ETH

Eidgendssische Technische Hochschule Ziirich Prof. Friedemann Mattern, Leyna Sadamori
Swiss Federal Institute of Technology Zurich Distributed Systems HS 2015

Assignment 1

Start: 28 September 2015
End: 9 October 2015

Objectives

The goal of this assignment is to familiarize yourself with the Android development process, to think
about user interface design, and to learn how to access sensors and actuators on a smartphone. Your
application must target Android 4.3 (API level 18). As the emulator cannot emulate all sensors, you will
have to test your code on a physical device. Besides implementing the application, you have to answer
a mini-test given below. More details are available in the Deliverables section.

With this assignment you can gain 10 points out of the total 45.

Task | Points
1 2
2 4
3 2
4 2
Total 10

1 Sensing with Android (2 Points)

Every Android application must provide an Activity as an interface for user interaction. In this exercise,
you will let the user access sensors and actuators through a simple user interface.

1.

Download and install the Android development toolchain. Now, you can down-
load Android Studio (the official Android IDE) bundled with Android SDK from
the following link: http://developer.android.com/sdk/index.html.

Follow the guidelines of the introduction slides and/or the Android website
http://developer.android.com/sdk/installing/index.html

Create a new Android project called VS_nethz_Sensors and select the API 18 as
build target. Set the application name to VS_nethz_Sensors and the package name to
ch.ethz.inf.vs.al.nethz.sensors (nethz here and also later means the group
leader’s nethz ID). Create the first Activity and name it MainActivity.

. In the MainActivity, design a user interface to list all available sensors of the smart-

phone. The sensors should be contained in a ListView which automatically resizes with dif-
ferent input sizes. Hint: You can retrieve an array of all the available sensors by calling the
getSensorList (Sensor.TYPE_ALL) method of a SensorManager object.

. Create a second Activity called SensorActivity. When the user highlights a sensor in the

ListView, the SensorActivity should be started through an Intent. The Intent should carry
information about the sensor.

. In the SensorActivity, create another ListView that continuously displays the readings for

this particular sensor (and not only details about the sensor).

ETH

Eidgendssische Technische Hochschule Ziirich Prof. Friedemann Mattern, Leyna Sadamori
Swiss Federal Institute of Technology Zurich Distributed Systems HS 2015

6. Finally, add a Button below the ListView in MainActivity. This Button should start another
Activity called ActuatorsActivity. Implement ActuatorsActivity asseeninthe Live
Hacking Tutorial on the course website and add capabilities to activate the vibration and to play a
sound file. For the vibration actuator, offer the user a SeekBar to control the duration.

2 The Anti-Theft Alarm (4 Points)

In this exercise, you will create an application to secure an Android device against unauthorized usage.
When the device is armed, movements should be registered. If the user (thief) keeps moving the phone
for a certain amount of time, the phone should raise an alarm (e.g., by playing a sound file or sending a
silent notification). You should create an Activity to control the sensitivity of the alarm and the timeout
after which an alarm is raised, and a Service to deal with the readings from the accelerometer. You must
use the code skeleton provided on the course website which is described below.

1. Create a new project called VS_nethz_AntiTheft with an Activity called MainActivity.
The package name should be ch.ethz.inf.vs.al.nethz.antitheft.

2. The Activity will also need some means to start and stop the background process running the
alarm logic. We suggest you to use a ToggleButton to change the state of the alarm.

3. Create a Service called AntiTheftServiceImpl. The service must extend the
AbstractAntiTheftService class provided to you. This abstract class contains
method startAlarm() which is called to trigger the alarm. The service should run
in the background and post an ongoing notification which cannot be cleared by the user.
This notification should only disappear when the Service is shut down. The notification
is used for resuming of the MainActivity which monitors the state of the Service.
Hint: Notification.FLAG_ONGOING_EVENT and Notification.FLAG_NO_CLEAR
may be worth a look. Consider the guidelines of the Android website provided at
http://developer.android.com/guide/components/services.html for ser-
vices.

4. Create a class which extends AbstractMovementDetector class. It implements
SensorEventListener and overrides doAlarmLogic (float[] values) method.
This method contains the sensor logic needed to trigger the alarm. Which sensor you use for
this is up to you, but we suggest to use the accelerometer or the orientation sensor. Your logic
should recognize a deliberate movement (which we will arbitrarily define as a significant change
in sensor readings for a period A,, > 5sec). Accidental movements, i.e., A, < 5sec, should not
cause an alarm.

5. The user should have a certain period of time (A;) during which he/she can still disarm the device.
This should be done through a notification in the notification bar. You should enable the user to
set A, directly in the Activity. This information could be provided by a SeekBar for example and
has to be propagated from the Activity to the Service.

6. When A, has elapsed after a deliberate movement, the phone should ring an alarm (i.e., play
a sound file). The user should still be able to disarm the device and stop the alarm using the
notification mentioned above.

