
Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems Assignments HS 2015

Assignment 3
Start: 19 October 2015
End: 2 November 2015

Objectives

In this assignment, you will get some experience with handling UDP communication. In order to
highlight the fact that UDP was thought to be connection-less and thus, that the delivery and the sequence
of the messages cannot be guaranteed, you will develop a mobile application. The mobile application will
simulate a chat client that will try to communicate with other clients. The focus will be on understanding
how UDP works and how to preserve causality and temporal ordering of the messages, in spite of the
unreliability of the underlying UDP protocol (lossy channel and delays). You will implement two
concepts to determine the order of events in a distributed system that you have learned about in the lecture.

With this assignment you can gain 10 points out of the total 45.

Task Points
1 2
2 4
3 2
4 2

Total 10

Format Warning Please refer to the instructions in this document regarding the formatting of the code
and the exchanged messages with the server.

Lamport Timestamps represent a simple algorithm to partially order distributed events. The rules that
this algorithm follows were determined by L. Lamport1. Distributed processes that implement Lamport
timestamps satisfy the so-called clock consistency condition: if event A happens before event B, then
event A’s logical clock arrives before event B’s. Therefore, if event A’s logical clock comes before event
B’s logical clock, then A may have happened before or at the same time as B, but not after B.

Vector Clocks represent an extension of Lamport timestamps in that they guarantee the strong clock
consistency condition which, additionally to the clock consistency condition, dictates that if the clock of
one event arrives before another, then, that event happened before the other, i.e., it is a two-way condition.
This is achieved by holding a vector of n logical clocks in each process (where n is the number of
processes) and by including these values in all inter-process messages.

To support this assignment, we provide you with a server that you can deploy on your local machine.

• When you start the server from the command line, the server will output the IP address and the
port on which you can communicate. The predefined port is 4446.

• The communication protocol and the message structure is fixed. Please check the appendix of this
sheet to understand how messages have to be constructed.

1Leslie Lamport - Time, clocks, and the ordering of events in a distributed system; ACM Communications Magazine, volume
21, issue 7, July 1978

1



Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems Assignments HS 2015

• You can also test your chat client using the Android emulator. However, to communicate to the
server you must use the following IP address 10.0.2.2. By using this address you can test your
code on your own machine, without having to use the phones.

Starting the server

The server can be started from the command line. Use the following command:

1 java -jar chat_server.jar
2

3 // And the output
4

5 Server started
6 Server IP address : 192.168.192.38
7 Server port : 4446

Listing 1: Starting the server

1 Getting Familiar with Datagrams (2 Points)

To familiarize yourself with the sending and receiving of UDP messages, create an Android application
that provides a service for client registration and deregistration. This is the first step towards building a
chat-like application.

• The server provides a user registration and deregistration service. To send a message to the server,
the client must send a packet to the corresponding address and port.

• The UDP packet must follow a specific format which can be seen in the appendix.

• On successful registration or deregistration, the server will reply with an ACK message. Since UDP
is connectionless and there is no guarantee on receiving the message, you must specifically handle
such situations. Since receiving a message is a blocking operation, one solution is to implement
a socket timeout. If there is no message received within the specified time, the client will stop
listening for new messages.

• As a result, one flow for registration (or deregistration) is the following: the client sends a "regsiter"
message. The server receives the messages and replies with an "ack" message. The client must
process this message and display a message that the registration has been successful.

• A different flow is when the server is unavailable or the packets get dropped. The client sends
a "register" message. The server does not reply. By having a timeout mechanism you can stop
listening for new messages after a predefined time. When the time limit is reached the client knows
that there is no "ack" message from the server. In such a case, the client will initiate a new attempt
to register. You must also implement this behavior in your application.

• The "register" and "deregister" flows are identical, the only difference is the type of the message.

• For this task you do not need to send any Vector or Lamport clocks. You can leave the field empty.

2



Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems Assignments HS 2015

Activity

Create a new Android project called vs-nethz-chat and set the application name to VS nethz chat (where
nethz is the group leader’s nETHZ account name).

