ETH zürich

How can digital systems help saving energy and carbon?

Digitalization and the Rebound Effect - Seminar HS2019

Fabian Müller

Daily Work Commuter

Federal Statistical Office, 2014

4.0 million people travel to work (avg. 15.0 km)

52% travel by car

utilization: 1.14 pers./car

Commuter: Improvement Ideas

less emissions

less travel

modern company policy

digital system

car sharing

home office

direct consequences

wider relations

Digitalization

-> growing application of IT across the economy

DATA ANALYSIS

CONNECTIVITY & TRANSMISSION

4

Facts: Sensors & Data

8.4 billion IoT devices in 2017

Source: IEA, Digitalization & Energy, 2017

worldwide data younger than 2 years

Source: IEA, Digitalization & Energy, 2017

Promising solutions: Transport

Navigation

Source: maps.google.com

Autonomous cars

Shared mobility

Promising solutions: Buildings

Smart heating

Energy storage

Online shopping

-> less physical stores needed

Promising solutions: Industry

Promising solutions: Energy Production

- distributed generation
- bidirectional flow

Carbon-neutral fuel

Source: prec.ethz.ch

Savings through ICT: mechanisms vs. sectors

iea International Energy Agency	Substitution / Dematerialization	Increased Efficiency	Awareness and decision support
	Virtual conference	Autonomous car Shared mobility	Real-time navi
	Online shopping	Smart heating Energy storage	normative feedback
	Electronic media	Smart logistics	Sharing economy
	Carbon-neutral fuel	Power grid	Gas leakage discovery

Where to invest?

Initiatives

We need to define:

- Measurement
- Quantization
- Reporting
- Verification

We need to develop:

- Tools
- Methods

Mission Innovation

- global initiative: focus on clean energy
- launched in 2015 with 25 countries
- together: 75% of world's CO2 emissions from electricity
- over 80% of the world's clean energy R&D investment

Source: obamawhitehouse.archives.gov, "Announcing Mission Innovation"

s from electricity &D investment

Mission Innovation: Solution Framework

Who:

- Research Institutes of Sweden (RISE)
- Swedish Energy Agency
- WWF
- EIT Climate-KIC (EIT: European Institute of Innovation and Technologies, KIC: Knowledge and Innovation Community)

Goal:

- accelerate the innovation of low-carbon solutions
- -> introduce framework and method for measuring avoided emissions

Problem Statement

Investors

Governments Companies Stakeholders Tools Methods

demonstrate positive impact

•••

Solution Providers

Companies Research Groups

 $\bullet \bullet \bullet$

"Avoided Emissions"

without ICT service with ICT service

Net avoided emissions

"enabling solution"

Calculation Method

 carbon abatement factor (net avoided emissions per unit of solution) volume (total number of units) Carbon Volumes Abatement Factor sum of solutions

Source: Mission Innovation, Solution Framework, v2018-1

Example: video conference

 avoided emissions per video conference (kgCO2e)

 number of video conferences instead of flights

> Total Carbon Abatement

Calculation Method: potential scenarios (future)

probability of success

probability of adoption

uncertainty

Source: Mission Innovation, Solution Framework, v2018-1

Calculation Method: Simple Example

Smartphone App: "Save Energy by using your smartphone less"

- prob. of success: 90%
- prob. of adoption: 1%
- Volumes: 5'000'000 (smartphone users in CH)
- carbon abatement factor: 10 kgCO2e per year

Avoided emissions = 0.9 * 0.01 * 5'000'000 * 10

= 450'000 kgCO2e per year

Challenges: Identification

Principle of materiality:

Expected avoided emissions

Idea:

- start at high level scope
- identify largest contributors
- get into more details

Calculation effort

Challenges: System Boundary

• Assessment: What is included, what is excluded?

Transpo	rt Su	Ipplier
Production & Material		Proc & M
Electric car emissions		Pet em
Recycling		Rec

S

duction laterial

rol car issions

cycling

Challenges: Data quality

Sources

Industry

- up-to-date
- might be biased

Research Studies

• often theoretically

- Assumptions in data generating process

Uncertainties

• Errors in data

Lack of data

without ICT service

both situations can not exist at same time

rebounds

solution emissions

with ICT service

Challenges: Solution potential estimation

Often hard: vague assumptions, speculations **Example:** IEA report "Digitalization & Energy", 2017

Emissions **A**

200% baseline 50%

Rebound effects

Challenges: Allocation & Double Counting

- GeSI: Global e-Sustainability Initiative
- strategic partnership of ICT companies and industry associations -> AT&T, Dell, Huawai, Samsung, Swisscom
- Goal:"... create and promote technologies and practices that foster [...] sustainability and drive economic growth and productivity."

Source: GeSI, Smart2020, 2008

Method: 3 main variables

input data

(e.g. population in 2030)

adoption rates

(e.g. # smart households)

sustainability impact

(energy savings)

Source: GeSI, #SMARTer2030, 2015

-> 20% reduction of global CO2e emissions by 2030

Source: GeSI, #SMARTer2030, 2015

Appendix: Rebound effect

Potential Rebound effect for:

Smart Logistics: 20% E-Health, E-Banking, E-Learning, Connected Private Transport: 7% Smart Building and Traffic Control: 10%

Calculations without rebound effects because:

- "The science behind rebound is generally tricky and a matter of debate."
- "Neither SMART2020 nor SMARTer2020 calculated expected rebound effect." \bullet

Source: GeSI, #SMARTer2030, 2015

Summary

- There are enough ideas
- There are some tools, but **no common standards** to quantify and report solutions
- Innovations in development: Focus must be equally on possible positive and negative outcomes

Thank you!

