Localization of mobile devices

Seminar: Mobile Computing

IFW C42 Tuesday, 29th May 2001 Roger Zimmermann

Overview

- Introduction
 - Why
- Technologies
 - Absolute Positioning
 - Relative Positioning
- Selected Systems
 - GPS
 - Positioning in GSM
 - Active Badges
 - Cricket
- Location Models
- Discussion

Why do we need location information?

- Navigation
- Locate resources in the neighborhood
- Stratagies: Logistic

• Additional ideas ?

Location "Technologies"

Absolute Positioning: Geometry

P3

• Error

 \bullet

 Dilution of precision (DOP) Position error = DOP * input error

Time of Arrival (TOA)

- Propagation time
- Delay between sender and receiver
- one-way time
 - synchronization
 - accurate clocks
 - synchronization with 2 signals having different velocity
 - additional reference
- round-trip time
 - no synchronization
 - GPSRadar

Signal Strength

- Measuring distance
- Map of signal distribution
 - Calculated
 - Model
- Errors
 - Obstacle
 - Multipath

• GSM

Time Difference of Arrival (TDOA)

- Synchronization between 2 reference stations required
- In 2D: at least 2 hyperbolas required

Angle of Arrival (AOA)

Radar
VOR (VHF Omnidirectional Range) used in aviation

 \bigcirc

GSM Sector

.

- Used for accurate positioning in GPS
- Impossible to measure the number of cycles directly
- Need to maintain a continious lock on the carrier signal

Absolute Positioning Methods

Relative Positioning

Distance

- Distance itself (weehlsensor)
- Velocity
- Acceleration

$$x = \iint a(t) dt dt$$

- Height (Barometer)
- Inertial Navigation System (INS) used in aviation
- Car navigation

Orientation in space

• Gyroscope (rigid in space)

Overview

- Introduction
 - Why
- Technologies
 - Absolute Positioning
 - Relative Positioning
- Selected Systems
 - GPS
 - Positioning in GSM
 - Active Badges
 - Cricket
- Location Models
- Discussion

Timeline of electronic location systems

- 1935 : Radar
- WW2: LORAN-A [TOA]
- 1950 : LORAN-C [TDOA]

- 1970 : First satellite system
- 1990 : Active Badge indoor location
- 1994 : GPS
- 1996 : GSM
- Positioning with Ultrasonic, RFID, etc.

- Who & When: U.S. Department of Defense 1973 start, 1978-1994 test, assembly - 13 Mrd \$
- 24 satelliten in 6 orbital planes, 20'200 km, 12h period
- Transmitting with CDMA (code devision multiple access)
 - 1575.42 MHz civil
 - 1227.60 MHz military
 - 50 Watt

- Position calculation:
 - Trilateration (distance measuring)
 - In 3D with at least 4 satellites
 - Almanac & ephemeris data

- Accuracy: since May 2000 ~15m
- Errors:
 - Visibility
 - DOP geometry
 - Ionosphere + Troposphere
 - Multipath
 - Receiver clock errors
 - Orbital errors
 - Intentional degradation
- Optimization:
 - DGPS (Differential)
 - Carrier phase
- Russian version: GLONASS

Simulation

Postioning with GSM

Positioning GSM Telephones

- Reason
 - Location-Sensitive Billing (e.g. Genion)
 - Increased Safety (E911)
 - Location-Dependent Content (e.g. Swisscom)
 - Enhanced Network Performance
- Positioning using GSM features
 - Time of Arrival (TOA)
 - Time distance of Arrival (TDOA)
 - AOA (Angel of Arrival)
 - Signal power

	111,
	NORU Unite 2000 11:00
	502
California California	000
-	000

Positioning GSM Telephones

- Who & When: UT Sidney, 1998
- TOA (Time of Arrival)
 - GSM uses *timing advance* due to time multiplexing [554m]
 - Problem:
 - network synchronization
 - multipath is not rejected but combined
 - DOP
- TDOA (Time Difference of Arrival)
 - for improving handovers: *observed time differences* [554m]
 - same Problems
- AOA (Angel of Arrival)
 - use sector information
- Accuracy: 150m

Positioning in GSM using WAP

- Who & When: Chinese Uni. of Hong Kong, 2000
- Cell shape based mobile positioning
 - measure signal power
 - compare with cell shape database
- Accuracy: 300m

Active Badges

Active Badge Location System

- Who & When: Olivetti Research (AT&T), 1990
- Containment based, in-building system
- Active Badge
 - emits unique code every ~15s via IR
 - battery life: 1 year
- Network of sensors, centralized
- The Application
 - location information with probability
 - find(name), with(name), look(location), notify/setalarm(name), history(name)
- Privacy ?

Cricket

Cricket Location-Support System

- Who & When: MIT, 2000
- Containment based, in-building system
- Beacon
 - sends name of space
 - randomized transmission times in a given intervall
- Listener
 - calculates nearest beacon
- smallest space: ~1.2 m², precision: ~30 cm

Cricket Location-Support System

- decentralized
- keeps user privacy, no tracking
- low cost, "off the shelf" hardware
- scalable

Cricket Location-Support System

Location Space Models

- Geometric: n-dim. Coordinate system
 - WGS84:(09.53 E, 46.32 N, 0)
- Symbolic: set of symbols (names) with relationship
 - CH/Zurich/ETH/IFW/C42
- Combined

