
Dynamic Vector Clocks
for Consistent Ordering of Events in Dynamic Distributed Applications

Tobias Landes
Institut für Informatik

Technische Universität München
Germany

Abstract

A large number of tasks in distributed systems can
be traced down to the fundamental problem of attaining
a consistent global view on a distributed computation.
This problem is commonly solved by appliance of vector
clocks as a means of tracing causal dependencies among
the events that characterize a run of the computation. In
the paper at hand an extension to the concept of vector
clocks is presented and examined that is meant to over-
come the vector clocks’ great drawback: that the number
of processes in the distributed system has to be constant
and known in advance. As an appropriate context for
thesedynamic vector clocksand their associated algo-
rithms to be integrated into, scalar and vector clocks are
analogously reinvestigated.

Keywords: distributed system, vector clocks, dynamic,
logical time, event order

1 Introduction

Due to decreasing hardware costs and increas-
ing needs of computing resources, distributed systems
steadily gain practical importance. The benefit of dis-
tributed systems lies in their ability to carry out a compu-
tation in parallel fashion. On the other hand, this makes
distributed computations much more complex and diffi-
cult to understand than their sequential counterparts.

One fundamental problem presenting itself in mani-
fold tasks, such as system monitoring, breakpointing, or
detecting global predicates for debugging purposes, is to
retrieve a global view on the computation which repre-
sents a specific consistent global state of the system. This
fundamental problem results from the fact that in a dis-
tributed environment, unlike a non-distributed one, there
is no common clock or time base to order the computa-
tional events in the sense that one could say eventei hap-
pened before or afterej . The common approach to over-
come this deficiency is to substitute for the global clock
a relative “time approximation” based on logical princi-
ples like program-inherent causal dependencies between
single events. These causal dependencies derive from
the program logic in the sense that, first, each process
is regarded as a sequence of events ordered inherently
by the underlying program and, second, in order for the
distributed computation to make sense, the processes do

cooperate in some way or the other, which produces ad-
ditional dependencies between single events of different
processes. The most common way of modeling interpro-
cess communication is to have the processes send and
receive messages in respective events. The resulting de-
pendencies can intuitively be described by the statement
that the event that represents the sending of such a mes-
sage must happen before the event that stands for the re-
ceipt of the same message.

Even more basic than constructing a consistent global
view, which it is actually a part of, is the need to enable
any receiver, either a process involved in the computa-
tion or an independent monitor process, to order the mes-
sages it receives according to their logical order. This
problem is commonly solved by usinglogical clocksas
proposed by Leslie Lamport in his milestone paper [1].
To suit the needs of many real-life applications, which
will be discussed later in this paper, Lamport’s scalar
logical clock has been refined to the more powerfulvec-
tor clock. This commonly used device has yet one seri-
ous drawback: The number of processes involved must
be constant and has to be known in advance, which is
not an acceptable precondition for the many applications
based on the dynamic creation and destruction of pro-
cesses. Therefore, after discussing the features of scalar
and vector clocks, the paper at hand introduces an exten-
sion to vector clocks making them suitable for applica-
tions which dynamically spawn processes. Features and
appropriate algorithms for thesedynamic vector clocks
are given and examined in analogy to those of scalar and
vector clocks.

The document is organized as follows: Section2
briefly describes the system model which will be used
throughout the document. Section3 examines in detail
the different kinds of logical clocks and their features,
dedicating one subsection each to scalar clocks, vector
clocks, and the newly proposed dynamic vector clocks.
Section4 summarizes the contents of the paper.

2 System Model

This section introduces a model for distributed sys-
tems. For the sake of simplicity, the model shall be as
basic as possible, without shared memory or similar so-
phisticated features, which will be sufficient for the is-
sues discussed in this paper.

In this model, a distributed computation consists of a
finite setP = {p1, p2, . . . , pn} of n processes. The pro-
cesses communicate only by sending and receivingmes-
sages, which are assumed to be delivered reliably and
with a finite delay. For many applications it is neces-
sary that the messages be delivered exactly in the or-
der they have been sent, which establishes the notion of
FIFO channels. Since these are closely bound to logical
clocks, they will not be generally assumed, but explicitly
mentioned in appropriate places throughout this paper.

