
Prof. Friedemann Mattern, Matthias Kovatsch
Distributed Systems Assignments HS 2013

Assignment 3
Start: 28 October 2013
End: 11 November 2013

Objectives

In this assignment, you will develop an n-person mobile chat application that preserves the causality
and temporal ordering of messages in spite of the unreliability of the underlying UDP protocol. You will
implement two concepts to determine the order of events in a distributed system that you have learnt in
the lecture.

Lamport Timestamps represent a simple algorithm to partially order distributed events. The rules that
this algorithm follows were determined by L. Lamport1. Distributed processes that implement Lamport
Timestamps satisfy the so-called clock consistency condition: if event A happens before event B, then
event A’s logical clock arrives before event B’s. Therefore, if event A’s logical clock comes before
event B’s logical clock, then A may have happened before or at the same time as B, but not after B.

Vector Clocks represent an extension of Lamport Timestamps in that they guarantee the strong clock
consistency condition which (additionally to the clock consistency condition) dictates that if the clock
of one event arrives before another, then that event happened before the other, i.e., it is a two-way
condition. This is achieved by holding a vector of n logical clocks in each process (where n is the
number of processes) and by including these values in all inter-process messages.

To support this assignment, we have two servers running:

• vslab.inf.ethz.ch:4000 provides a capitalization service: it returns every incoming mes-
sage changed to upper case. This server may be used to test UDP-based communication. It replies
to the source port chosen by the client.

• vslab.inf.ethz.ch:5000 provides the chat service, which distributes all messages re-
ceived from a registered client to all other registered clients. The server randomly delays messages
to simulate communication unreliability inherent in real systems. While this server is listening for
incoming datagrams (registration commands or chat messages) on its port Server:5000, it
responds to registration messages to the source port of the client, and it is distributing the chat
messages to the registered clients to that same port.

With this assignment you can gain 10 points out of the total of 45. The exercises marked with a �
are necessary to meet the minimum requirements (“save-point”).

1 Getting Familiar with Datagrams

To familiarize yourself with the sending and receiving of UDP messages, create an Android
application that provides a capitalizing service to its user by relying on the server at
vslab.inf.ethz.ch:4000. This application has only demonstration purposes and does not need
to be submitted, however, you can reuse parts of it later.

1Leslie Lamport - Time, clocks, and the ordering of events in a distributed system; ACM Communications Magazine,
volume 21, issue 7, July 1978

1



Prof. Friedemann Mattern, Matthias Kovatsch
Distributed Systems Assignments HS 2013

1. Create a new application in a project called vs-nethz-capitalize with the package name
ch.ethz.inf.vs.android.nethz.capitalize2.

2. Set up the UI to enable the user to enter and submit a text message and also display the response
by our corresponding service.

3. Use UDP sockets DatagramSocket(int port) for communication with the server. Giving
0 as source port will assign a random ephemeral port on the client side.

Figure 1: The setup of the capitalization service

2 Starting the Conversation: Lamport Timestamps (4 Points, �)

In this task, you will create a chat application that leverages the communication server at
vslab.inf.ethz.ch:5000. The application will use Lamport Timestamps to delay the delivery
of messages to the user to keep them in order. Create a program that enables the user to choose a user
name, register with the server and start chatting with other clients using the guidelines defined in the
accompanying slides that are provided at http://vs.inf.ethz.ch/edu/vs/android/.

Figure 2: Overview of the chat system

2nethz should be the group’s leader nethz login

2



Prof. Friedemann Mattern, Matthias Kovatsch
Distributed Systems Assignments HS 2013

1. Create a new project vs-nethz-lamport with the package name
ch.ethz.inf.vs.android.nethz.lamport.

2. Configure the UI to provide the user with the ability to enter a username and a button to reg-
ister and deregister with the server. Note that we only accept usernames in the following format
nethz[0-9]* where nethz is the one of the leader of the group (e.g., caoh1). Please observe
that the length of the username should be between 3 and 14 characters.

3. After the registration, the UI needs to display incoming messages and let the user send chat mes-
sages. For displaying chat messages, you can, for instance, use the Android ArrayAdapter
that provides an implementation of an Adapter and uses an array of arbitrary objects to manage
a ListView.

4. Add communication functionality to allow sending messages to the server, a DatagramSocket
sending to port 5000. The registration and deregistration buttons should use this method for
registration commands. Also make use of the setSoTimeout(int timeout) function. The
server will return the assigned username, the assigned vector index and the current Lamport times-
tamp and time vector. Ignore the information on the assigned index and vector, which will be
needed for Task 3.

