Autonomous Vehicles

Seminar on Digitalisation and the Rebound Effect

Danil Ivanov
28.11.2019
Current Road Usage

• One billion vehicles
• Unchanged vehicle design
• Powered by combustion engine
• Driven by one person
• Designed for a broad use
Current Road Usage

- One billion vehicles
Current Road Usage

- One billion vehicles
- Unchanged vehicle design
Current Road Usage

- One billion vehicles
- Unchanged vehicle design
- Powered by combustion engine
Current Road Usage

- One billion vehicles
- Unchanged vehicle design
- Powered by combustion engine
- Driven by one person
Current Road Usage

- One billion vehicles
- Unchanged vehicle design
- Powered by combustion engine
- Driven by one person
- Designed for a broad use
Some Numbers

• 95% rely on fossil fuels
• 20% global GHG emissions
• 20km/h average speed
• 1.24 million annual road deaths
• 103 million years of life lost to air pollution

Complex
Ties
Polluting
Inefficient
Dangerous toward users
Dangerous toward bystanders
Some Numbers

• 95% rely on fossil fuels
Some Numbers

- 95% rely on fossil fuels
- 20% global GHG emissions
Some Numbers

- 95% rely on fossil fuels
- 20% global GHG emissions
- 20km/h average speed
Some Numbers

- 95% rely on fossil fuels
- 20% global GHG emissions
- 20km/h average speed
- 1.24 million annual road deaths

103 million years of life lost to air pollution

Complex
Polluting
Inefficient
Dangerous toward users
Dangerous toward bystanders
Some Numbers

- 95% rely on fossil fuels
- 20% global GHG emissions
- 20km/h average speed
- 1.24 million annual road deaths
- 103 million years of life lost to air pollution
Some Numbers

- 95% rely on fossil fuels
- 20% global GHG emissions
- 20km/h average speed
- 1.24 million annual road deaths
- 103 million years of life lost to air pollution

Complex Ties
Some Numbers

- 95% rely on fossil fuels
- 20% global GHG emissions
- 20km/h average speed
- 1.24 million annual road deaths
- 103 million years of life lost to air pollution

Complex Ties
Polluting
Some Numbers

- 95% rely on fossil fuels
- 20% global GHG emissions
- 20km/h average speed
- 1.24 million annual road deaths
- 103 million years of life lost to air pollution

- Complex Ties
- Polluting
- Inefficient
Some Numbers

- 95% rely on fossil fuels
- 20% global GHG emissions
- 20km/h average speed
- 1.24 million annual road deaths
- 103 million years of life lost to air pollution

- Complex Ties
- Polluting
- Inefficient
- Dangerous toward users
Some Numbers

- 95% rely on fossil fuels
- 20% global GHG emissions
- 20km/h average speed
- 1.24 million annual road deaths
- 103 million years of life lost to air pollution

- Complex Ties
- Polluting
- Inefficient
- Dangerous toward users
- Dangerous toward bystanders
Outline

State of the Art

Remaining Work

Rebound Effects

Conclusion
State of the Art

Remaining Work

Rebound Effects

Conclusion
Autonomous Vehicles

Definition¹: An autonomous vehicle (AV) is a vehicle that is capable of sensing its environment and safely moving through it with no human input.

¹Definition based on my understanding of the domain
Levels of Autonomy

2

- Level 0: No Assistance
- Level 1: Hands On
- Level 2: Hands Off
- Level 3: Eyes Off
- Level 4: Mind Off
- Level 5: Steering Wheel Optional

Levels of Autonomy

- Level 0: No Assistance

Levels of Autonomy

- Level 0: No Assistance
- Level 1: Hands On

Levels of Autonomy

- Level 0: No Assistance
- Level 1: Hands On
- Level 2: Hands Off

Levels of Autonomy

- Level 0: No Assistance
- Level 1: Hands On
- Level 2: Hands Off
- Level 3: Eyes Off

Levels of Autonomy

- Level 0: No Assistance
- Level 1: Hands On
- Level 2: Hands Off
- Level 3: Eyes Off
- Level 4: Mind Off

\[2\text{Automated Driving – Levels of Driving Automation defined in New SAE International Standard J3016. SAE International. 2014.}\]
Levels of Autonomy

- Level 0: No Assistance
- Level 1: Hands On
- Level 2: Hands Off
- Level 3: Eyes Off
- Level 4: Mind Off
- Level 5: Steering Wheel Optional

