
Prof. Friedemann Mattern, Matthias Kovatsch
Distributed Systems HS 2013

Assignment 1
Start: 30 September 2013
End: 14 October 2013

Objectives

The goal of this assignment is to familiarize yourself with the Android development process, to think
about user interface design, and to learn how to access sensors and actuators on a smartphone. As
Android Virtual Devices (AVDs) cannot emulate all sensors, you will have to test your code on a physical
device. Besides implementing the application, you have to write a report describing your work. Its
detailed requirements are given in the Deliverables section. With this assignment you can gain 10 points
out of the total 45. The exercises marked with a � are necessary to meet the minimum requirements
(“save-point”).

1 Sensing with Android (2 Points)

Every Android application must provide an Activity that is called by the launcher and provides an
interface for user interaction. In this exercise you will let the user access sensors and actuators through
a simple user interface.

1. Install the toolchain if not already done. The ADT bundle, which includes Eclipse and the
Android SDK, is available at: http://developer.android.com/sdk/index.html.

2. Create a new Android project called vs-nethz-sensors with the package name
ch.ethz.inf.vs.android.nethz.sensors and a sensible application name of your
choice (replace nethz with group leader’s nETHZ account name). Use the target SDK
matching to your phone up to API 17 (4.2.2). Choose a blank Activity for the MainActivity.

3. In the MainActivity, design a user interface to list all available sensors of your smartphone.
The sensors should be contained in a ListView that automatically resizes with different input
sizes.
Hint: You can retrieve an array of all the available sensors by calling the
getSensorList(Sensor.TYPE_ALL) method of a SensorManager object.

4. Create a second Activity called SensorActivity. When the user highlights a sensor in the
ListView, the SensorActivity should be started through an Intent. The Intent should carry
the information which sensor was selected.

5. In the SensorActivity, create another ListView that continuously displays the readings
for this particular sensor (i.e., not only static details about the sensor).

6. Finally, add a Button below the ListView in MainActivity. This Button should start another
Activity called ActuatorsActivity. Implement ActuatorsActivity as seen in the
Android Tutorial and add capabilities to activate at least the vibration and to play a sound file.
For the vibration actuator, offer the user a SeekBar to control the duration.

1



Prof. Friedemann Mattern, Matthias Kovatsch
Distributed Systems HS 2013

2 Anti-Theft Alarm (4 Points, �)

In this exercise you will create an application to secure an Android device against unauthorized usage.
When the device is armed, movements should be registered. If the user (thief) keeps moving the phone
for a certain amount of time, the phone should raise an alarm (e.g., by playing a sound file or sending a
silent notification). In this exercise, we use a Service to deal with the readings from the accelerometer
to detect movement. You must use the code skeleton provided on the course Web site as explained
below.

1. Create a new project called vs-nethz-antiTheft with the package name
ch.ethz.inf.vs.android.nethz.antitheft. Start again with a blank
MainActivity.

2. The Activity must provide a GUI to control the sensitivity of the alarm and the timeout after
which an alarm is raised. It will also need some means to start and stop the background Service
running the alarm logic. We suggest you to use a ToggleButton to change the state of the alarm.
Hint: Use a PreferenceActivity to persist your alarm configuration. In case you need to
store state during the runtime, have a look at the methods
onSaveInstanceState(Bundle) and onRestoreInstanceState(Bundle)
before you start writing to the SD card manually.

3. Create a Service called AntiTheftServiceImpl. The service must implement the
AntiTheftService interface provided to you. This interface contains one method
startAlarm() which must be called by the sensor logic to trigger the alarm. The service runs
in the background and must post an ongoing notification, which cannot be cleared by the user.
This notification should only disappear when the Service is shut down. Use it to resume the
MainActivity which monitors the state of the Service.
Hint: Notification.FLAG_ONGOING_EVENT and Notification.FLAG_NO_CLEAR
may be worth a look. Consider the guidelines of the Android Web site provided at
http://developer.android.com/guide/components/services.html.

4. Create a class called MovementDetector that extends the
AbstractMovementDetector class. It must implement the SensorEventListener
interface and thus provide the onSensorChanged(SensorEvent event) method. This
should contain your sensor logic needed to trigger the alarm. Which sensor you use for this is up
to you, but we suggest to use the accelerometer which could be supported by the proximity
sensor. Your logic should recognize a deliberate movement (which we will arbitrarily define as a
change in the sensor readings over a period ∆m ≥ 5sec). Accidental movements, i.e.,
∆m < 5sec, should not cause an alarm.