5. Familiarize yourself with Java threads. The server will reply to the source port chosen by the client
and track it based on its IP address/port choice, so implement a thread that listens for incoming
messages in the background. For cross-thread information exchange, you will most probably want
to use the Handler class. Remember to keep your onCreate() method as clean as possible
and to use threads for delegating potentially long-running tasks.

6. Test your listener thread. If you are using the emulator, remember to set port redirects. Depending
on how fast you have progressed with the assignment, there will already be lots of communication
going on. At the least QuestionBot and AnswerBot will be bringing life to the chatroom.

7. Enhance your listener thread: use Lamport Timestamps (see Section 4 for more details about the
protocol specifications) to delay the displaying of incoming messages if their timestamp shows a
gap. To do this, create a method isDeliverable(...) that explicitly inspects the timestamp
of every incoming message and decides whether or not to delay its delivery. As soon as this
function returns true for a message, it shall be delivered to the user. We are providing you with
a desired template for the isDeliverable(...) method to test your code based on a dump
of messages to be sorted by your method.

8. Do not block on a single message, since you need to receive and process further messages for the
re-ordering. Be careful with local concurrency, though!

3 Overcoming the Desequencer: Vector Clocks (4 Points)

For this task, create a new application that implements the same functionality as the one developed in
Task 2, but uses Vector Clocks for determining the order of messages in the distributed system. Your
application should also be able to handle that clients are dynamically joining and leaving the chat.

1. Create a new application in vs-nethz-vector using the package name
ch.ethz.inf.vs.android.nethz.vector. Set up the UI and functionality as
before.

3



Prof. Friedemann Mattern, Matthias Kovatsch
Distributed Systems Assignments HS 2013

2. Instead of Lamport Timestamps, use Vector Clocks to determine the order of messages and display
them to the user accordingly. Thus, you now have to parse and make use of the index number that
the server assigns to your application during registration.

3. Create the method isDeliverable(...) that explicitly inspects the vectorial timestamps of
incoming messages and decides whether or not to delay the delivery of a message. As soon as this
function returns true for a message, the message shall be delivered to the user.

4 Report (2 Points, �)

As part of the assignments, you should produce a short report (1-2 pages) on the design and implemen-
tation issues of Tasks 2 and 3 and motivate any choice you made during the process. You can find a
template for your report on the course Web site. Include a thorough discussion of issues and considera-
tions related to Vector Clocks in your report. Specifically, answer these questions:

• What are the main advantages of using Vector Clocks in comparison with Lamport Time?

• When exactly are two Vector Clocks causally dependent?

• We decided in the exercise that we would not let our applications trigger a tick when receiving a
message. What would be the implications of ticking on receive?

• Does a clock tick happen before or after the sending of a message. What are the implications of
changing this?

• Read and assess the paper Tobias Landes - Dynamic Vector Clocks for Consistent Ordering of
Events in Dynamic Distributed Applications3 that gives a good overview on the discussed meth-
ods. In particular, which problem of vector clocks is solved in the paper?

Deliverables

The following two deliverables have to be submitted by 09:00 A.M. (CET), November 11, 2013:

• code.zip You should create a zip file containing the Eclipse projects created in this assignment.
The projects should have been tested both on the mobile phone and on the emulator. The code
must compile on our machines as well, so always use relative paths if you add external libraries
to your project. Do not forget to include those libraries in the zip file. Please use UTF-8 encoding
for your documents and avoid special characters like umlauts.

• report.pdf The report in pdf format.

Submission

Report and code must be uploaded through:

https://www.vs.inf.ethz.ch/edu/vs/submissions/

The group leader can upload the files, and other group members have to verify in the online system
that they agree with the submission. Use your nethz accounts to log in. The submission script will not
allow you to submit any part of this exercise after the deadline. However, you can re-submit as many
times as you like until that.

3http://vs.inf.ethz.ch/edu/vs/exercises/DVC_Landes.pdf

4



Prof. Friedemann Mattern, Matthias Kovatsch
Distributed Systems Assignments HS 2013

Protocol specifications

The following commands cmd are accepted by the chat server. Please read the specifications carefully.