Example of Level 2 Automation

Figure 1: Tesla Autopilot
Example of Level 4 Automation

Figure 2: Autonomous mini bus in Zug
Available Technology (1)³

- **Connected Vehicles**
 - GPS + IoT
 - OnStar, Android Auto, CarPlay

- **Coordinated Vehicles**
 - IoT communication
 - Routing apps (Waze, Google Maps)
 - Parking apps (ParkingPay, EasyPark, Parknow)

- **Driverless Vehicles**
 - Waymo
 - Mobility

Available Technology (1)³

- Connected Vehicles
 - GPS + IoT
 - OnStar, Android Auto, CarPlay

Available Technology (1)

- Connected Vehicles
 - GPS + IoT
 - OnStar, Android Auto, CarPlay

- Coordinated Vehicles
 - IoT communication
 - Routing apps (Waze, Google Maps)
 - Parking apps (ParkingPay, EasyPark, Parknow)

Available Technology (1)\(^3\)

- **Connected Vehicles**
 - GPS + IoT
 - OnStar, Android Auto, CarPlay

- **Coordinated Vehicles**
 - IoT communication
 - Routing apps (Waze, Google Maps)
 - Parking apps (ParkingPay, EasyPark, Parknow)

- **Driverless Vehicles**
 - Waymo
 - Mobility

\(^3\)Lawrence D. Burns. A vision of our transport future, Nature 497, pp. 181-182, 2013
Available Technology (2)

- Electric Vehicles
 - Increased control over drive system
 - Reduced emissions
 - Popular (Tesla, Jaguar, VW, etc...)
- Tailored Vehicles
 - Current vehicles are over-specified and under-utilized
 - More efficient due to being lighter
 - Longer distances on smaller batteries
Available Technology (2)

- Electric Vehicles
 - Increased control over drive system
 - Reduced emissions
 - Popular (Tesla, Jaguar, VW, etc. . .)
Available Technology (2)

- Electric Vehicles
 - Increased control over drive system
 - Reduced emissions
 - Popular (Tesla, Jaguar, VW, etc.)

- Tailored Vehicles
 - Current vehicles are over-specified and under-utilized
 - More efficient due to being lighter
 - Longer distances on smaller batteries
Outline

State of the Art

Remaining Work

Rebound Effects

Conclusion
Legal Landscape

• Driver must remain in control of the vehicle at all times
• International Convention on road traffic amendment in 2006 to include automated driver assistance systems
• Presence of driver is mandatory
• Driver not exempted of their obligations and responsibilities

4Federal Roads Office FEDRO (2019), Rechtliche Situation
• Driver must remain in control of the vehicle at all times

\(^4\)Federal Roads Office FEDRO (2019), *Rechtliche Situation*
Legal Landscape

- Driver must remain in control of the vehicle at all times
- International Convention on road traffic amendement in 2006 to include automated driver assistance systems

4 Federal Roads Office FEDRO (2019), *Rechtliche Situation*
Legal Landscape

- Driver must remain in control of the vehicle at all times
- International Convention on road traffic amendment in 2006 to include automated driver assistance systems
- Presence of driver is mandatory

4Federal Roads Office FEDRO (2019), Rechtliche Situation
• Driver must remain in control of the vehicle at all times

• International Convention on road traffic amendment in 2006 to include automated driver assistance systems

• Presence of driver is mandatory

• Driver not exempted of their obligations and responsibilities

4 Federal Roads Office FEDRO (2019), Rechtliche Situation
World Forum for Harmonization of Vehicle Regulation has released a Framework Document5 to guide the work in AV.

5World Forum for Harmonization of Vehicle, Revised Framework document on automated/autonomous vehicles, 2019
World Forum for Harmonization of Vehicle Regulation has released a Framework Document5 to guide the work in AV.

- Functional requirements of automated/autonomous vehicles

5World Forum for Harmonization of Vehicle, Revised Framework document on automated/autonomous vehicles, 2019
Regulations and Guidelines

World Forum for Harmonization of Vehicle Regulation has released a Framework Document5 to guide the work in AV.

- Functional requirements of automated/autonomous vehicles
- New assessment and test method

5World Forum for Harmonization of Vehicle, Revised Framework document on automated/autonomous vehicles, 2019
Regulations and Guidelines

World Forum for Harmonization of Vehicle Regulation has released a Framework Document\(^5\) to guide the work in AV.

