is greater than 50 mm”. 

SELECT VR.value 

FROM VRFSensorsGetRainfallLevel VR, RFSensors R 

WHERE VR.Sensor = R.Sensor AND VR.value > 50 

           AND $every(30); 

We use as our example the query Q1, which is the result of rewriting query Q using the virtual relation 

VRFSensorsGetRainfallLevel. This query could be used to monitor the evolution of rainfall in flooded 

areas. We consider a system with 200 devices; the cardinality of relation R is therefore 200 records. 

Query Q1 is run as a long-running query with a duration of 4 hours; the rainfall level is measured every 

30 seconds – as a result, up to 480 virtual records are inserted into each partition of the virtual relation. 

3.2.1 Distributed Query Execution Plans 

 SQL queries usually have a large space of possible execution plans. These are obtained by considering 

various shapes for the tree of relational operators, by permuting the position of relational operators in 

this tree, by choosing various implementations for a relational operator (in particular, each database 

system implements a set of join methods, e.g. nested loop, sort-merge, hash-join, semi-join), and by 

permuting the relative position of sub-trees [RG99]. In a distributed context, the execution plan reflects 

the distributed nature of the database: it is composed of query fragments, i.e. sub-trees of relational 

operators, assigned to execution sites. Three more dimensions are thus added to the space of possible 

execution plans: What are the candidate execution sites? How are query fragments associated to 

execution sites? What is the strategy for transferring data from one site to another? 

Figure 1 presents four execution plans for Q1. Each plan is a tree of relational operators that manipulate 

base and virtual relations. Plan T represents the execution plan that would be generated for Query Q1 in 

a traditional system such as ALERT. Data extracted from the devices are materialized in the relation 

VR that is located on the front-end (represented as a gray rectangle). The execution plan is a simple tree 

composed of one join operator between relation R and relation VR (using joining condition R.Sensor = 

VR.Sensor AND VR.value > 50). This join is executed on the front-end. 

The other execution plans illustrate the use of distributed database techniques in a device database 

system. Plan A is also a simple tree where R is joined on the front-end with relation VR partitioned 

across a set of devices (represented as white rectangles). This execution plan is evaluated as follows. 

The front-end asks each device to measure rainfall level and to transfer the resulting virtual records 

back to the front-end. (Virtual records are produced once on each site for a snapshot query, and 
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repetitively for a long-running query). Each virtual record arriving on the front-end is then joined with 

relation R.   
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Intuitively, this execution plan is not optimal: all devices with rainfall sensors transmit data to the front-

end while the query only concerns the sensors which measure a rainfall level greater than 50. An 

alternative execution plan pushes the join to the devices thus trading increased processing on devices 

for reduced network traffic. Instead of pushing the join between R and VR to each device, Plan B 

defines a semi-join between relation R and the partitions of the virtual relation VR located on the 

devices [Y85]. The semi-join projects out the joining attribute from relation R (here the device id 

Sensor) and sends the resulting relation to all devices – a semi-join avoids transferring the complete 

relation R to all devices. On the devices, whenever the rainfall level is measured, a virtual record is 

generated and it is joined with the portion of relation R sent by the front-end (using joining condition 
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R.Sensor = VR.Sensor and VR.value > 50). If the joining condition is verified then the virtual record is 

sent back to the front-end where it is joined with complete records from relation R (not only the joining 

attribute). Only the sensors whose rainfall level is greater than 50 send data back to the front-end.  

A third execution plan only pushes the selection (VR.value > 50) onto the devices; only records that 

verify this condition are sent back to the front-end where they are joined with relation R. Plan C 

represents this execution plan. Compared to Plan B, there is no subset of relation R transmitted to the 

devices. We compare the resource usage of these three execution plans in the next section.  