7. Use Settings.java class provided to you to store and retrieve constants in the
SharedPreferences, where you save all the user’s preferred settings. The class contains
default values for these settings, which you need to adjust in your implementation.

ETH

Eidgendssische Technische Hochschule Ziirich Prof. Friedemann Mattern, Leyna Sadamori
Swiss Federal Institute of Technology Zurich Distributed Systems HS 2015

8. Pay attention to typical Android crashes like on rotating the screen, pushing the back button, etc.
At the end, do not forget to unregister the sensor event listener. Failing to do so can drain the
battery in just a few hours because some sensors have substantial power requirements and can use
up battery power quickly. In contrast with earlier Android versions, the system will not disable
sensors automatically when the screen turns off.

3 Sensing using Bluetooth Low Energy (2 Points)

In this task, you will use Android’s built-in platform support for Bluetooth Low Energy (BLE) to connect
to SHTC1 Smart Gadget to sense humidity and temperature. You should display the current measure-
ments of the humidity and temperature sensor to the user.

SHTC1 Smart Gadget is a simple circuit board with a humidity and temperature sensor (referred to
as RH&T sensor). It can communicate wirelessly with a Bluetooth capable device, like a smart phone, to
provide its sensor measurements. Refer to www.sensirion.com/SHTC1 for details.

Use Android’s guide on BLE for implementing this task:
https://developer.android.com/guide/topics/connectivity/bluetooth-le.html

1. Create a new project called VS_nethz BleSensirion with an Activity called
MainActivity. The package name should be ch.ethz.inf.vs.al.nethz.ble.

2. The Activity should first check if BLE is supported on the device. It should then check if bluetooth
is enabled, and display a dialog to the user requesting permission to enable it if it is disabled.

3. Implement a scan for available devices. You should limit the time of the scan. Scanning should
stop once the user selects one of the listed devices, or the scan-time expires.

4. When the user selects a listed SHTC1 gadget, your activity should connect to it. Implement a
BluetoothGattCallback class that monitors the connection state. When the connection
state changes to BluetoothProfile.STATE_CONNECTED, you should attempt to start ser-
vice discovery on the device.

5. When service discovery succeeds, your onServicesDiscovered() method should
then iterate through the discovered services to find the temperature_humidity service of
the SHTC1 smart gadget. The unique identifier id (UUID) of the RH&T service is
0000AA20-0000-1000-8000-00805f9b34fb. Once the RH&T service is found, you
should iterate through the characteristics of the service to find the temperature_humidity charac-
teristic. The UUID of the characteristic is 0000AA21-0000-1000-8000-00805£9b34fb.

6. Normally, you should be able to read the current value of the characteristic. However, the READ
property is not set on the sensor, and the readCharacteristic () method would return false!
To overcome this problem, we build our own characteristic with the permission as follows:

Listing 1: Code to enable READ property for BLE Characteristic.

// set the READ perimission on the characteristic
BluetoothGattCharacteristic rht = new BluetoothGattCharacteristic(
UUID_RHT_TEMPERATUREHUMIDITY,
BluetoothGattCharacteristic.PROPERTY_READ
| BluetoothGattCharacteristic.PROPERTY_NOTIFY,
BluetoothGattCharacteristic.PERMISSION_READ) ;

// add the characteristic to the discovered RH&T service
service.addCharacteristic(rht);

O 001 W AW —

ETH

Eidgendssische Technische Hochschule Ziirich Prof. Friedemann Mattern, Leyna Sadamori
Swiss Federal Institute of Technology Zurich Distributed Systems HS 2015

where UUID_RHT_TEMPERATUREHUMIDITY is the UUID of the temperature_humidity char-
acteristic mentioned above.

7. Add the above lines once you discover the RH&T service, and before you call
readCharacteristic () method. Extract the current temperature and humidity values from
the raw HEX string, and display them to the user.

4 Mini-Test (2 Points)

As part of the assignment, you should answer the mini-test given below and submit the answers as a
PDF file. The test covers general Android knowledge questions, as well as questions related to how you
tackled the assignment.

1. (Sensor Framework)
A) Write a small code snippet to show how to perform the following tasks:

a) List available sensors on a device
b) Retrieve the maximum range of a specific sensor
c) Register for monitoring accelerometer sensor changes, at the maximum available rate

of acquiring data

B) The following code snippet is used to monitor the values of the ACCELEROMETER and
PROXIMITY sensors. The values are then passed to the listener activity MyActivity. The
code for MyActivity class is omitted for brevity. Lines 19-30 in the onSensorChanged ()
method contain a mistake. Point out the mistake, and explain how it may cause a problem.