1. Your main activity should provide at least the following functionality: an EditText control for user
input, a Join button and a Settings button.

2. The text input should be used for entering a username.

3. The Join button will send a "register" message to the server. On successful registration, the
application must transition to a new activity. You will use this activity in Task 3. You can call this
activity "ChatActivity". If registration is not successful from the first attempt, your chat client must
automatically reattempt to register the user for a number of 5 times. If the registration is still not
successful, your application must display a corresponding notification.

4. The Settings button will transition to another activity, called "SettingsActivity". Here the user
should be able to set the server’s address and the port.

5. You are free to implement the "deregister" functionality. You can either choose another button or
deregister the user on a specific event (e.g. "Back" button pressed in the ChatActivity).

Sending and receiving UDP packets

For sending and receiving UDP messages you will use the DatagramSocket class (http://
developer.android.com/reference/java/net/DatagramSocket.html).

• Socket initialization: Datagram socket = new DatagramSocket(port);

• Socket timeout: socket.setSoTimeout(time);

• Socket send: socket.send(packetToSend);

• Socket receive: socket.receive(getack);

For learning more about Datagrams please consult the following tutorial: https://docs.oracle.
com/javase/tutorial/networking/datagrams/.

Generating a UUID

The messages that you send to the server must contain a unique identifier for each client. UUIDs, Univer-
sally Unique IDentifier, can be easily generated using the UUID class. You can consult the following
URL for usage: http://developer.android.com/reference/java/util/UUID.html.

Hint: once the user has been registered on the server with a UUID, the client must use the
same UUID for interacting with the server.

2 Implementing Vector Clocks and Lamport Timestamps (4 points)

In this task you will have to implement Vector Clocks and Lamport Timestamps. This task does not
require the server. For testing your implementation you can use the included unit tests. You must create
two different classes, one called LamportClock.java and another one called VectorClock.java.

3



Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems Assignments HS 2015

• Both classes that you create must implement the ch.ethz.inf.vs.a3.clock.Clock interface. For a more
detailed description of the interface you must have a look at the JAVA file provided in the code
skeleton.

• The interface describes the methods that are common to both implementations. Besides the
described methods you must implement additional methods for both classes.

• For Lamport timestamps you must implement the following additional methods: void setTime(int
time) and int getTime(). void setTime(int time) overrides the current clock value with the one
provided as input. int getTime() will return the current clock value.

• For Vector clocks you must implement the following additional methods: int getTime(Integer pid)
and void addProcess(Integer pid, int time). int getTime(Integer pid) will return the current clock for
the given process id. void addProcess(Integer pid, int time) adds a new process and its vector clock
to the current clock.

Lamport Timestamps and Vector Clocks implementation

When implementing the two classes, you can use the following data structures for representing the logical
clocks:

• For Lamport timestamps use an integer. private int time;

• For Vector clocks use a map between two integers. private Map<Integer, Integer> vector;. For
each process id you associate a logical time.

Running the unit tests

To run the unit tests from Android Studio you must include an additional library in your project. You
must first create a new folder called "testlibs" in the /app folder (on the same level with src). Copy the
"json-20150729.jar" library to the "testlibs" folder. Then you must modify your build.gradle file and add
the new dependencies.

1 // Unit tests dependencies
2 testCompile ’junit:junit:4.12’
3 testCompile files(’testlibs/json-20150729.jar’)

3 Message ordering based on Vector Clocks (2 points)

In this task you will have to implement sorting based on Vector Clocks to determine the order of messages
in distributed systems. We assume a chat client wants to join a conversation and would like to retrieve the
conversation history. The server will send all the messages to the client, one by one. Given that the chat
application uses UDP, there is no way to know if the order in which the messages arrive is the correct one.
Your task is to implement an ordering mechanism for the incoming messages and to display the content
of each message in your application.

• The client sends a "retrieve_chat_log" message to the server.

4



Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems Assignments HS 2015

• The server will send back multiple messages to the client. However, pay attention that these
messages are sent in a random order.

