
A Scalable and Provably Secure Hash-Based RFID Protocol

Gildas Avoine and Philippe Oechslin
EPFL, Lausanne, Switzerland

{gildas.avoine, philippe.oechslin}@epfl.ch

Abstract

The biggest challenge for RFID technology is to pro-
vide benefits without threatening the privacy of con-
sumers. Many solutions have been suggested but al-
most as many ways have been found to break them. An
approach by Ohkubo, Suzuki and Kinoshita using an
internal refreshment mechanism seems to protect pri-
vacy well but is not scalable. We introduce a specific
time-memory trade-off that removes the scalability is-
sue of this scheme. Additionally we prove that the sys-
tem truly offers privacy and even forward privacy. Our
third contribution is an extension of the scheme which
offers a secure communication channel between RFID
tags and their owner using building blocks that are al-
ready available on the tag. Finally we give a typical
example of use of our system and show its feasibility
by calculating all the parameters.

1 Introduction

The main goal of Radio Frequency Identification
(RFID) systems is to identify objects remotely by
embedding tags, tiny devices capable of transmitting
data, into these objects. Goods in stores can be
tagged in order to prevent shoplifting, or to speed
up the goods registration process by using wireless
scanning instead of human or optical scanning. RFID
tags are different from bar-codes. Firstly, each tag
contains a unique identifier while bar-codes represent
a lot identifier. Secondly, tags can be identified at
distance, e.g. several meters, without any optical or
visual contact. These aspects introduce important
privacy issues, in particular the traceability of the tags
by unauthorised parties.

Privacy issues. Privacy is one of the most serious
problems related to RFID. As long as this technol-
ogy suffers from privacy issues, consumers will reject
it. Some famous examples are the boycotts against
Benetton or against Gillette [14].

We define privacy as follows: Given a set of read-
ings between tags and readers, an adversary must not
be able to find any relation between any readings of
a same tag or set of tags. Since tags are not tamper-
resistant, an adversary may even obtain the data stored
in the memory of the tags additionnaly to the readings
from the readers/tags. He thush might become capa-
ble of tracking the past events of the tags, given their
content. We therefore define forward privacy : Given a
set of readings between tags and readers and given the
fact that all information stored in the involved tags has
been revealed at time t, the adversary must not be able
to find any relation between any readings of a same tag
or set of tags that occurred at a time t′ ≤ t.

Privacy also includes the fact that a tag must not
reveal any information about the kind of item it is
attached to.

Related work. Privacy can be enforcred in RFID
systems by “repressive” techniques (physical destruc-
tion, blocker tag [8], etc.) or “preventive” techniques
(e.g. [5, 6, 7, 9, 11, 13]). Unfortunately, only few
protocols of the latter category are secure (see [1, 2]).
We focus in this paper on the scheme proposed by
Ohkubo, Suzuki, and Kinoshita [11] which can be
proven to be secure, as we will do below. As most
of the existing schemes, the basic concept of Ohkubo
et al. consists of refreshing the identifier of the tag
each time it is queried by a reader. However, this
scheme differs from some others in the sense that the
tag refreshes its identifier by itself. Unfortunately this
scheme is not scalable because it has a high complexity
in terms of computation during the identification.

Our contribution. After describing Ohkubo et al.’s
scheme in Sect. 2, we introduce in Sect. 3 a technique
to significantly reduce complexity using a time-memory
trade-off. We then show that the scheme can be im-
proved by supplying a forward secure channel from the
tag to its owner. In Sect. 5, we prove the security of
the system and finally we give a real life example in
Sect. 6.

1

rk+1
i rk+2

i

Tag

Reader rki

G G G

HH sk+1
iski sk+2

i

Figure 1. Refreshment of the identifier

2 Ohkubo, Suzuki, and Kinoshita

Description. The basic idea of Ohkubo et al. [11]
is to modify the identifier of the tag each time it
is queried by a reader such that the identifiers can
be recognized by authorised parties only. The tag
refreshes its identifier autonomously, using two hash
functions G and H as described below. We consider
a back-end database B (the only party authorised to
track the tags), readers R, and tags Ti (1 ≤ i ≤ n).
Readers are (untrusted) devices that do not have
cryptographic functionalities; We do not assume that
the tags are tamper resistant, but we suppose that a
hash function can be embedded into the tags, which
may soon be a rather realistic assumption (see [3]).