- Functional requirements of automated/autonomous vehicles
- New assessment and test method
- Cybersecurity and software updates

\(^5\)World Forum for Harmonization of Vehicle, Revised Framework document on automated/autonomous vehicles, 2019
World Forum for Harmonization of Vehicle Regulation has released a Framework Document5 to guide the work in AV.

- Functional requirements of automated/autonomous vehicles
- New assessment and test method
- Cybersecurity and software updates
- Data storage system and event data recorder

5 World Forum for Harmonization of Vehicle, Revised Framework document on automated/autonomous vehicles, 2019
Case Study: Mobility Preferences in the Future

• Study on mobility preference shift upon introduction of autonomous vehicles
• Based on travel mode choice theory
• Took form of an online survey combined with paired comparison

6Christina Pakusch, Gunnar Stevens, Alexander Boden and Paul Bossauer. Unintended Effects of Autonomous Driving: A Study on Mobility Preferences in the Future, Sustainability, 10 (7), 2018
Case Study: Mobility Preferences in the Future

- Study on mobility preference shift upon introduction of autonomous vehicles

Christina Pakusch, Gunnar Stevens, Alexander Boden and Paul Bossauer. Unintended Effects of Autonomous Driving: A Study on Mobility Preferences in the Future, Sustainability, 10 (7), 2018
Case Study: Mobility Preferences in the Future

- Study on mobility preference shift upon introduction of autonomous vehicles
- Based on travel mode choice theory

6 Christina Pakusch, Gunnar Stevens, Alexander Boden and Paul Bossauer. Unintended Effects of Autonomous Driving: A Study on Mobility Preferences in the Future, Sustainability, 10 (7), 2018
Case Study: Mobility Preferences in the Future6

- Study on mobility preference shift upon introduction of autonomous vehicles
- Based on travel mode choice theory
- Took form of an online survey combined with paired comparison

6Christina Pakusch, Gunnar Stevens, Alexander Boden and Paul Bossauer. Unintended Effects of Autonomous Driving: A Study on Mobility Preferences in the Future, Sustainability, 10 (7), 2018
Figure 3: Preference migration results
Case Study: Mobility Preferences in the Future - Conclusion

- No intrinsical eco-friendly motivation
- Public Transport must improve in order to remain competitive against carsharing
Case Study: Mobility Preferences in the Future - Conclusion

- No intrinsical eco-friendly motivation
• No intrinsical eco-friendly motivation

• Public Transport must improve in order to remain competitive against carsharing
Case Study: Simulation of City-Wide Autonomous Vehicle Network Deployment7

7Joschka Bischoff and Michal Maciewski. Simulation of City-wide Replacement of Private Cars with Autonomous Taxis in Berlin, Procedia Computer Science, 83, pp. 237–244, 2016
Case Study: Simulation of City-Wide Autonomous Vehicle Network Deployment

• Simulation of autonomous vehicle fleet that replaces all classic vehicles in Berlin

Case Study: Simulation of City-Wide Autonomous Vehicle Network Deployment

- Simulation of autonomous vehicle fleet that replaces all classic vehicles in Berlin
- Goal: find optimal fleet size to provide high quality service

Case Study: Simulation of City-Wide Autonomous Vehicle Network Deployment - Results 100'000 AVs

Figure 4: Passenger wait times for each hour
Case Study: Simulation of City-Wide Autonomous Vehicle Network Deployment - Results 100’000 AVs

Figure 5: Average operation mode split for each hour
Case Study: Simulation of City-Wide Autonomous Vehicle Network Deployment - Conclusion

- High quality service achievable using 100,000 vehicles - 1:10 ratio to classic vehicles
- Fleet size determined by peak hours
- Drive time increases by 17% due to empty runs
Case Study: Simulation of City-Wide Autonomous Vehicle Network Deployment - Conclusion

- High quality service achievable using 100,000 vehicles - 1:10 ratio to classic vehicles
Case Study: Simulation of City-Wide Autonomous Vehicle Network Deployment - Conclusion

- High quality service achievable using 100’000 vehicles - 1:10 ratio to classic vehicles
- Fleet size determined by peak hours
Case Study: Simulation of City-Wide Autonomous Vehicle Network Deployment - Conclusion

- High quality service achievable using 100’000 vehicles - 1:10 ratio to classic vehicles
- Fleet size determined by peak hours
- Drive time increases by 17% due to empty runs
Case Study: Autonomous Taxis could greatly reduce GHG emissions