Any processpi consists of a sequence ofevents Ei =
{e1

i ,e
2
i , . . .}, which are totally ordered by an ordering re-

lation→ called theprogram order. Each event is atomic
on the viewed abstraction level and changes thestate
of the process. E is the set of all events in the sys-
tem. Of particular interest for considerations regarding
the global behaviour of systems with interacting pro-
cesses are events representing the sending or receiving
of a message, i.e.sendand receive events. This is
because these events establish synchronization depen-
dencies among the processes and thus extend the local
program order to a partial global ordering⇒ of events,
which will be formally defined in section3.

3 Logical Clocks

A fundamental necessity in many distributed applica-
tions is that message receiving processes be able to or-
der their incoming messages appropriately, i.e. to string
them up and react to them in an order restricted by the
system’s delivery rule (for example the precise order they
have been sent). This need presents itself in the basic
operating logic of a distributed computation as well as in
higher level applications such as retrieving a global view
on the computation that represents a consistent global
system state and is used, for example, for system moni-
toring, breakpointing or debugging purposes.

Since the typical asynchronous distributed system
lacks a global clock which could provide a common
time base to all processes, Lamport [1] introducedlog-
ical clocksas a device to substitute for a global real time
clock. As the term already suggests, logical clocks are
used to order events (or associated entities, like mes-
sages) based on their relative logical dependencies rather
than on a “time” in the common sense. This means that
a statement such as “eventei happens before eventej ” is
to be read as “eventei must happen before eventej ”. Of
course there are events for which there is no such depen-
dency, and which, therefore, must (or may) remain un-
ordered. To formally capture all the causal dependencies
in a system as modeled in section2, Lamport [1] defined
the “happened before” relation in the following way as
a partial order relation, which is the transitive closure
of the program order and the natural causal send-receive
dependencies:

Definition 3.1. The “happened before” relation⇒ is
the smallest relation satisfying the following conditions:

• If ex
i → ey

i , thenex
i ⇒ ey

i .

• If ex
i is a send event andey

j is the receive event of
the same message, thenex

i ⇒ ey
j .

• If ex
i ⇒ ey

j andey
j ⇒ ez

k, thenex
i ⇒ ez

k.

If ex
i ⇒ ey

j , theney
j is regarded as beingcausally de-

pendenton ex
i since it can only be executed if the ex-

ecution ofex
i has already been finished. Therefore,ex

i
can also be seen as apreconditionto ey

j . Intuitively, this
means for example that a message can not be received
before it has been sent. Ifex

i 6⇒ ey
j andey

j 6⇒ ex
i , thenex

i

andey
j are said to beconcurrent, and may be executed in

parallel since none of them can causally affect the other.
Concurrency shall be denoted byex

i ‖ ey
j .

It is obvious that any correct logical clock system has
to respect the “happened before” relation. Thus Lamport
stated the clock condition, which derives from the above
relation and will be the base of all logical clock devices:

Definition 3.2. Any correct clock must fulfill theclock
condition, which is the following:

∀ex
i ,e

y
j ∈ E : if ex

i ⇒ ey
j thenC(ex

i) < C(ey
j).

As a consequence, a correct clock must fulfill two
conditions directly derived from the “happened before”
relation, one for each of the first two parts of the rela-
tion’s definition (the third part only states the transitivity
of the “happened before” relation and is implicitly cov-
ered because< is a transitive order relation):

1. If ex
i → ey

i , thenC(ex
i) < C(ey

i).

2. If ex
i is a send event andey

j is the receive event of
the same message, thenC(ex

i) < C(ey
j).

Note that these conditions, and the “happened before”
relation as of definition3.1, are system model dependent
and in their given form only apply to the basic system
model introduced in section2. Another system model
could imply other dependencies among the events, which
would also have to be taken into account.

Now a few of the most important goals of using logi-
cal clocks shall be briefly described for the sake of moti-
vation and to be referred to in the discussion of the par-
ticular clock types in the following sections.