Setup. The personalisation of a tag Ti consists of
storing in its memory a random identifier s1

i , which
is also recorded in the database B. Thus, B initially
contains the set of random values {s1

i | 1 ≤ i ≤ n}.
Two hash functions G and H are chosen

Interrogation. When a reader queries Ti, it sends
an identification request to the tag and receives back
rki := G(ski) where ski is the current identifier of Ti.
While Ti is powered, it replaces ski by sk+1

i := H(ski).
Finally, the reader sends rki to B (see Figure 1).

Identification. From rki , B has to identify the
corresponding tag. In order to do this, B constructs
the hash chains from each n initial value s1

i until
it finds the expected rki or until it reaches a given
maximum limit m on the chain length.

Complexity analysis. There are two main usage sce-
narios of RFID tags: usage in closed environments and
usage in open environments. In closed environments,
all tags are owned by B and queried by B’s readers
only. This scenario is typically the usage of tags within
a shop to facilitate the handling of goods in the shop
and the scanning at the check-out. The tags only need
to be active while they are confined to the premises of
the shop.

In open environments, some queried tags are not
owned by B and some of B’s tags are also queried by
foreign readers. A typical example is a library that
lends books to its customers. The same book can leave

the library and be returned many times. The cus-
tomers do not want any malicious readers outside the
library to know what they are reading or to be able to
trace them.

Ohkubo et al.’s scheme has a complexity in terms
of hash computations of mn in closed environment (2
hash operations are carried out mn/2 times), and of
2mn in open environment since B computes all the
hash chains when trying to identify a foreign tag. Thus,
when the number of tags n or the number of read op-
erations m in their lifetime is large the complexity be-
comes unmanageable.

3 Time-memory trade-off

To reduce the complexity of [11], we suggest using
a specific time-memory trade-off based on Hellman’s
original work [4] and recent optimisations by Oech-
slin [10]. This type of trade-off reduces the amount
of work T needed to invert any given value in a set
of N outputs of a one-way function F with help of
M units of memory. The efficiency follows the rule
T = N2γ/M2 where γ is a small factor depending
on the probability of success and the particular type
of trade-off being used. Compared to a brute-force
attack, the trade-off can typically reduce the amount
of work from N to N2/3 using N2/3 units of memory.
In general the trade-off works as follows: A reduction
function R is defined, which generates an arbitrary
input to F from one of its outputs. By alternating
F and R, chains of inputs and outputs of F can be
built. If enough chains of a given length are generated,
most outputs of F will appear at least once in any
chain. Only the first and the last element of each
chain is stored in a table. Given one output r of F
that we need to invert, we generate a chain starting
at r. If r was part of any chain that we stored we
will eventually generate last element, which is in
the table. Looking up the corresponding start of
the chain, we can regenerate the complete chain and
find the input to F that yields the given output r.
To assure a high success rate, several tables have
to be generated with different reduction functions.
The exact way of doing this is what differentiates
existing trade-off schemes. Details can be found in [10].

Finding an appropriate trade-off. In our case the
function F is

F : (i, k) 7→ rki = G(Hk−1(s1
i))

where 1 ≤ i ≤ n and 1 ≤ k ≤ m. In order to apply the
trade-off we need an arbitrary reduction function R,

R : rki 7→ (i′, k′)

2

where 1 ≤ i′ ≤ n, 1 ≤ k′ ≤ m. For example, we take

R(r) = (1 + (r mod n), 1 + (
⌊ r
n

⌋
mod m)).

