
Applications with Little or No Rebound

Digitalization and the Rebound Effect – HS2019

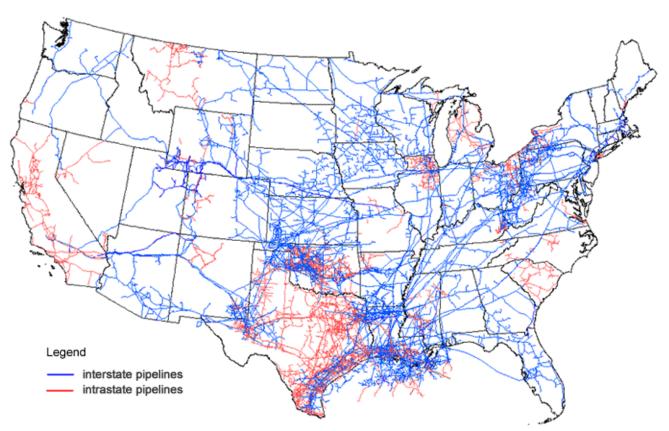
Vanessa Anaïs Tschichold

Goal: No Rebound!

→ after an efficiency improvement to produce one unit, price will not decrease and therefore demand will not increase

Source: https://www.thegwpf.com/green-madness-energy-efficient-ledlighting-increases-energy-consumption-light-pollution

Case Studies


- Urban Natural Gas Pipeline Leaks 📁
- Real-Time Feedback for Resource Conservation
- Smart Vending Machines

Case Studies

- Urban Natural Gas Pipeline Leaks 📁
- Real-Time Feedback for Resource Conservation
- Smart Vending Machines

Natural Gas Pipelines in the US

Map of U.S. interstate and intrastate natural gas pipelines

Source: U.S. Energy Information Administration, About U.S. Natural Gas Pipelines

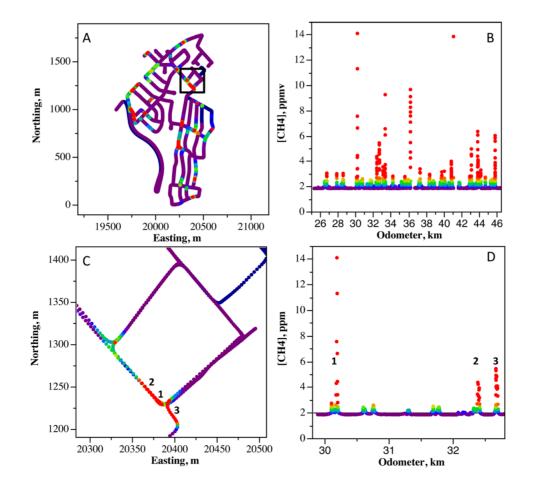
Problem: Leakage of Methane (CH_4)

- Legacy pipelines are prone to leakage
- Locations and magnitudes of leaks in pipelines are not well-known
- Accelerated pipeline replacement programs (APRP)
- Goal: quantify leaks to facilitate prioritized repair to minimize greenhouse gas emissions

Source: https://urbanomnibus.net/2018/09/ gas-flows-below/

Method

- Leak size can be estimated by measuring CH₄ concentration in the air
- Partnership with Google Street View
- Analyzer reading CH₄ concentration installed on cars



- Control Study:
 - Controlled releases of CH₄: 2, 10, 20, 40 L/min
 - Distances of emission points and car: 5, 10, 20, 40 m
- Experiment constraints to screen out false positives:
 - Defined background methane concentrations
 - Methane concentrations must be persistently elevated over time
 - No data with speed >70 km/h
 - Exclude leaks with too high CH₄ concentration (areas near landfills)

Results: Control Study

- Leak rate categories:
 - Small: < 6 L/min
 - Medium: 6-40 L/min
 - High: > 40 L/min
- When driving \leq 20m at all release rates, CH₄ readings were 10% higher than background \rightarrow method works

Results: Example Patterns

Example data shown as maps and as a function of distance traveled by the vehicle. *Source: Fischer et al., 2017*

-50 -25 0 25 50 Distance from mean peak center, m Spatial repeatability of data gathered Source: Fischer et al., 2017