Case Study: Autonomous Taxis could greatly reduce GHG emissions

- Estimate the GHG emissions by 2030 assuming all taxis are replaced by autonomous vehicles

Case Study: Autonomous Taxis could greatly reduce GHG emissions

- Estimate the GHG emissions by 2030 assuming all taxis are replaced by autonomous vehicles

- AVs could potentially reduce vehicle energy use by 80%, assuming 100% adoption rate

Case Study: Autonomous Taxis could greatly reduce GHG emissions

- Estimate the GHG emissions by 2030 assuming all taxis are replaced by autonomous vehicles
- AVs could potentially reduce vehicle energy use by 80%, assuming 100% adoption rate
- Efficiency gains will compensate the increase in total distance travelled

Positive vs. Rebound Effect

- Efficient driving and routing
- Higher occupancy per vehicle
- Sharing of costs and maintenance (cost reduction)
- Optimized vehicles
- Land use & Safety
- Travel by underserved population
- Faster travel
- More Travel
- Shift in travel mode preference
- Job market
- Public transport popularity decrease

Positive vs. Rebound Effect

- Efficient driving and routing

Positive vs. Rebound Effect

- Efficient driving and routing
- Higher occupancy per vehicle

Positive vs. Rebound Effect

- Efficient driving and routing
- Higher occupancy per vehicle
- Sharing of costs and maintenance cost reduction

Positive vs. Rebound Effect

- Efficient driving and routing
- Higher occupancy per vehicle
- Sharing of costs and maintenance cost reduction
- Optimized vehicles

Positive vs. Rebound Effect

- Efficient driving and routing
- Higher occupancy per vehicle
- Sharing of costs and maintenance
 cost reduction
- Optimized vehicles
- Land use & Safety

Positive vs. Rebound Effect

- Efficient driving and routing
- Higher occupancy per vehicle
- Sharing of costs and maintenance cost reduction
- Optimized vehicles
- Land use & Safety
- Travel by underserved population

Positive vs. Rebound Effect

- Efficient driving and routing
- Higher occupancy per vehicle
- Sharing of costs and maintenance cost reduction
- Optimized vehicles
- Land use & Safety
- Travel by underserved population
- Faster travel

Positive vs. Rebound Effect

- Efficient driving and routing
- Higher occupancy per vehicle
- Sharing of costs and maintenance cost reduction
- Optimized vehicles
- Land use & Safety
- Travel by underserved population

- Faster travel
- More Travel

Positive vs. Rebound Effect

- Efficient driving and routing
- Higher occupancy per vehicle
- Sharing of costs and maintenance cost reduction
- Optimized vehicles
- Land use & Safety
- Travel by underserved population
- Faster travel
- More Travel
- Shift in travel mode preference

Positive vs. Rebound Effect

- Efficient driving and routing
- Higher occupancy per vehicle
- Sharing of costs and maintenance cost reduction
- Optimized vehicles
- Land use & Safety
- Travel by underserved population
- Faster travel
- More Travel
- Shift in travel mode preference
- Job market

Positive vs. Rebound Effect

- Efficient driving and routing
- Higher occupancy per vehicle
- Sharing of costs and maintenance cost reduction
- Optimized vehicles
- Land use & Safety
- Travel by underserved population
- Faster travel
- More Travel
- Shift in travel mode preference
- Job market
- Public transport popularity decrease

Outline

State of the Art

Remaining Work

Rebound Effects

Conclusion
Conclusion

• Building blocks are available for AV networks
• Policy-makers and governments introducing frameworks for the development of AV networks
• Ecological, societal and economical impacts
• Total impact depends on adoption rate
• Building blocks are available for AV networks
Conclusion

• Building blocks are available for AV networks

• Policy-makers and governments introducing frameworks for the development of AV networks
Conclusion

- Building blocks are available for AV networks
- Policy-makers and governments introducing frameworks for the development of AV networks
- Ecological, societal and economical impacts
Conclusion

• Building blocks are available for AV networks

• Policy-makers and governments introducing frameworks for the development of AV networks

• Ecological, societal and economical impacts

• Total impact depends on adoption rate
Thanks for listening! Do you have any questions?
Case Study: Estimating Potential Increase in Travel with Autonomous Vehicles10

- Studies potential increase in total vehicle distance travelled
- Increase due to senior citizens, non-drivers, and users with prohibiting medical conditions.
- Estimated 14\% increase in total distance driven, due to increase in mobility of non-driving demographic