The first significant concept is thedelivery rule. De-
livery rules specify restrictions on the order in which in-
coming messages are to be delivered to the receiving pro-
cess for processing. An important and popular example
is FIFO delivery, which says that a processj shall re-
ceive messages sent by processi in the order they were
sent, and any other messages (from different processes)
in arbitrary order:

If es
i → eS

i thener
j → eR

j ,

wheres/S mark send events andr/R their respectively
corresponding receive events. Note that this definition
has only the messages between two specific processes
ordered, not messages sent by different processes. There

are other definitions of FIFO delivery that demandall
messages in the system to be delivered in order; this ver-
sion I will call strict FIFO delivery.

Another important delivery rule iscausal delivery,
which is stronger than FIFO delivery as defined above:

If es
i ⇒ eS

k thener
j → eR

j .

This expands FIFO delivery to additionally order mes-
sages sent by different processes if they are causally re-
lated according to the “happened before” relation. Since
this delivery rule allows to trace event causality, it is es-
pecially important in distributed debugging and system
monitoring.

To implement causal delivery a property calledgap
detectionis needed. A process receiving two messages
with their respective timestamps must be able to decide
whether there is another message that belongs in be-
tween, but has not yet been received. More formally,
given two clock valuesCi(ex

i) < Cj(e
y
j), it has to be de-

termined whether there exists an eventez
k with Ci(ex

i) <
Ck(ez

k) < Cj(e
y
j). For a more detailed discussion on this

topic see [2].
With these concepts introduced, we can now effi-

ciently discuss different kinds of logical clocks. The old-
est and simplest logical clocks were introduced by Lam-
port as mere scalar values and will be briefly described
in the next section.

3.1 Scalar Clocks

Lamport [1] defined a logical clock as a function as-
signing a simple scalar value to each event in the system:

Definition 3.3. A logical clock C is a function which
assigns a numberC(e) to any evente∈ E.

To satisfy the conditions stated in the previous sec-
tion, the clocksCi , of which every processi maintains its
own, are updated with each eventex

i as follows:

• If ex
i is not a receive event, thenCi(ex

i) =Ci(ex−1
i)+

1.

• If ex
i is the receive event of messagem, then

Ci(ex
i) = max{Ci(ex−1

i),Cj(e
y
j)}+ 1, whereCj(e

y
j)

is the clock value of the send event in processj that
sentm to processi. The clock value of any send
event is always timestamped on the message sent.

An example illustrating the use of scalar clocks is
given in Figure1. It is easy to verify that these scalar
logical clocks satisfy the clock condition. Yet, as handy
and simple as they are, they have a serious drawback:
They lose causality information, which is acceptable for
some applications, but not in general (for example, dis-
tributed debugging). One result of the information loss
scalar clocks exhibit is the complete lack of the gap de-
tection property, which renders them unusable for appli-
cations requiring causal delivery and for applications re-
quiring FIFO delivery, but running on systems which do
not provide FIFO channels.

p1:

p3:

p2:

0

0

1

0 2

2

3

3

4

3

4

5

5

6

Figure 1: Scalar clocks

Closely related to the gap detection problem, but more
important since more general, is the fact that ifCi(ex

i) =
Cj(e

y
j) one can concludeex

i ‖ ey
j , whereas the reverse con-

clusion is not feasible: GivenCi(ex
i) < Cj(e

y
j) one is still

unable to determine whetherex
i ⇒ ey

j or ex
i ‖ ey

j , which
is often, namely in distributed debugging, a very inter-
esting detail to know. That is, scalar clocks can be used
to construct an event ordering which is consistent with
causal dependencies, but not to view or analyze the de-
pendencies itself, e.g. to decide whether two events in
the ordering could possibly be swapped without losing
causal consistency.

3.2 Vector Clocks

Vector clocks are a more powerful extension of Lam-
port’s scalar logical clocks, and commonly used to over-
come the deficiencies of the latter. Instead of a single
scalar timestamp, vector clocks use several (combined
to a vector) in order to capture the causal dependen-
cies among events more comprehensively than the scalar
clocks do. Mattern [3] and Fidge [4, 5] have analyzed
vector clocks regarding their ability to completely reflect
event causality in distributed systems.