2/16/13

12/19/13

12/19/13

4.5

Δ

3.5

3

2.5

2

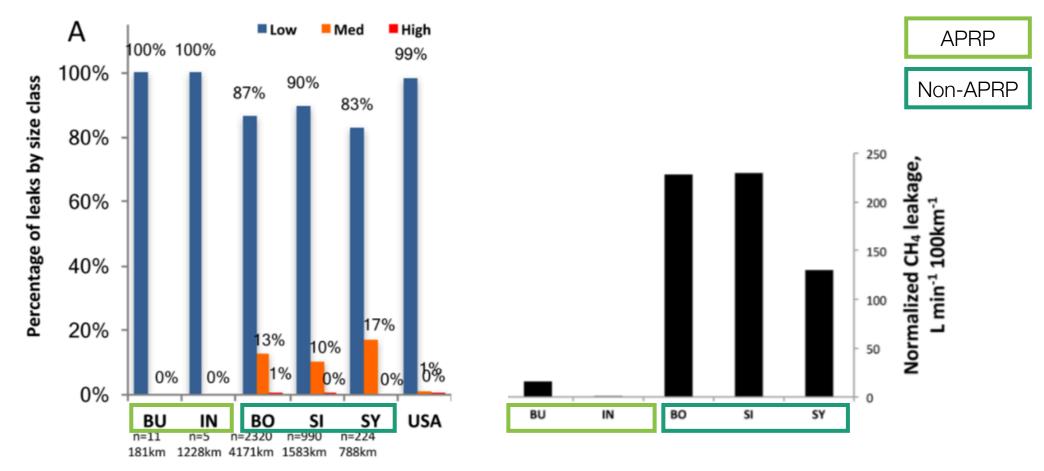
1.5

[CH₄], ppmv

11/26/13 12/18/13

12/19/13

3/5/14


Cumulative Leak Rates

• City-wide leak rate by averaging individual leak rate estimates and summing across all leaks

• Results:

- non-APRP cities: 2 L/min CH₄ per km
- APRP cities: 0.08 L/min per km.
- Boston: 1300 tons CH₄ per year

Results: Comparison of Cities

Comparison of leak frequencies and magnitudes in study cities (BU) Burlington, VT, (IN) Indianapolis, IN, (BO) Boston, MA, (SI) Staten Island, NY, (SY) Syracuse, NY. *Source: Fischer et al., 2017*

Conclusion

- APRP projects achieve their goals
- In non-APRP cities, repairs of the largest 8% of leaks would reduce natural gas emissions by 30%
- Rebound Effect?
 - Natural gas does not get cheaper with fixed leaks \rightarrow No Rebound!

Case Studies

- Urban Natural Gas Pipeline Leaks 📁
- Real-Time Feedback for Resource Conservation
- Smart Vending Machines

- 4-minute shower: 45 liters of hot water \rightarrow 2.6 kWh to heat up
- 1 kWh for lighting per day

Salience Bias

- Salience bias in the moment of decision-making attributes to the discrepancy between peoples' aspirations and their daily behavior
- \rightarrow Goal: Correct salience bias

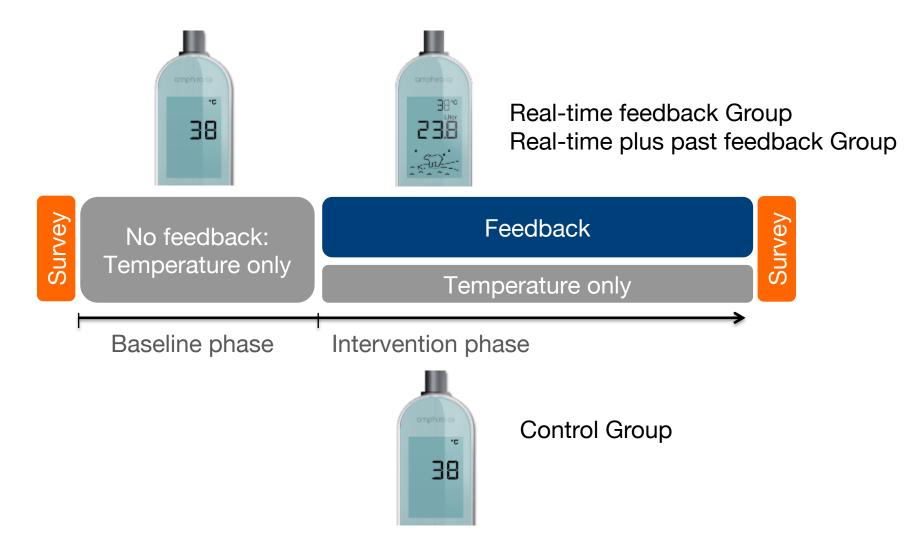
- Energy use is particularly prone to salience bias
- Target activity: Showering

