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• Repetition (lecture slides 189 – 195) + UDP

• Causality

• Lamport Time

• Vector Time [new!]

• Assignment 3

• Task 1

• Task 2

• Task 3.1 and 3.2

Today's Menu
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Briefly: The User Datagram Protocol

● Simple transmission model 

● No hand-shakes, ordering, data integrity

● Datagrams delayed (out of order), duplicate, missing

● Common applications

● DNS (port 53)

● Streaming

● VoIP

● Online gaming
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UDP Effects...
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Causality

• Interesting property of distributed systems...

• Causal Relation '<' (“happened before”):

x < y iff ( (x, y on same process, x happens before y) or
(x is send and y is corresponding receive) or
(transitivity) )
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Causality
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x < y iff ( (x, y on same process, x happens before y) or
(x is send and y is corresponding receive) or
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Software Clocks

• Ideal Real Time: Transitive, dense, continuous,...

• Logical Time: Cheap version of real time

• Lamport Timestamps

• Vector Clocks

• Matrix Clocks
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Lamport Time

• Using a single clock value

• Local Event: Local clock tick

• Send Event: Attach local clock value

• Receive Event: max(local clock, message clock)

• Satisfies clock consistency condition: e < e' → C(e) < C(e')
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Lamport Time

• Lamport Time does not satisfy strong clock consistency condition

e < e' ↔ C(e) < C(e')
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Vector Time

• Refining Lamport Time: Processes keep one counter per process

• Does satisfy strong clock consistency condition!

e < e' ↔ C(e) < C(e')
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Vector Time [example]
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Vector Time [example]
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Vector Time

“Process i stores information on what it thinks about the local 
time of processes (1,...,n).”
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• Refining Vector Time: Processes keep n counters per process

“Process i stores information on what it believes that processes 
(1,...,n) think about the local time of processes (1,...,n).”

Matrix Time [not in the assignment]
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• Repetition (lecture slides 189 – 195) + UDP

• Causality

• Lamport Time

• Vector Time [new!]

• Assignment 3

• Task 1

• Task 2

• Task 3.1 and 3.2

Today's Menu
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A Mobile, Causal, UDP-based Chat-Application

● Task 1:  “Getting familiar with Datagrams”

● Task 2:  “Starting the Conversation” + Lamport Timestamps

● Task 3:  “Overcoming the Desequencer”

● 3.1 Vector Clocks

● 3.2 Additional questions (→Report)

● Report
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1. Getting familiar with Datagrams

● Communicate with server at http://vswot.inf.ethz.ch:3999 using UDP

● Provides “capitalization” service

http://vswot.inf.ethz.ch:3999/
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Side Note: Encoding Time...

● Lamport Time: Need to encode single Timestamp

● Vector Time: Need to encode multiple Timestamps

We use a Map<int, int> or dictionary to identify timestamps.

The key or index “0” always corresponds to Lamport time
Index i is associated to one of the clients and issued when registering!
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Side Note: System Setup

● vswot Services

● (De-)Registration of clients

● Distributes messages (“Broadcast”)

● De-sequencing “service”

Port 4000
Port 4001
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The server http://vswot.inf.ethz.ch:4000
JSON Protocol:

--> {"cmd":"register","user":"willi"}

<-- {"index":3,"time_vector":{"3":0,"2":70,"1":71,"0":74},"success":"reg_ok"}

--> {"cmd":"get_clients"}

<-- {"clients":{"/129.132.75.130":"QuestionBot","/129.132.252.221":"AnswerBot","/77.58.228.17":"willi"}}

--> {"cmd":"info"}

<-- {"info":"I am an advanced UDP server that is running at port 4000 to provide a de-sequencing service for 
Android UDP chatting programs..."}

--> {"text":"hallo","cmd":"message","time_vector":{"3":1,"2":70,"1":71,"0":75}}

--> {"cmd":"deregister"}

<-- {"success":"dreg_ok"}

http://vswot.inf.ethz.ch:4000/
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2. Starting the Conversation

● UDP chat with server (ports 4000/4001)

● Causality preservation via Lamport Time

● Lamport Timestamp stored in 0th time vector index

● So: Only consider this index when doing task 2...
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3.1 Overcoming the Desequencer

● UDP chat with server (ports 4000/4001)

● Causality preservation via Vector Clocks

● Own Timestamp in ith time vector index

● i assigned by Server on registration
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3.2 Overcoming the Desequencer

● When exactly are two Vector Clocks causally dependent?

● Does your application allow “purely local” events? Do they trigger a clock tick?

● Does a local clock tick happen before or after the sending of a message?

● How are receive events handled? Do they trigger local clock ticks?

● Dynamically Joining / Leaving Clients

● Read the paper “Dynamic Vector Clocks”

● Describe the approach taken there

Cover this in your report!
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Send / Receive / Tick policies

● Multiple ways to implement vector clock ticking
● Tick only when sending, after sending [vs. before sending]

● Tick when receiving and sending, after sending [vs. before sending]

● QuestionBot's and AnswerBot's policy:
● Tick only when sending, before sending

Example: Message from process 2 with timestamp [4,5,1] means:

“Before receiving me, you should already have received and delivered 4 messages 
from process 1, 4 (!) messages from process 2 and 1 message from process 3!”

“If you did not receive these, wait before delivering me!”

● What if a message is lost?
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Issues / Considerations

● Maybe try it in pure Java first...

● Better debugging... (e.g., Exceptions are actually displayed...)

● Faster & More convenient

● Use VPN when not in ETH network!

● Lots of groups interact via the chat server

● Potential Problem: Some groups non-compliant

● Result could be: Everyone's code crashes...

● Solution: Tag your messages (e.g., using your group number)

 Only consider own messages
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That's it...
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