As with scalar clocks, each process maintains its own
local clock. The clock now is a vector ofn scalar values,
n being the total number of processes. Each component
Ci(ex

i)[j] holds the latest (scalar) clock value processi
knows from processj at the time of eventex

i .
The update rules for vector clocks are specified as fol-

lows:

• If ex
i is the receive event of messagem, then

Ci(ex
i)= max{Ci(ex−1

i),Cj(e
y
j)}, whereCj(e

y
j) is the

clock vector of the send event in processj that sent
m to processi andmaxis the component-wise max-
imum.

• If ex
i is any event, including receive events, then

the process increments its own scalar clock value:
Ci(ex

i)[i] = Ci(ex−1
i)[i]+1.

An example illustrating the use of vector clocks is
given in Figure2.

The great benefit of vector clocks lies in their property
not only to fulfill the clock condition as given in defini-
tion 3.2, but the following stronger version as well:

p1:

p3:

p2:

(

2

2

2

) (

2

3

2

)(

2

1

0

)

(

3

0

0

)

(

0

0

0

)

(

4

0

3

)(

2

0

0

)

(

1

0

2

)(

1

0

1

) (

2

3

4

)(

1

0

3

)

(

0

0

0

)

(

1

0

0

)(

0

0

0

)

Figure 2: Vector clocks

Definition 3.4. Thestrong clock conditionis defined as
follows:

∀ex
i ,e

y
j ∈ E : C(ex

i) < C(ey
j) if and only if ex

i ⇒ ey
j .

For the vector clocks to work with the strong clock
condition, we need to precisely define the< relation for
our vectors:

Definition 3.5. The< relation for vector clocksshall be
defined as follows:

Ci(ex
i) < Cj(e

y
j) if and only if

Ci(ex
i) 6= Cj(e

y
j) and

∀k|1≤ k≤ n : Ci(ex
i)[k]≤Cj(e

y
j)[k].

Given these tools, vector clocks allow a simple deci-
sion, based on a single scalar comparison, whether one
event is causally dependent on another:

ex
i ⇒ ey

j if and only ifCi(ex
i)[i]≤Cj(e

y
j)[i].

Note that this formula is not symmetric. If the for-
mula is applied and yieldsex

i 6⇒ ey
j , it must be applied a

second time to decide whetherey
j ⇒ ex

i or ex
i ‖ ey

j . This
leads directly to the concurrency test:

ex
i ‖ ey

j if and only if

Cj(e
y
j)[i] < Ci(ex

i)[i] and

Ci(ex
i)[j] < Cj(e

y
j)[j].

With the< relation applied as defined above and all the
update rules obeyed (so the strong clock condition is sat-
isfied) this is equivalent to

ex
i ‖ ey

j if and only if

Cj(e
y
j) � Ci(ex

i) and

Ci(ex
i) � Cj(e

y
j),

which is mentioned here only for the sake of complete-
ness and clarification since in this second form the test
requires significantly more scalar comparisons1.

1 With n being the number of vector entries (equaling the number of
processes), linear 2n instead of constant 2 comparisons.

If one of these tests is applied and yieldsex
i ∦ ey

j , it
can be immediately determined, depending on which one
of the two conditional terms failed to be true, whether
ex

i ⇒ ey
j or ey

j ⇒ ex
i .

Vector clocks have also the property that they are
suited for a restricted form of gap detection, which is, un-
der the additional assumption that processes increment
their vector clocks only on events which are notified
to a specific monitor process (including all send/receive
events), yet sufficient for the implementation of FIFO or
causal delivery at the monitor. This property is based on
the observation

if ∃k 6= j : Ci(ex
i)[k] < Cj(e

y
j)[k]

then∃ez
k : (ez

k ⇒ ey
j)∧¬(ez

k ⇒ ex
i).

and is weak in the sense that it lets us decide whether
ex

i ⇒ ez
k ⇒ ey

j only for the special casek = i. For a more
detailed discussion, see [2].

The great drawback of vector clocks is that they use a
fixed index to locate the vector component representing
the scalar clock value associated with a given process.
Thus two heavily restrictive requirements emerge: First,
the number of processes has to be constant and, second, it
has to be known in advance. Both of these requirements
are not acceptable for inherently dynamic applications,
but can be overcome by using the dynamic vector clocks
proposed in the next section.