Existing Measures to Reduce Energy Use

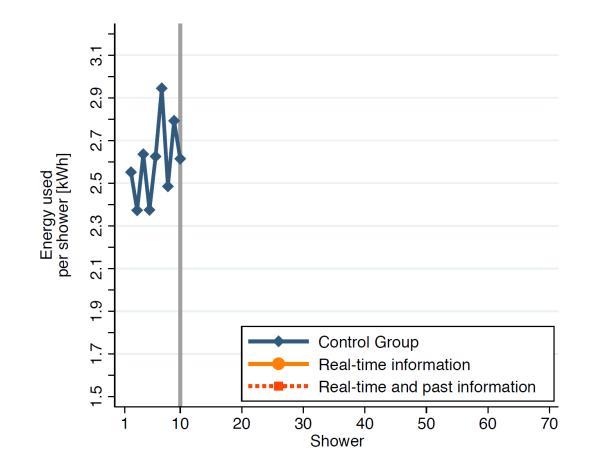
- Home energy reports: 0.5%
- Smart metering about aggregate electricity consumption: 3.5%
- Price increases
- Information campaigns

 \rightarrow We need something better!

Solution: Specific real-time feedback


Experimental Setup

- Smart shower meter calculates lower bound of energy use by: $Q = m \cdot c \cdot \Delta T$
- Experimental conditions:
 - 1) Real-time feedback
 - 2) Real-time plus past feedback
 - 3) Control

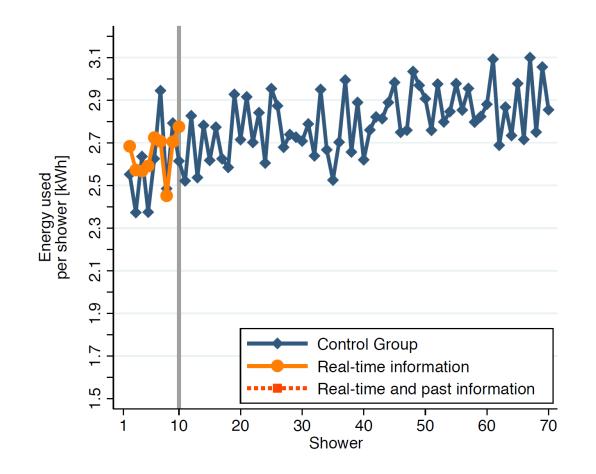


Smart shower meter Source: Tiefenbeck et al. (2018)

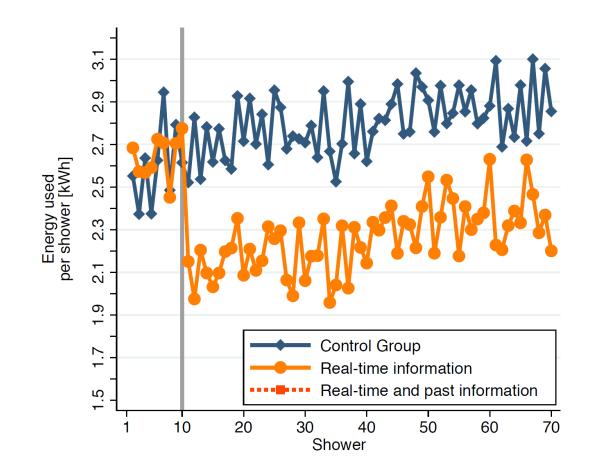
Study

Results: Baseline Phase

Impact of Real-Time Feedback on Energy and Water Consumption Source: Tiefenbeck et al. (2018)

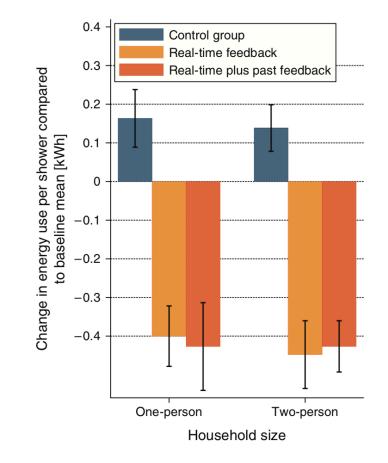

Results: Control Group

Impact of Real-Time Feedback on Energy and Water Consumption Source: Tiefenbeck et al. (2018)


