
Wireless Sensor Networks

Kay Römer ETH Zürich Switzerland

Technology

- Sensor Network
 - Large, dynamic, ad hoc network of sensor nodes
- Sensor nodes
 - Sensing, processing, wireless communication in an autonomous device
 - Small-scale, low-cost

Berkeley Mote Smart-It Smart Dust

Kay Römer

Application Areas

- Killer app: Monitoring something or somebody
- Habitat monitoring
 - Behaviour and activities of animals
- Environmental monitoring
 - Seismic activities, environmental pollutions, snow quality, soil quality, fire
- Surveillance
 - Intrusion detection, traffic monitoring
- "Smart battlefield"
 - Enemy's activities

Typical Tasks

- Event detection
 - Detect/report a certain physical condition
 - Special case: target detection; detect presence/absence
- Target classification
 - Tell apart certain types of targets
- Target tracking
 - Observe target activity over time (location, speed, size, shape, track)
- Targets
 - Animals, humans, vehicles, gas, fluids, ...
 - Groups thereof

Typical Operation

- Deploy sensor nodes
 - Typically randomly
 - At any time
- Issue sensing task
 - "User" issues high-level task via "gateway"
 - Split high-level task into simpler sub-tasks
 - Distribute sub-tasks among nodes
- Report results
 - Nodes sample sensors -> time series
 - Preprocessing -> extract "interesting" events
 - Fusion of events -> high-level result

Characteristics

- Nodes are small, cheap, unreliable
 - Node ressources (energy, computing power, memory, comm. range and bandwidth) very limited
 - Network must tolerate node failures
- Dynamic ad hoc networks
 - Depleted batteries, destruction, re-deployment, temporary obstructions, mobility
- Large scale
 - Large numbers of nodes, high node density
- Unattended operation
 - In remote, toxic, or inaccessible regions

Requirements I

- Energy efficiency, longevity
 - Minimize per-node energy consumption
 - Equalize network energy comsumption
- Self-organization
 - Automatic configuration, error recovery
- Scalability
 - Networks of thousands-millions of nodes
- Robustness
 - Tolerate node failures

Requirements II

- Safety
 - Guarantees in life-critical systems
- Realtime Issues
 - Guaranteed response times
- Security
 - Protect against security attacks, e.g. false information, denial of service
- Privacy
 - Protect person-centric information from misuse

Design Principles

- Localized algorithms
 - Interaction with neighborhood only
- Adaptive fidelity algorithms
 - Dynamically trade off overhead/power for output quality
- Data-centric communication and storage
 - Separate node functionality from node identity
 - Nodes are replacable
- Application knowledge in nodes
 - In-network data processing

Research Issues I

- Applications
- Hardware
 - Energy-efficient, small-scale, low-cost
 - Radios, sensors, ADC, processors, energy storage and harvesting
- Networking
 - MAC protocols
 - Routing
 - Transport protocols

Research Issues II

- Data processing
 - Sensor calibration
 - Feature extraction
 - Data fusion
 - Compression
- Operating Systems
 - Hardware abstractions
 - Virtual machines
 - Dynamic reprogramming
 - Multitasking
 - Real-time support

Research Issues III

- Infrastructure
 - Support for WSN applications
 - (Distributed) programming paradigms
 - Database view, agent view, ...
 - Services
 - Location, time, ...
 - Internet integration

Current Research

- UC Berkeley & Intel Research Labs (BWRC)
 - Motes, Smart Dust, TinyOS, TinyDB
- CENS (UCLA, USC/ISI, ...)
 - Centre for Embedded Networked Sensing
 - Hardware, Applications, Algorithms, Infrastructure
- EYES (TU Berlin, TU Delft, Alcatel, ...)
 - Energy-efficient Sensor Networks (EU)
 - Hardware, Networking, Infrastructure
- NCCR-MICS (ETHZ, EPFL, ...)
 - Mobile Information and Communication Systems
 - Includes WSN topics