3.3 Dynamic Vector Clocks

The assumption that the number of processes partic-
ipating in a distributed computation be constant is not
quite realistic. Most distributed applications need to be
able to grow dynamically according to their individual
progress. In this section a straightforward extension of
common vector clocks is proposed, which is meant to
overcome the vector clocks’ deficiencies regarding sys-
tems with dynamic process creation.

Since no upper bound on the total number of pro-
cesses shall be assumed, the clock vector must be able
to dynamically grow. Initially it is postulated to have
length 1 and thus resemble a scalar local clock of its as-
sociated process. In order not to diminish the causal-
ity tracing ability of standard vector clocks, a process’s
vector must continue to gather information about the
progress of other processes by merging the information
available through incoming messages with its own cur-
rent clock vector. As with standard vector clocks, the
latest of the two available values of each component has
to be recorded. Additionally, in a dynamic system, pro-
cesses previously unknown to the receiver, but already
represented in the incoming timestamp, have to be in-
cluded into the receiver’s own vector. The accounting
for all possible side effects of the system’s dynamics
predictably leads to some informational overhead, com-
pared to standard vector clocks, that has to be included
in the clock system.

The simplest way to achieve the required vector grow-
ing feature would be to include the new process’s value

at the position indexed by its process ID (or a function
thereof), as is done with standard vector clocks (see sec-
tion 3.2). However, this practice would lead to signif-
icant inefficiencies. Suppose the first message process
p1 receives originates from processp337. As a result,
processp1 would have to fill its clock vector with 335
unnecessary zeros between positions 1 and 337. Need-
less to say, this would produce a significant overhead not
only in memory usage, but especially in network load,
because this vector is transmitted along with each and
every message process 1 will transmit in the future (and
because the waste is as unbounded as the number of pro-
cesses). Furthermore, a “garbage collection” in the sense
of discarding vector components representing processes
that in the meantime have been terminated is rendered
virtually impossible (i.e. whenever any process with
higher ID is still active and present in the clock vector
in question).

For these reasons a somewhat more difficult, but
much more flexible solution will be proposed here. The
flexibility is achieved by investing some space and sim-
plicity and making the clock vector a two-column matrix,
variable in its number of rows, which provides a simple
mapping of a process’s ID to the associated (scalar) clock
value. In this way, the size of the vector is no longer
bounded by the (unbounded) number of processes but
by two times the number of processes the maintaining
process has (directly or indirectly) received clock values
from, which can safely be assumed to be a significantly
smaller number in most real-life applications (though, in
fact, it is unbounded too). Furthermore, a “garbage col-
lection” is possible by implementing a coordination pro-
tocol as motivated and described in the next section.

I will now describe in detail how thesedynamic vec-
tor clocks1 work and how they can be used for causal
dependency/concurrency determination.

Each processpi maintains its own logical clockCi

which is now a two-column matrix whereCi(ex
i)[k,2]

holds, at the time of eventex
i , the latest (scalar) clock

value pi knows from the process whose ID is saved in
Ci(ex

i)[k,1]. Initially, the clock consists of a single row
with Ci(e0

i)[1,1] = i andCi(e0
i)[1,2] = 0 (supposing the

clock index numbering starts with 1).
The update rules for dynamic vector clocks are spec-

ified as follows:

• If ex
i is the receive event of messagem, then ∀l

not exceeding the number of rows inCj(e
y
j) :

Ci(ex
i)[k,2] = max{Ci(ex−1

i)[k,2],Cj(e
y
j)[l ,2]},

where Cj(e
y
j) is the clock matrix of the send

event in processj that sentm to processi, and
Cj(e

y
j)[l ,1] = Ci(ex

i)[k,1].

• If there exists no k such that Ci(ex
i)[k,1] =

Cj(e
y
j)[l ,1] for any l , then a new row is ap-

pended toCi(ex
i) with Ci(ex

i)[k,1] =Cj(e
y
j)[l ,1] and

Ci(ex
i)[k,2] = Cj(e

y
j)[l ,2].