Results: Baseline Phase

Impact of Real-Time Feedback on Energy and Water Consumption Source: Tiefenbeck et al. (2018)

Results: Real-time Group



Impact of Real-Time Feedback on Energy and Water Consumption Source: Tiefenbeck et al. (2018) 238

Results: Group Comparison

Impact of Real-Time Feedback on Energy and Water Consumption Source: Tiefenbeck et al. (2018)

Difference Estimates for 1- and 2-Person Households Source: Tiefenbeck et al. (2018)

24

Results: Adjustments

	Shower time (sec)	Flow rate (I/min)	Avg. Temp. (°C)	Nr. of stops in water flow	Total break time (sec)
Real-time group	- 51.60	-0.140	-0.371	0.057	5.90
Real-time plus past feedback	- 50.18	- 0.165	-0.260	0.081	2.67
Constant	244.38	10.998	36.204	0.530	34.23

Main treatment effects on energy use (in kWh), controlling for household and time fixed effects. *Source: Tiefenbeck et al. (2018)*

Results: Subgroups

- Average household saves 0.62 kWh \rightarrow -22%
- 20% with weakest intent of preserving saves 0.49 kWh
- Top quintile saves 0.74 kWh
- Nobody showered more often \rightarrow no rebound!

Conclusion

- It works! Real-time feedback on a specific behavior can induce large behavioral changes
- 22% reduction in energy consumption for showering
 → 5% of the household energy use
- Savings over a year of a person showering once a day: 215 kWh energy, 3500l water, 47kg CO₂
- No Rebound!
 - But ...

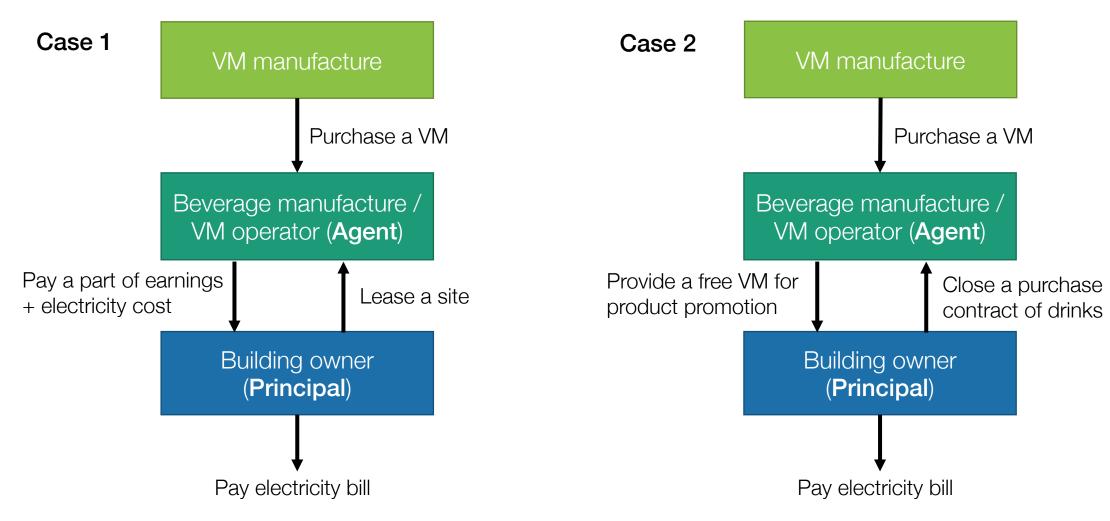
Case Studies

- Urban Natural Gas Pipeline Leaks 📁
- Real-Time Feedback for Resource Conservation
- Smart Vending Machines

Vending Machines

- Japan: highest density of vending machines (VM) in 2003 they acquired 0.7% of electricity consumed
- Energy costs are main component of operating cost of VMs
- Several programs to improve energy consumption
 - Local chilling and heating systems
 - Automatic light control systems
 - Low-power modes for nighttime

Principal-Agent Barriers


• How to quantify the energy lost due to barriers in the market?