3.2.2 Analytical Model 

 We use a simple analytical model to compare the costs of the three execution plans identified in the 

previous section. We assume a multi-cluster, single hop WINS network [PK00]. There are 20 clusters 

each containing 10 devices. We consider the total energy consumed per sensor node as the linear 

combination of CPU costs, the cost of a memory access, the cost of sending a message and the cost of 

sending N bytes on the network: 

Cost in Joules = Wcpu * CPU + Wram * RAM + Wsend * NbMsgs + Wbdw * SizeMsgs 

The weight factors are used to transfer all components of the cost into Joules. Table 2 lists the weight 

factors we used for our experiments; the factors were obtained by W. Kaiser and G.Pottie through 

measurements in a WINS network composed of sensor nodes from Sensoria Corp. [PK00]. The energy 

needed by the processor to operate dominates the energy needed by the RAM, so we set Wram = 0. 

The cost per record of a join or a selection is NbInstPerComp instructions. We do not model the cost of 

invoking the device function. The cost per message is due to synchronization between the sending and 

receiving nodes. We consider that nodes are 30 meters from each other. In this case the cost of sending 

1000 bytes is 0.23J (note that the capacity of a battery on a WINS sensor node is 3.5E4 Joules). We 

further assume that the size of each virtual record is 50 bytes. 

Wcpu 0.000001 J/instruction 

Wram 0 

Wsend 0.059 J/msg 

Wbdw 0.23 J/ Kbytes 

NbInstPerComp 5000 

7DEOH����3DUDPHWHUV�DQG�VHWWLQJV�IRU�PRGHOLQJ�UHVRXUFH�XVDJH 

We study resource usage on sensor nodes directly involved in the query (i.e., the nodes on which a 

partition of the virtual relation is located) – we do not consider resource usage on the nodes that are 

traversed for communication purposes. Each sensor node satisfies the condition in query Q1 (Vr.value 

> 50) with a certain probability. We trace the resource usage in the two extreme cases, i.e., for sensor 
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nodes which are always located outside a flood area and whose rainfall level is thus never greater than 

50 and for sensor nodes that are always located inside a flood area.  

Figure 2 traces the resource usage expressed in Joules as a function of time (given that the rainfall level 

is measured every 30 seconds) for nodes always located outside a flood area. With Plan A, data is sent 

back to the front-end whenever it is generated. With Plan B and respectively Plan C a join and 

respectively a selection are pushed to the device. As a result, the condition on the rainfall level is 

checked on the devices and none of the devices located outside a flood are sends data back to the front-

end. Plan B pays the initial cost of transferring a fragment of relation R to the devices. This initial cost 

is amortized (compared to Plan A) during the lifespan of a long-running query. 
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Figure 3 traces the resource usage expressed in Joules as a function of time (given that the rainfall level 

is measured every 30 seconds) for nodes always located inside a flood area. With all plans, data is 

always sent back to the front-end. The initial cost of Plan B is here never amortized. Plan C and Plan A 

have almost similar curves – this illustrates that the cost of performing a selection is low compared to 

the cost of sending data. 

In this example, pushing a selection as in Plan C is the optimal choice. This is intuitive since the query 

filters out uninteresting events generated on the devices. Pushing the selection allows the device 

database system to trade efficiently increased processing on the devices for reduced communication. 

4 Conclusions 

In the near future, devices with processing and communication capabilities will be deployed in the 

physical world, providing a powerful computing platform. The first generation of the Cornell Cougar 

systems demonstrates that the application of database technology to this new computing platform 

shows much promise for providing flexible and scalable access to large collections of devices. Our 

work has introduced a set of research problems, and we overview here shortly some of the questions 

that our ongoing research is addressing: 

a) Meta-data management: Current distributed database optimizers assume global knowledge, i.e. 

the optimizer has access to exact meta-information about the complete system. In a device database 

system, we cannot assume that a single site maintains global knowledge about the system because 

of the large scale and dynamic nature of a device network, and because it would incur a significant 

administration overhead. How can we maintain meta-data in a decentralized way and how can we 

utilize this information to devise good query plans? 

b) Query processing. Query processing should take advantage of the computing capabilities at the 

devices in order to minimize the total amount of resources consumed in the device network while 

minimizing reaction time. In addition, conditions in a device network change over time. Devices 

fail, move or disconnect, the network topology may evolve, and batteries are used and recharged. 

Thus query plans have to adapt dynamically to changing network conditions and have to show a 

certain degree of robustness against device failures. In addition, for long-running queries the 

conditions in the device network might change significantly while the query runs.  
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