There are two particularities in this situation:
(1) The brute force method, as proposed in [11] needs
Mbf = n|s| units of memory to store the n values of
s1
i . Usually, brute-force methods do not require any

memory.
(2) When used in the trade-off, F is more complex than
when used in the brute-force. Indeed, in the brute-
force, the hash chains are calculated sequentially, thus
needing just one H and one G calculation at each step.
In the trade-off, i and k are arbitrary results from R
and have no incremental relation with previous calcu-
lations. Thus, on average, each step needs m/2 + 1
operations.

Since the brute-force approach already uses a cer-
tain amount of memory, it makes sense to measure the
amount of memory needed by the trade-off in multiples
of Mbf . We call c the ratio between the memory used
by the trade-off and the memory used by the brute-
force. E.g. c = 5 means that we need one Mbf of data
to store the s1

i and 4 times this amount to store the
chains for the trade-off. Mbf is a multiple of the size
of s, whereas the memory used by the trade-off is a
multiple of the size of a chain. A chain is stored by
storing its start and end point. These points can be
either the output of F or its input. In our case the
input is smaller, we thus chose to store two pairs of
(i, k), thus requiring 2(|n|+ |m|) bits of memory. The
conversion factor from units of brute-force to units of
trade-off is thus µ = |s|/(2|n|+ 2|m|). In the scenarios
we are interested in, µ is typically between 2 and 4.
Knowing all this information we can now rewrite the
trade-off relation:

T =
n2m2

(c− 1)2µ2n2
(
m

2
+ 1)γ ≈ m3γ

2(c− 1)2µ2
.

The advantage over the brute-force approach is the fol-
lowing, in the average case:

Tbf
T
≈ 2

(c− 1)2µ2n

m2γ
.

As expected, the gain in speed increases with the
square of the available memory. The trade-off is
especially efficient if n is large compared to m. We
will see later how m – the number of times a tag can
be read – can be reduced.

Optimising the trade-off. So far we have a trade-
off where we have to sacrifice one share of the memory
to store the beginning of the hash-chains (hence the

factor (c− 1)) and the function F has a complexity of
m
2 + 1 because we need to generate arbitrary elements
of the chains. If we not only store the first element of
the chains, but also the element at the middle of the
chain, we sacrifice even more memory but we reduce
the average complexity of F . We will have only (c− 2)
shares of the memory available for the tables, but F
will have a complexity of m

4 + 1 (we need to generate
only a quarter of a chain on average). In general, if we
store x values per chain, sacrificing x shares of memory,
the complexity of the trade-off becomes:

T =
n2m2

(c− x)2µ2n2
(
m

2x
+ 1)γ ≈ m3γ

2x(c− x)2µ2
.

We quickly find that x = c
3 minimises this expression

and that the complexity of the optimised trade-off is :

Topt ≈
33

23

m3γ

c3µ2
.

(P)recalculation of the tables. Before the trade-
off can be used to read the tags, the trade-off chains
must be generated and their start and end stored in
the memory. Since the chains contain arbitrary hashes,
we need to generate slightly more than nm hashes to
ensure that each hash appears at least once in the ta-
bles with a high probability. Again, the hashes are not
created sequentially and each calculation of F incurs
about m

2 +1 hash calculations. The effort to create the
tables is thus Tprecalc ≈ nm2/2. This complexity is re-
duced by the fact that we store intermediate elements
of the chains is some part of the memory.

If the set of tags in the system stays the same, the
tables only need to be calculated once. If new tags must
be added, the tables must be recalculated. Extra tags
can be included in the tables, so that they do not need
to be recalculated for every single new tag. Every time
the tables are recalculated we can also remove the tags
that are no longer in use. Typically the tables could
be recalculated off-line every night, week or month.

Keeping m low increases the advantage of the trade-
off over the brute-force method. The following proce-
dure can be applied to keep m small. In the database
that contains the s1

i we can keep track of how many
times we have read each tag. We know that the next
time we read the tag, the result will be further down
the hash chain. If tag i has been read k times, we can
thus replace s1

i by ski in the database when the next
recalculation of the tables occurs. m is thus no longer
the number of times a tag is read in its lifetime but the
maximum of times it is read between two recalculations
of the tables, or the maximum of times it is read by a
foreign reader. Note that the adjustment of s1

i makes

3

rk+1
irki E(ski , u

k)

Tag

Reader

G E G E G E

HHski sk+1
i sk+2

i

rk+2
iE(sk+1

i , uk+1)

uk uk+1 uk+2Sensor

E(sk+2
i , uk+2)

Figure 2. Additional forward secure channel

both the trade-off and the brute-force method faster
but it increases the speed-up factor between the two.