1 I will not call them “matrix clocks”, as this term has already been
established for different concepts (for example in [6]).

p1:

p3:

p2:

[

1 4

3 3

]

[

3 0

]

[

3 1

1 1

][

3 2

1 1

] [

3 3

1 1

]

[

3 4

1 2

2 3

]

[

2 1

1 2

]

[

2 2

1 2

3 2

] [

2 3

1 2

3 2

]

[

2 0

]

[

1 3

][

1 2

][

1 1

]

[

1 0

]

Figure 3: Dynamic vector clocks

• If ex
i is any event, including receive events, then,

on receive events additionally to the above, the
process increments its own scalar clock value:
Ci(ex

i)[1,2] =Ci(ex−1
i)[1,2]+1 (withCi(ex

i)[1,1] =
i being the entry that represents the process itself as
already postulated).

An example illustrating the use of dynamic vector
clocks is given in Figure3. Note that the following im-
portant statement is always true:

@k 6= l : Ci(ex
i)[k,1] = Ci(ex

i)[l ,1].

This means that there is at most one entry represent-
ing a given process in any clock vector, which follows
directly from the update rules: A new entry is only ap-
pended if there is no match already present. �

With these rules obeyed, the dynamic vector clocks
retain all the benefits exhibited by standard vector clocks.
However, before we examine the concurrency tests for
dynamic vector clocks, we should redefine the< rela-
tion, so it suits the strong clock condition:

Definition 3.6. The< relation for dynamic vector clocks
shall be defined as follows, with|C| denoting the length
of a clock in rows:

Ci(ex
i) < Cj(e

y
j) if and only if

(Ci(ex
i) 6= Cj(e

y
j)) and

(∀k | 0 < k≤ |Ci(ex
i)| : (∃l : 0 < l ≤ |Cj(e

y
j)|

andCi(ex
i)[k,1] = Cj(e

y
j)[l ,1]

andCi(ex
i)[k,2]≤Cj(e

y
j)[l ,2])).

For two dynamic vector clock values to be considered
equal, the order of entries (rows) is certainly of no sig-
nificance.

With the < relation adapted, we now can state,
in analogy to standard vector clocks, a simple non-
symmetric causal dependency test:

ex
i ⇒ ey

j if and only if∃k, l :

Ci(ex
i)[k,1] = Cj(e

y
j)[l ,1] = i and

Ci(ex
i)[k,2]≤Cj(e

y
j)[l ,2].

Of course, analogous to standard vector clocks, a
symmetric concurrency test can also be given:

ex
i ‖ ey

j if and only if

Cj(e
y
j) � Ci(ex

i) and

Ci(ex
i) � Cj(e

y
j).

The number of comparisons required for this test de-
velops as ofO(|Ci(ex

i)|×|Cj(e
y
j)|). This time, there is no

point in refining the test by reducing it to a comparison
of two specific clock entries, because there are no fixed
indices so finding these entries still involves searching
the whole vector (and they might not even exist).

If this test is applied and yieldsex
i ∦ ey

j , it can be im-
mediately determined, depending on which one of the
two (highest level) conditional terms failed to be true,
whetherex

i ⇒ ey
j or ey

j ⇒ ex
i . This feature is the greatest

benefit of vector clocks, and is retained as well by the
dynamic extension presented herein.

Pruning Obsolete Clock Entries. Finally, an examina-
tion of the “garbage collection” possibilities mentioned
at the beginning of this section. As opposed to the afore-
mentioned somewhat simpler approach to render vec-
tor clocks suitable for dynamically changing systems,
the extension proposed here is, in principle, suited for a
“garbage collection” in the sense that the clocks can not
only grow as needed, but also be pruned down by dis-
carding information on processes that have already been
terminated. The idea is, that whenever the maintaining
processpi is notified of the termination or destruction of
processp j , it can delete the entry representingp j from its
local clock (i.e. the entry withCi(ex