• The client must buffer all the received messages until no other message is received. This can be
handled again using a socket timeout.

• Before displaying the messages, the client must sort the received messages using the attached
vector clocks.

For this task you will use the activity that you have created in Task 1. Once the user has been successfully
registered, your application will transition to the "ChatActivity".

ChatActivity

Your activity must contain the following elements:

• A view to display messages. You are free to choose any user interface (for e.g. you can choose a
simple TextView).

• A button called "Retrieve chat log". Once the user presses the button, a message is sent to the
server. The server will send the client multiple messages that have to be displayed in the correct
order.

• Once the messages have been sorted, the client can display them on the UI.

Sorting messages

Due to the underlying protocol, the messages that are received from the server could be in a random order.
However, having vector clocks we can ensure that if there is causality between the events, we can display
them in the correct order. Your task is to buffer all the messages that are sent from the server and sort them.

One way to sort the messages is using a PriorityQueue (http://developer.android.
com/reference/java/util/PriorityQueue.html). A PriorityQueue holds elements on a
priority heap, which orders the elements according to their natural order or according to the comparator
specified at construction time. If the queue uses natural ordering, only elements that are comparable are
permitted to be inserted into the queue. Since the chat client works with messages, they do not have a
natural ordering. The solution is to implement a Comparator.

You have to implement a class called MessageComparator.java that implemenets the Compara-
tor<T> interface. Afterwards you will have to override the compare method. You can then use the
priority queue as a message buffer. Whenever a new message arrives, you insert it in the queue. Having a
proper comparator, the messages will be inserted in the correct order.

4 Mini-Test (2 Points)

As part of the assignment, you should answer these questions as briefly as possible. They are related
to Task 2. Please recopy the questions and the numbering. Feel free to use either LATEX or any other
document writer, but the submission has to be a .pdf of the format answers-nethz.pdf2. Please make
all group members’ full names appear on the document.

2Again, the group leader’s nethz

5



Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems Assignments HS 2015

1. What are the main advantages of using Vector Clocks over Lamport timestamps?

2. Give the two conditions for two Vector Clocks to be causally dependent?

3. Does a clock tick happen before or after the sending of a message. What are the implications of
changing this?

4. Fill in the corresponding vector clocks from Figure 1. In this example, the ticking only happens
when sending a message. Your task is to write for each event (sending or receiving) the correct
vector clock. In black you can see the vector clock for a sending or receiving event, while in red
you can see the vector clock attached to the message.

When filling in the vector clocks you must write the correct vector clocks for sending or receiving
events. At the same time, you must also fill in the vector clocks attached to each message (just
like the red vector clock showed in the figure). Use two different colors and use the example as a
guideline.

A:0	
  
B:0	
  
C:0	
  

P1	
  

P3	
  

P2	
  

A:0	
  
B:0	
  
C:0	
  

A:0	
  
B:0	
  
C:0	
  

1	
  
0	
  
0	
  

1	
  
0	
  
0	
  

1	
  
1	
  
0	
  

1	
  
1	
  
0	
  

1	
  
0	
  
0	
   1	
  

1	
  
0	
  

Figure 1: Fill in the corresponding vector clocks for the remaining events

5. Read the paper Dynamic Vector Clocks for Consistent Ordering of Events in Dynamic Distributed
Applications by Tobias Landes 3 that gives a good overview on the discussed methods. In particular,

3http://vs.inf.ethz.ch/edu/vs/exercises/A3/DVC_Landes.pdf

6



Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems Assignments HS 2015

which problem of vector clocks is solved in the paper?

Deliverables

The following two deliverables have to be submitted by 09:00 A.M. (CET), November 2, 2015:

• code.zip You should create a zip file containing the Android Studio projects created in this
assignment. The projects should have been tested both on the mobile phone and on the emulator.
The code must compile on our machines as well, so always use relative paths if you add external
libraries to your project. Do not forget to include those libraries in the zip file. Please use UTF-8
encoding for your documents and avoid special characters like umlauts (everything should be in
English).