5. The user should have a certain period of time (∆t) during which he/she can still disarm the
device. This should be done through a notification in the notification bar. You should enable the
user to set ∆t directly in the Activity. This information could be provided by a SeekBar for
example and will have to be propagated from the Activity to the Service.

6. When ∆t has elapsed after a deliberate movement, the phone should ring an alarm (i.e., play a
sound file). The user should still be able to disarm the device and stop the alarm using the
notification mentioned above.

2



Prof. Friedemann Mattern, Matthias Kovatsch
Distributed Systems HS 2013

7. Pay attention to typical Android crashes like on rotating the screen, pushing the back button, etc.
At the end, do not forget to unregister the sensor event listener. Failing to do so can drain the
battery in just a few hours because some sensors have substantial power requirements and can
use up battery power quickly. In contrast with earlier Android versions, the system will not
disable sensors automatically when the screen turns off.

8. Comment your code.

3 Enhancements (2 Points)

1. Use the Android 2D graphics library to visualize the retrieved sensor data. For instance, create a
graph that shows the accelerometer values over some seconds or the movement while the
Anti-Theft Alarm was armed. Hint: Take a look at the ApiDemos sample files
DrawPoints.java, RoundRects.java, and PolyToPoly.java (they are located in
the samples folder of the SDK). The demos can be installed using the procedure defined in
http://developer.android.com/tools/samples/index.html.

2. A problem with the current Anti-Theft Alarm is that the sound can be easily suppressed on many
devices by connecting headphones. It could be replaced by a silent alarm (i.e., a text or e-mail
message) together with continuous updates of the GPS coordinates to give the owner an idea of
the location of the device. In this final section of the assignment, we would like to see you tackle
this problem and come up with a creative solution. Your enhancements should be added to
vs-nethz-antitheft and be clearly marked in the code.

4 Report (2 Points, �)

As part of the assignments, you are required to produce a short, two-page report. You must follow the
report template for the assignment, which is provided on the course Web site. Use a scientific writing
style which you will also need later for the bachelor’s and master’s thesis (i.e., formal without narrative
elements, but detailed facts).

1. The abstract is a single paragraph that summarizes the key points of the document. For this
report, concisely state (i) which Android device you used, (ii) which tasks you completed and
which are working correctly or limited, and (iii) what your specific enhancements are.

2. Use the introduction to inform us about your experience with mobile and Android programming.
Also report how you distributed the work in your group.

3. In Sections 2 and 3, write about the design and implementation questions of your applications
and motivate any choices you have made during the process. Indicate any problems you may
have encountered during the development. Please include screenshots and code snippets to
explain particular ideas. We encourage you to highlight bits you are especially proud of or do not
like at all.

4. When you provide a solution for the final part of this assignment, we expect you to introduce
your enhancements and evaluate their usefulness in Section 4.

5. Finally conclude what you have learned in this assignment and summarize the main challenges
or eureka moments you encountered.

3



Prof. Friedemann Mattern, Matthias Kovatsch
Distributed Systems HS 2013

Deliverables

The following two deliverables have to be submitted by 09:00am, 14 October 2013:

• code.zip You should create a zip file containing the Eclipse projects created in this assignment.
The projects should have been tested both on the mobile phone and on the emulator. The code
must compile on our machines as well, so always use relative paths if you add external libraries
to your project (check the .classpath file). All libraries must be put into the libs directory
within the Android project. Please use UTF-8 encoding for your files and avoid special
characters such as umlauts in your code.

• report.pdf The report in PDF format.

The code for the Anti-Theft Alarm part of the assignment MUST follow the code skeleton provided to
you with the assignment. Marks will be deducted otherwise.

Submission

Report and code must be uploaded through our submission system:

https://www.vs.inf.ethz.ch/edu/vs/submissions/

The group leader can upload the files, and other group members have to verify in the online system
that they agree with the submission. Use your nethz accounts to log in. The submission script will not
allow you to submit any part of this exercise after the deadline. However, you can re-submit as many
times as you like until that.

4