Listing 2: Code for question 1.b

import ch.ethz.inf.vs.al.MyActivity;

1

2 import android.hardware.Sensor;

3 import android.hardware.SensorEvent;

4 import android.hardware.SensorEventListener;

5

6 public class SensorValuesDetector implements SensorEventListener {
7 float[] proximityValues;

8 float[] accelerometerValues;

9 protected MyActivity listenerActivity;

10

11 public void register (MyActivity activity) {

12 listenerActivity = activity;

13 }

14

15 @Override

16 public void onSensorChanged (SensorEvent event) {
17 int sensorType = event.sensor.getType();

18

19 switch (sensorType) {

20 case Sensor.TYPE_ACCELEROMETER:

21 accelerometerValues = event.values;

22 // notify the listener activity

23 listenerActivity.displayAccelerometer (getAccelerometervValues());
24 break;

25 case Sensor.TYPE_PROXIMITY:

26 proximityValues = event.values;

27 // notify the listener activity

28 listenerActivity.displayProximity (getProximityValue());
29 break;

30 }

31 }

32

ETH

Eidgendssische Technische Hochschule Ziirich Prof. Friedemann Mattern, Leyna Sadamori
Swiss Federal Institute of Technology Zurich Distributed Systems HS 2015

33 @Override

34 public void onAccuracyChanged (Sensor sensor, int accuracy) {

35 // Do Nothing

36 }

37

38 public float getProximityValue () {

39 return proximityValues[0];

40 }

41

42 public float[] getAccelerometerValues () {

43 return accelerometerValues;

44 }

45)

2. (Activity lifecycle) Describe what happens to an activity, and which methods are called in the
following consecutive scenarios:

a) An activity A is in the foreground, then the user starts another activity B.
b) Activity A is no longer visible.
c) The user navigates back to activity A.

3. (Resources) How can you make your Android application automatically handle different screen
sizes and densities? How can you reference the layout elements defined in an Android XML file
in your code?

4. What are Intents? What are they used for? What is the difference between Explicit
Intentsand Implicit Intents?

5. (Service lifecycle) State whether each of the following sentences is true or false:

a) A servcie started by calling startService () can never be stopped before it finishes its
job.

b) Both bound and unbound services can interact with several client processes.

¢) A bound service can only be running as long as there is a component bound to it.

d) Services which perform lengthy computations are automatically started in a separate thread
from the main thread.

6. (AndroidManifest file) Suppose that you are implementing an Android application that consists of
one activity MainActivity and one service LocationService. The service retrieves the
user’s current fine-grained location at regular intervals using Android’s Location Services
framework. The application sends an sms to a phone number with the current location every hour.
Below is the AndroidManifest file for such application. The file is missing three necessary tags
for the application to work. List the needed tags.

Listing 3: AndroidManifest file for question 6

1 <?xml version="1.0" encoding="utf-8"7?>

2 <manifest xmlns:android="http://schemas.android.com/apk/res/android"

3 package="ch.ethz.inf.vs.android.nethz.antitheft"

4 android:versionCode="1"

5 android:versionName="1.0" >

6

7 <uses-sdk

8 android:minSdkvVersion="8"

9 android:targetSdkVersion="18" />

10
11 <application
12 android:allowBackup="true"

ETH

Eidgendssische Technische Hochschule Ziirich Prof. Friedemann Mattern, Leyna Sadamori

Swiss Federal Institute of Technology Zurich Distributed Systems HS 2015
13 android:icon="@drawable/ic_launcher"
14 android:label="@string/app_name"
15 android:theme="Q@style/AppTheme" >
16
17 <activity
18 android:name="ch.ethz.inf.vs.android.nethz.antitheft.MainActivity"
19 android:label="@string/app_name" >
20 <intent-filter>
21 <action android:name="android.intent.action.MAIN" />
22
23 <category android:name="android.intent.category.LAUNCHER" />
24 </intent-filter>
25 </activity>
26
27 </application>

28 </manifest>

Deliverables
The following deliverables have to be submitted by 9:00am, 9 October 2015:

1. code.zip You should create a zip file containing the Eclipse projects created in this assignment.
The projects should have been tested both on the mobile phone and on the emulator. The code
must compile on our machines as well, so always use relative paths if you add external libraries
to your project. Do not forget to include those libraries in the zip file. Please use UTF-8 encoding
for your documents and avoid special characters like umlauts.

2. answers.pdf Your answers to the mini-test in PDF format.

Submission

The deliverables must be uploaded through:
https://www.vs.inf.ethz.ch/edu/vs/submissions/

The group leader can upload the files, and other group members have to verify in the online system that
they agree with the submission. Use your nethz accounts to log in. The submission script will not allow
you to submit any part of this exercise after the deadline. However, you can re-submit as many times as
you like until the deadline.

https://www.vs.inf.ethz.ch/edu/vs/submissions/

	Sensing with Android (2 Points)
	The Anti-Theft Alarm (4 Points)
	Sensing using Bluetooth Low Energy (2 Points)
	Mini-Test (2 Points)