i)[k,1] = j) if present.
Mostly, a notification of this kind would be propagated
by an underlying system management. In this way, a
lot of space, network load, and computation time (when
comparing clocks values as described above) could be
saved. However, for this to work some serious side ef-
fects have to be accounted for. For one thing, entries
must be discarded equally on all clocks and timestamps
that yet have to be evaluated. If two timestamps are
compared, one of which has a given entry pruned while
the other has not, concurrency/dependency checks might
produce wrong results. Furthermore, entries represent-
ing a terminated process must not be pruned at all while
there are still messages around which originate from that
process and are possibly still needed for clock evalua-
tion. Concurrency or dependency checks, as explained
above, need the clock entries representing the two main-
taining processes, respectively. Therefore these entries
must not be discarded either from the timestamps on
“orphaned” messages (which could easily exist due to
network/routing delays) or from the timestamps or local
clocks with which they might still be compared when fi-
nally delivered.

An example is given in Figure4. The two mes-
sages arriving atp3 would normally have to be viewed
as causally ordered. However, if the first message is

p1:

p2:

p3:

g.c.

⇒
[

1 1

]

[

1 2

2 6

]

‖
[

1 1

] [

2 6

]

[

1 1

] [

1 2

]

[

1 2

2 6

]

Figure 4: Faulty time stamp comparison after incautious garbage
collection

delayed and arrives after a garbage collection which
has deleted the first entry of the second message’s time
stamp, the two time stamps would possibly still have to
be compared and the comparison would yield concur-
rency.

So heavy precaution must be taken by the system
management to ensure that there are none of the termi-
nated process’s messages around any more whose times-
tamps could still have to be evaluated and would be cor-
rupted by an early garbage collection.1

In the following, a garbage collection protocol is de-
scribed which is intended to work under the conditions
given in [2] for the implementation of causal delivery us-
ing vector clocks (see also3.2). It is assumed that a mon-
itor processpm is notified by processp j if p j is terminat-
ing and thatpm is notified of all relevant events in the sys-
tem, so this one process is able to order the incoming no-
tifications properly according to their causality (i.e.pm

needs causal delivery, see section3 and [2]). Due to the
causal deliverypm only reads the termination notification
of p j after all other event notifications of the same pro-
cess have been accounted for. So, at this point,pm can
be sure to know all events ofp j up to the termination.
Then the following steps are performed to assure that all
timestamps are pruned at the same logical time. Firstpm

(or some other management module which is provided
the necessary information bypm) broadcasts a message
m1 to all remaining processes2 which tells them to con-
tinue receiving messages but stop sending anything other
than the receive notifications addressed topm. Now all
processes have to confirm the receipt ofm1 to pm andpm

waits for all confirmations to have arrived. Again, be-
cause of the causal delivery, which otherwise would have
preventedpm from receiving all confirmation messages,
pm now knows about all send events that have been car-
ried out in the system so far and waits until the number
of receive notifications equals the number of send events,
which assures that there are no more messages in transit.
pm then broadcasts a messagem2 instructing all recipi-
ents to delete specific entries from their clocks and awaits

1 Just havingp3 retroactively prune thep1 entry on receiving the de-
layed message would seem convenient in this specific example, but
is not, for instance, feasible in reverse case examples.

2 The Processes are assumed to be known at least to some part of the
system management at runtime.

all confirmations. Now that all clocks in the system are
consistent again,pm can broadcast a messagem3 telling
the processes that it is safe to resume sending. Note that
the only process for which causal delivery is assumed is
pm. In this protocol 5n additional messages have to be
sent for the garbage collection,n denoting the number of
processes, which makes a linear complexity.
Proof of correctness: First, the protocol has to assure
that pm knows of all messages sent by the terminated
processp j . Assume thatp j has sent a messagepm is still
not aware of. Becausepm must have been notified about
the sending of the message in question it must be the case
that pm still has not read the notification message. But
in this case, due to causal delivery, it also can not have
read the termination notification ofp j which is causally
dependent on all ofp j ’s send events. So the assumption
is contradictory.