Time-memory trade-offs are probabilistic, thus there
is an arbitrarily small chance that a tag may not be
found in the tables because a particular ski is not part
of any chain that was generated. A pragmatic approach
to this problem is simply to read the tag a second time
in such a case (hoping that sk+1

i will be found). A
more deterministic approach would be to keep score
of the hash values that are generated when the tables
are calculated and to eliminate the s1

i for which not all
hash values have appeared.

4 Forward secure backward channel

In some applications, tags may contain sensors
that supply some environmental information to their
database. For instance, the tire manufacturer Michelin
has decided to implant RFID tags inside the rubber
sidewall of its tires. These tags can identify tires be-
longing to a defective batch. They could be adapted to
directly inform the driver whether the tires are prop-
erly inflated [12]. In such applications, communication
confidentiality has to be ensured because the data sent
by the tag could allow it to be tracked. In our system,
the tag Ti can use its identifier ski as a session secret
key to encrypt data uk coming from its sensors, as de-
scribed on Figure 2, thus supplying a forward secure
channel from the tag to B.

5 Security analysis

Given a set of identification sessions S =
{(rki , E(ski , u

k)), | i ∈ {1..n}, k ∈ N} where E(ski , u
k)

is the encryption of uk under the symmetric key
ski , the privacy is ensured if an attacker cannot find

(rki , E(ski , u
k)) ∈ S and (rk

′
i′ , E(sk

′
i′ , u

k′)) ∈ S such that
i = i′ with a probability better than randomly pick-
ing two elements of S according to the uniform dis-
tribution. The proof is straightforward in the random
oracle model: all the s values are independent and uni-
formly distributed due to the properties of H (note

that the s1
i are chosen randomly according to the uni-

form distribution). Hence all the r values are also uni-
formly distributed since G is a random function, and
the same finally applies for the encrypted values since
the keys i.e. the s values, are used once. Thus privacy
is ensured. Forward privacy follows from this result:
reading the content of the tag, the adversary can only
obtain the current random s which has not been used
yet (previous s have been erased after having used),
thus not revealing any information. Given forward pri-
vacy and given the fact that the encryption keys are
erased and that one knowledge of one key do not al-
low one to recover the previous ones, forward secrecy
is straightforward.

6 Privacy-friendly tags in a library

The following example illustrates the use of privacy-
friendly tags in a real scenario. A campus library uses
RFID tags to identify each of the books and reviews
that it lends. Inside the library, the tags make it possi-
ble to scan shelves for misordered books and to identify
books that have not been placed in the shelves. The
tags also make the check-out and check-in of books
much easier. When a user takes the books home, a
reader that is not connected to the database of the li-
brary cannot find out what he is reading nor track him
because of the tags. We assume that the library wants
to be able to serve up to 1 million items (n = 220) and
the number of read operations on a single tag between
two recalculations of the tables is 1024 (m = 210). The
size of s is chosen to be 128 bits, in order to be com-
patible with [3]. We further assume that the system
is capable of carrying out 224 hash operations per sec-
ond. The amount of memory needed to store the one
million s values is 16 megabytes. The average reading
time using the brute-force approach is

Tbf = nm = 230 i.e. 1 minute.

Since a pair of (i, k) is 30 bits large we need at most 60
bits to store one chain. We can thus store more than
two chains in the same amount of memory it takes to
store one s (µ ≥ 2). Assuming that all calculations
are carried out on a single back-end equipped with 1
Gigabyte of memory (c = 64) and that we chose a
success rate of 99.9% (γ = 8) the time to read a tag
with our method is

Topt ≈
33

23

m3γ

c3µ2
i.e. 0.0016 seconds.