• register : the client must first send this JSON message to the server before any other interaction
can be initiated and accepted by the server as in Listing 1. Notice that the username has to be in
alphanumerical format in small caps ([a-z], [0-9]) and respect the following conventions :

– nethz[0-9]*, where the nethz represents the nethz account of the team’s leader, for
example caoh1

– the length of the username should be between 3 and 14 characters

1 {
2 "cmd" : "register",
3 "user" : "caoh1"
4 }

Listing 1: Client’s register request in JSON

If the registration is successful, the server will return an index that identifies the client along with
the initial time vectors and Lamport time as in Listing 2.

1 {
2 "index" : "3",
3 "init_time_vector" : {"2": 0, "1": 70, "0": 71},
4 "init_lamport" : 74,
5 "success": "reg_ok"
6 }

Listing 2: Server’s register reply in JSON: success

In the case where the registration fails, for example when the username is already in use or not
agreeing with the above mentioned conventions, a failure message will be returned to the client as
in Listing 3.

1 {
2 "error": "reg_fail",
3 "text": "Already registered or username already in use,
4 nethz not recognized or invalid length
5 (max 3-14 characters)."
6 }

Listing 3: Server’s register reply in JSON: failure

If any other command is initiated without being registered, the reply shown in Listing 4 is returned
by the server. This behavior can also happen if the server restarted. In this case, the client should
proceed with registering again.

5



Prof. Friedemann Mattern, Matthias Kovatsch
Distributed Systems Assignments HS 2013

1 {
2 "error": "not_registered"
3 }

Listing 4: Server’s register reply in JSON: not registered

If the client is already registered, an error message such as in Listing 5 will be returned

1 {
2 "error": "already_registered"
3 }

Listing 5: Server’s register reply in JSON: already registered

• get_clients The list of chat participants can be retrieved by sending the request in Listing 6.

1 {
2 "cmd": "get_clients"
3 }

Listing 6: Client’s get_clients request in JSON

The server then sends out a a mapping of the indices that identifies the clients and their usernames
as in Listing 7. This needs to be stored by the client for further usage.

• info Information about the server can be requested using the code in Listing 8.

The reply in Listing 9 is then send out to the client.

• message To broadcast message to all other chart participants the JSON request in Listing 10
should be sent.

If the message could be delivered the client will receive the reply as in Listing 11.

All other clients will receive the message as in Listing 12.

• deregister The client can decide to leave the chat by sending out the request as in Listing 13.

The client receives the response displayed in Listing 14.

This means that a message will be broadcasted to all other participants and will notify them that
the chat participant left (Listing 15).

Important: if any other message is sent to server and doesn’t comply to the above described com-
mands, the server will the return the message shown in Listing 16. Also, the server is keeping track of
inactive clients and will deregister them automatically after a timeout period of 5 minutes.

6



Prof. Friedemann Mattern, Matthias Kovatsch
Distributed Systems Assignments HS 2013

1 {
2 "clients": {
3 "0": "questionbot",
4 "1": "answerbot",
5 "2": "caoh1"
6 }
7 }

Listing 7: Server’s get_clients reply in JSON

1 {
2 "cmd": "info"
3 }

Listing 8: Client’s info request in JSON

1 {
2 "info": "I am an advanced UDP server that is running
3 at port 5000 to provide a desequencing service
4 for Android UDP chatting programs..."
5 }

Listing 9: Server’s info reply in JSON

1 {
2 "cmd": "message",
3 "text" : "hi there",
4 "time_vector": {"2": 1, "1": 70, "0": 71},
5 "lamport": 75
6 }

Listing 10: Client’s message request in JSON

1 {
2 "success": "msg_ok"
3 }

Listing 11: Server’s message reply in JSON: success

7



Prof. Friedemann Mattern, Matthias Kovatsch
Distributed Systems Assignments HS 2013

1 {
2 "cmd": "message",
3 "text": "hi there",
4 "sender": 2,
5 "time_vector": {"2": 1, "1": 70, "0": 71},
6 "lamport": 75
7 }

Listing 12: Broadcasted message in JSON

1 {
2 "cmd": "deregister"
3 }

Listing 13: Client’s deregister request in JSON

1 {
2 "success": "dreg_ok"
3 }

Listing 14: Server’s deregister reply in JSON

1 {
2 "cmd": "message",
3 "text": "caoh1 has left (index 2)"
4 }

Listing 15: Broadcasted deregister message in JSON

1 {
2 "error": "Invalid JSON string. Make sure you use the
3 right structure for this message."
4 }

Listing 16: Irregular JSON String

8


