
Introduction to Assignment 3
Distributed Systems Lecture
HS 2011, ETH Zurich

Wilhelm Kleiminger

kleiminger@inf.ethz.ch

2Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

• Repetition (lecture slides 189 – 195) + UDP

• Causality

• Lamport Time

• Vector Time [new!]

• Assignment 3

• Task 1

• Task 2

• Task 3.1 and 3.2

Today's Menu

3Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

Briefly: The User Datagram Protocol

● Simple transmission model

● No hand-shakes, ordering, data integrity

● Datagrams delayed (out of order), duplicate, missing

● Common applications

● DNS (port 53)

● Streaming

● VoIP

● Online gaming

4Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

UDP Effects...

5Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

Causality

• Interesting property of distributed systems...

• Causal Relation '<' (“happened before”):

x < y iff ((x, y on same process, x happens before y) or
(x is send and y is corresponding receive) or
(transitivity))

6Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

Causality

1
33

22

x < y iff ((x, y on same process, x happens before y) or
(x is send and y is corresponding receive) or
(transitivity))

1

2
3

Send event Internal event Receive event

7Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

Software Clocks

• Ideal Real Time: Transitive, dense, continuous,...

• Logical Time: Cheap version of real time

• Lamport Timestamps

• Vector Clocks

• Matrix Clocks

8Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

Lamport Time

• Using a single clock value

• Local Event: Local clock tick

• Send Event: Attach local clock value

• Receive Event: max(local clock, message clock)

• Satisfies clock consistency condition: e < e' → C(e) < C(e')

9Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

Lamport Time

• Lamport Time does not satisfy strong clock consistency condition

e < e' ↔ C(e) < C(e')

10Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

Vector Time

• Refining Lamport Time: Processes keep one counter per process

• Does satisfy strong clock consistency condition!

e < e' ↔ C(e) < C(e')

11Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

Vector Time [example]

12Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

Vector Time [example]

13Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

Vector Time

“Process i stores information on what it thinks about the local
time of processes (1,...,n).”

14Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

• Refining Vector Time: Processes keep n counters per process

“Process i stores information on what it believes that processes
(1,...,n) think about the local time of processes (1,...,n).”

Matrix Time [not in the assignment]

15Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

• Repetition (lecture slides 189 – 195) + UDP

• Causality

• Lamport Time

• Vector Time [new!]

• Assignment 3

• Task 1

• Task 2

• Task 3.1 and 3.2

Today's Menu

16Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

A Mobile, Causal, UDP-based Chat-Application

● Task 1: “Getting familiar with Datagrams”

● Task 2: “Starting the Conversation” + Lamport Timestamps

● Task 3: “Overcoming the Desequencer”

● 3.1 Vector Clocks

● 3.2 Additional questions (→Report)

● Report

17Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

1. Getting familiar with Datagrams

● Communicate with server at http://vswot.inf.ethz.ch:3999 using UDP

● Provides “capitalization” service

http://vswot.inf.ethz.ch:3999/

18Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

Side Note: Encoding Time...

● Lamport Time: Need to encode single Timestamp

● Vector Time: Need to encode multiple Timestamps

We use a Map<int, int> or dictionary to identify timestamps.

The key or index “0” always corresponds to Lamport time
Index i is associated to one of the clients and issued when registering!

19Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

Side Note: System Setup

● vswot Services

● (De-)Registration of clients

● Distributes messages (“Broadcast”)

● De-sequencing “service”

Port 4000
Port 4001

20Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

The server http://vswot.inf.ethz.ch:4000
JSON Protocol:

--> {"cmd":"register","user":"willi"}

<-- {"index":3,"time_vector":{"3":0,"2":70,"1":71,"0":74},"success":"reg_ok"}

--> {"cmd":"get_clients"}

<-- {"clients":{"/129.132.75.130":"QuestionBot","/129.132.252.221":"AnswerBot","/77.58.228.17":"willi"}}

--> {"cmd":"info"}

<-- {"info":"I am an advanced UDP server that is running at port 4000 to provide a de-sequencing service for
Android UDP chatting programs..."}

--> {"text":"hallo","cmd":"message","time_vector":{"3":1,"2":70,"1":71,"0":75}}

--> {"cmd":"deregister"}

<-- {"success":"dreg_ok"}

http://vswot.inf.ethz.ch:4000/

21Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

2. Starting the Conversation

● UDP chat with server (ports 4000/4001)

● Causality preservation via Lamport Time

● Lamport Timestamp stored in 0th time vector index

● So: Only consider this index when doing task 2...

22Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

3.1 Overcoming the Desequencer

● UDP chat with server (ports 4000/4001)

● Causality preservation via Vector Clocks

● Own Timestamp in ith time vector index

● i assigned by Server on registration

23Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

3.2 Overcoming the Desequencer

● When exactly are two Vector Clocks causally dependent?

● Does your application allow “purely local” events? Do they trigger a clock tick?

● Does a local clock tick happen before or after the sending of a message?

● How are receive events handled? Do they trigger local clock ticks?

● Dynamically Joining / Leaving Clients

● Read the paper “Dynamic Vector Clocks”

● Describe the approach taken there

Cover this in your report!

24Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

Send / Receive / Tick policies

● Multiple ways to implement vector clock ticking
● Tick only when sending, after sending [vs. before sending]

● Tick when receiving and sending, after sending [vs. before sending]

● QuestionBot's and AnswerBot's policy:
● Tick only when sending, before sending

Example: Message from process 2 with timestamp [4,5,1] means:

“Before receiving me, you should already have received and delivered 4 messages
from process 1, 4 (!) messages from process 2 and 1 message from process 3!”

“If you did not receive these, wait before delivering me!”

● What if a message is lost?

25Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

Issues / Considerations

● Maybe try it in pure Java first...

● Better debugging... (e.g., Exceptions are actually displayed...)

● Faster & More convenient

● Use VPN when not in ETH network!

● Lots of groups interact via the chat server

● Potential Problem: Some groups non-compliant

● Result could be: Everyone's code crashes...

● Solution: Tag your messages (e.g., using your group number)

 Only consider own messages

26Wilhelm Kleiminger – ETH Zurich Distributed Systems – Introduction Assignment 3

That's it...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