The time necessary to calculate the tables is

Tprecalc ≈
nm2

2
i.e. 10 hours.

4

The advantage of the time-memory trade-off over the
brute force is shown in Table 1 and Figure 3.

n = 220,m = 210, γ = 8, |s| = 128, µ = 2

224 operations per second, Tbf = 64 [s]

c 2 4 8 16 32 64

M[MB] 32 64 128 256 512 1024
Topt[s] 54 6.8 0.84 0.11 0.013 0.0016
Tbf/Topt 1 9.5 76 606 4854 38836

Table 1. Amount of memory used, reading
time and ratio of reading times of both meth-
ods

0

10

20

30

40

50

60

70

2 3 4 5 6 7 8

T

c

brute-force
trade-off

Figure 3. With the trade-off, the reading time
reduces with the cube of the amount of mem-
ory

7 Conclusion

Building on Ohkubo et al.’s scheme, we have sug-
gested a complete solution for RFID systems which is
scalable and ensures forward privacy. Our system is
also particularly relevant when sensors are embedded
into the tags because the data sent to the back-end
database through the readers can be encrypted in a for-
ward secure way To ensure the scalability of our scheme
we have developed a time-memory trade-off specifically
optimized to reduce the amount of computation in the
system. Finally we have illustrated the efficiency of our
proposal in a real life application, where RFID tags are
used to identify books in a library; in this scenario, our
scheme requires only 1.6 millisecond to identify a book,
while Ohkubo et al.’s scheme would take 1 minute.
Our solution is not limited to RFID systems but it is
best suited for systems that need forward privacy and
forward secrecy while they cannot afford asymmetric
cryptographic primitives, for example sensor networks.

References

[1] Gildas Avoine. Privacy issues in RFID banknote
protection schemes. In CARDIS, Kluwer Aca-
demic Publishers, 2004.

[2] G. Avoine and Ph. Oechslin. RFID traceability:
A multilayer problem. In Financial Cryptography
– FC’05, LNCS, Springer, 2005.

[3] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer.
Strong authentication for RFID systems using the
AES algorithm. In Workshop on Cryptographic
Hardware and Embedded Systems – CHES 2004,
LNCS, Springer, 2004.

[4] M. Hellman. A cryptanalytic time-memory trade
off. IEEE Transactions on Information Theory,
IT-26(4):401–406, 1980.

[5] D. Henrici and P. Müller. Hash-based enhance-
ment of location privacy for radio-frequency iden-
tification devices using varying identifiers. In Per-
Sec 2004, IEEE Computer Society, 2004.

[6] A. Juels. Minimalist cryptography for low-cost
RFID tags. In The Fourth International Confer-
ence on Security in Communication Networks –
SCN 2004, LNCS, Springer, 2004.

[7] A. Juels and R. Pappu. Squealing euros: Privacy
protection in RFID-enabled banknotes. In Finan-
cial Cryptography – FC’03, LNCS, Springer, 2003.

[8] A. Juels, R. Rivest, and M. Szydlo. The blocker
tag: Selective blocking of RFID tags for consumer
privacy. In Conference on Computer and Commu-
nications Security – CCS, ACM Press, 2003.

[9] D. Molnar and D. Wagner. Privacy and security in
library RFID: Issues, practices, and architectures.
In Conference on Computer and Communications
Security – CCS, ACM Press, 2004.

[10] Ph. Oechslin. Making a faster cryptanalytic time-
memory trade-off. In Advances in Cryptology –
CRYPTO’03, LNCS, Springer, 2003.

[11] M. Ohkubo, K. Suzuki, and S. Kinoshita. Cryp-
tographic approach to “privacy-friendly” tags. In
RFID Privacy Workshop, MIT, USA, 2003.

[12] RFID Journal. http://www.rfidjournal.com.

[13] S. Sarma, S. Weis, and D. Engels. RFID systems
and security and privacy implications. In CHES
2002, LNCS, Springer, 2002.

[14] Stop RFID. http://www.stoprfid.org/.

5