Now, all send events have to be prohibited. In anal-
ogy to the above,pm knows of all send events of all active
processespi up to the moment it receivespi ’s confirma-
tion message. This assurespm is able to count incom-
ing receive notifications (which still are allowed to be
sent) and compare them with the number of sent mes-
sages, which has to be constant due to the sending pro-
hibition. Since messages are delivered reliably and with
finite delay (see section2), the number receive notifica-
tions arrived atpm finally must reach the number of the
messages sent. At this point,pm can conclude there is no
more message in transit. Otherwise,pm could not have
received a receive notification for the message. For the
numbers of sent and received messages to be equalpm

also would have to lack the notification of the sending of
the message. This, in turn, would only have been possi-
ble if pm did not receive one of the messages confirming
its initiation of the sending prohibition (because of causal
delivery). But these are explicitly awaited.

So, no messages are in transit when the entries refer-
ring to the terminated process are globally deleted. Also,
no more messages can be sent for which these entries
could be of importance, since the process the entries rep-
resent is already terminated. �

4 Conclusion

In the paper at hand logical clocks as the most com-
monly used devices for logically ordering events in dis-
tributed systems have been discussed in detail and algo-
rithms for their appliance to the most important event
ordering problems have been given. In particular, an
extension of vector clocks has been proposed and inte-
grated that is meant to enable the use of vector clocks,
while retaining their well established concept, in envi-
ronments featuring a dynamically changing number of
processes. Efficiency issues introduced by the concept
of thesedynamic vector clockshave been examined, as
has a solution idea based on discarding obsolete clock
entries. An appropriate garbage collection protocol has
been proposed. The examination shows that the track-

ing of logical time in dynamically growing/shrinking ap-
plications can be done using the dynamic vector clocks
introduced in this paper with some additional expenses
as compared to standard vector clocks. The only one of
these expenses which must be considered critical is the
fact that, in the worst case, pruning the dynamic vector
clocks involves halting the entire computation. There-
fore, a trade-off between the size of time stamps and the
frequency of performing the garbage collection has to be
carefully considered. The protocol allows for the clock
entries of several terminated processes to be pruned in
one garbage collection. Thus it is possible, for exam-
ple, to postpone each garbage collection untiln pro-
cesses have terminated. Increasingn would then result
in fewer garbage collections at the expense of tolerating
time stamps to contain up ton−1 obsolete entries (con-
sisting of two integers each).

Mind that the results presented are to be applied only
to the “general” case. A minimal set of assumptions has
been made regarding the architecture and behaviour of
the processes and the underlying system. Further work
will have to show what improvements can be made by
considering a more specific system behaviour.

Acknowledgments

I would like to thank J̈org Preißinger for the helpful
discussions during my work on the contents presented in
this paper.

References

[1] Leslie Lamport. Time, Clocks, and the Ordering of
Events in a Distributed System. InCommunications of
the ACM, volume 21, number 7, pages 558–565, July
1978.

[2] Özalp Babaŏglu, Keith Marzullo. Consistent Global
States of Distributed Systems: Fundamental Concepts
and Mechanisms. In Sape Mullender, editor,Distributed
Systems, chapter 5, pages 97–145. Addison Wesley, 2nd

edition, 1993.

[3] Friedemann Mattern. Virtual Time and Global States of
Distributed Systems. In M. Cosnard et al., editor,Pro-
ceedings of the Workshop on Parallel and Distributed
Algorithms, pages 215–226, Elsevier Science Publishers
B.V., North-Holland, 1989.

[4] Colin Fidge. Timestamps in Message-Passing Systems
that Preserve the Partial Ordering. InProceedings of
the 11th Australian Computer Science Conference, pages
55–66, February 1988.

[5] Colin Fidge. Logical Time in Distributed Computer Sys-
tems. InComputer, 24(8), pages 28–33, August 1991.

[6] Igor A. Zhuklinets, D. A. Khotimsky. Logical Time
in Distributed Software Systems. InProgramming and
Computing Software, Volume 28, Issue 3, pages 174–
184, Plenum Press, May 2002.

[7] Reinhard Schwarz, Friedemann Mattern. Detecting
Causal Relationships in Distributed Computations: In
Search of the Holy Grail. InDistributed Computing, 7(3):
pages 149–174, 1994.

	Introduction
	System Model
	Logical Clocks
	Scalar Clocks
	Vector Clocks
	Dynamic Vector Clocks
	Pruning Obsolete Clock Entries

	Conclusion
	Acknowledgments
	References