	Can Choose Technology	Cannot Choose Technology
Direct Energy Payment	Case 1: No Problem	Case 2: Efficiency Problem
Indirect Energy Payment	Case 3: Usage and Efficiency Problem	Case 4: Usage Problem

Source: American Council for an Energy-Efficient Economy (2007)

Transactions Among Actors

VM = Vending Machine

Source: American Council for an Energy-Efficient Economy (2007)

Principal-Agent Classification of Beverage Vending Machines

	Can Choose Technology	Cannot Choose Technology
Direct Energy Payment	Case 1: No Problem → Case 1, classical display coolers	Case 2: Efficiency Problem → Case 2, product-promoting display coolers
Indirect Energy Payment	Case 3: Usage and Efficiency Problem Nr. of VM: Negligible	Case 4: Usage Problem Nr. of VM: 0%

Energy use affected by the barrier (kWh/yr) =

- Nr. of running machines (units)
- * per machine electricity use (kWh/yr/unit)
- * fraction of the machines affected by the barrier (%)

Results: Classical Display Coolers

	Can Choose Technology	Cannot Choose Technology
Direct Energy Payment	Case 1: No Problem Nr. of VM: 2.6 mil. (100%)	Case 2: Efficiency Problem Nr. of VM: 0%
Indirect Energy Payment	Case 3: Usage and Efficiency Problem Nr. of VM: Negligible	Case 4: Usage Problem Nr. of VM: 0%

Energy use affected by the barrier (kWh/yr):

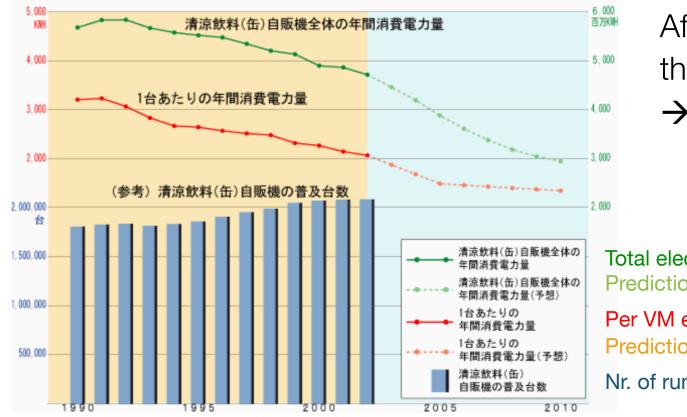
- Nr. of running machines = 2.6 million
- Per machine electricity use = 2300 kWh/yr/unit
- Fraction of the machines affected by the barrier = 0%

→ 2.6 * 2300 * 0 = 0 TWh/yr

Source: American Council for an Energy-Efficient Economy (2007)

Results: Product-Promoting Display Coolers

	Can Choose Technology	Cannot Choose Technology
Direct Energy Payment	Case 1: No Problem Nr. of VM: 1.6 mil. (56%)	Case 2: Efficiency Problem Nr. of VM: 1.3 mil. (44%)
Indirect Energy Payment	Case 3: Usage and Efficiency Problem Nr. of VM: 0%	Case 4: Usage Problem Nr. of VM: 0%


Energy use affected by the barrier (kWh/yr):

- Nr. of running machines = 2.9 million
- Per machine electricity use = 930 kWh/yr/unit
- Fraction of the machines affected by the barrier = 44%

→ 2.9 * 930 * 0.44 = **1.2 TWh/yr**

Source: American Council for an Energy-Efficient Economy (2007)

Electricity Use of Vending Machines

After efficiency improvements, the nr of VMs did not increase \rightarrow No rebound \rightarrow Why?

Total electricity consumption of all VMs (GWh/year) Prediction

Per VM electricity use (kWh/year) Prediction

Nr. of running VMs (year)

Development of Electricity Consumption of Canned Soft Drink Vending Machines from 1990 to 2010 in Japan Source: American Council for an Energy-Efficient Economy (2007)

Conclusion

- Principal-Agent Barrier:
 - Case 1: no barrier
 - Case 2: barrier \rightarrow additional energy policies needed
- With energy efficiency not more VMs → small rebound effect
 → another factor limiting the number of machines

Case Studies

- Urban Natural Gas Pipeline Leaks 📁
- Real-Time Feedback for Resource Conservation
- Smart Vending Machines

Overall Conclusion: How to Minimize Rebound Effects?

- If energy costs are a minor cost component: improve energy efficiency – risk of rebound is small
- If energy costs are a major cost component:
 - If limiting factor is something else than energy risk of rebound is small
 - If limiting factor is energy risk of rebound is 100%

Thank You