• answers-nethz.pdf the answers to Task 4 in pdf format.

Submission

Report and code must be uploaded through:

https://www.vs.inf.ethz.ch/edu/vs/submissions/

The group leader can upload the files, and other group members have to verify in the online system that
they agree with the submission. Use your nethz accounts to log in. The submission script will not allow
you to submit any part of this exercise after the deadline. However, you can re-submit as many times as
you like until then.

Questions

Any e-mail is required to follow the exact following format, because your emails will be filtered to
improve the latency for a response :

• FROM: nethz@student.ethz.ch (or the email you’re registered to in the ETH system)

• TO: mihai.bace@inf.ethz.ch

• SUBJECT: [VS_2015] group leader’s nethz - Topic

Final Remarks

Your apps have to handle the case where there is no connection by displaying an error message and not
proceeding with the server interactions (which would fail anyway).

7



Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems Assignments HS 2015

Protocol specifications

The following commands are accepted by the chat server. Please read the specifications carefully and pay
attention to the formatting. Any other message type will be ignored.

• register: the client must first send this JSON message to the server before any other interaction
can be initiated. For registration purposes, there is no need to send a timestamp.

1 {
2 "header": {
3 "username": "John",
4 "uuid": "ae4e15ff-b589-4e85-a07c-594b16e4e645",
5 "timestamp": "{}",
6 "type": "register"
7 },
8 "body": {}
9 }

Listing 2: Client’s sends a "register" message

• deregister: the client must send a message to the server if he wants to deregister. The server keeps
track of all the registered users. Again, for the deregistration, there is no need to send a timestamp.

1 {
2 "header": {
3 "username": "John",
4 "uuid": "ae4e15ff-b589-4e85-a07c-594b16e4e645",
5 "timestamp": "{}",
6 "type": "deregister"
7 },
8 "body": {}
9 }

Listing 3: Client’s sends a "deregister" message

• retrieve chat log: the client wishes to retrieve a chat log from the server, which he further has to
process before displaying.

On the server side:

• ack: the server will send an acknowledgement (ack) message to confirm a successful registration
or deregistration.

• error: the server will send an error message when there is a problem decoding the message. The
message type will be "error" and in the body there will be an integer number representing an error
code. For a detailed description of each error code check class ch.ethz.inf.vs.a3.message.ErrorCodes
from the code skeleton.

8



Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems Assignments HS 2015

1 {
2 "header": {
3 "username": "John",
4 "uuid": "ae4e15ff-b589-4e85-a07c-594b16e4e645",
5 "timestamp": "{}",
6 "type": "retrieve_chat_log"
7 },
8 "body": {}
9 }

Listing 4: Client sends a "retrieve_chat_log" message

1 {
2 "header": {
3 "username": "server",
4 "uuid": "ac31f345-a8b1-4241-b939-9d3527f14483",
5 "timestamp": "{}",
6 "type": "ack"
7 },
8 "body": {}
9 }

Listing 5: Server "ack" message for successfully registering or deregistering a client

• message: when the client requests the chat log, once the authentication of the client has been
carried out, the server will send multiple messages to the client. The type of the message will be
"message" and the body will contain text (e.g. "A2", "A1", etc.).

9



Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems Assignments HS 2015

1 {
2 "header": {
3 "username": "server",
4 "uuid": "ae4e15ff-b589-4e85-a07c-594b16e4e645",
5 "timestamp": "{}",
6 "type": "error"
7 },
8 "body": {
9 "content":"4"

10 }
11 }

Listing 6: Server sending an "error" message. The number from the content field represents an error code.

1 {
2 "header": {
3 "username": "server",
4 "uuid": "ac31f345-a8b1-4241-b939-9d3527f14483",
5 "timestamp": "{\"0\":2,\"1\":0,\"2\":0}",
6 "type": "message"
7 },
8 "body": {
9 "content":"A1"

10 }
11 }

Listing 7: Server’s response to "retrieve_chat_log" message

10


