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ABSTRACT
A wireless networked control systems (NCS) is a control sys-
tem whose feedback path is realized over a wireless commu-
nication network. The stability of such systems can be prob-
lematic given the random way in which wireless channels
drop feedback messages. This paper establishes sufficient
conditions for the almost sure stability of NCS under ran-
dom dropouts. These conditions relate the burstiness in the
dropout process to the nominal response of the controlled
system. In particular, this means that the burstiness of
the dropout process provides a convenient quality-of-service
(QoS) constraint on the wireless channel that can be used
to adaptively reconfigure the control system in a manner
that guarantees the almost sure stability of the NCS. We
also show how a probabilistic extension of the network cal-
culus can be used to reconfigure multi-hop communication
networks so this paper’s sufficient stability condition is not
violated.

Categories and Subject Descriptors
J.7 [Computers in Other Systems]: Command and con-
trol

General Terms
Theory

Keywords
Wireless, Networked Control Systems, almost sure stability,
dropout process, burstiness, network calculus

1. INTRODUCTION
In recent years there has been considerable interest in us-

ing wireless communication networks to support the mon-
itoring and management of geographically distributed sys-
tems [6]. This interest has been driven by a wireless net-
work’s low deployment cost and ease of reconfiguration. Sig-
nificant concerns arise, however, when wireless networks are
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suggested for use in time-critical control applications. These
concerns stem from the probabilistic nature of message de-
livery in wireless networks. At any point in time, there is
a finite probability that the wireless network will fail to
deliver a given packet and this means it is impossible for
such networks to meet the hard real-time quality-of-service
(QoS) constraints usually expected by control applications.
So while wireless communication technologies may be inex-
pensive and easy to deploy, it is still unclear if this tech-
nology can be used for control applications expecting hard
real-time guarantees on message delivery.

Control applications have traditionally demanded hard
real-time QoS guarantees from network infrastructure. This
expectation could be satisfied by wireline networks, but it is
an unreasonable expectation for wireless networks. Do these
control applications really need to meet hard real-time dead-
lines? Are there any control applications that can tolerate
firm or event soft real-time guarantees? Firm/soft real-time
guarantees may be sufficient if one is willing accept stochas-
tic guarantees on control system stability. Past papers (for
example, see [8]) have clearly demonstrated that networked
control systems will be mean square stable provided the av-
erage rate of dropped feedback data is sufficiently bounded.
Hard real-time constraints, therefore, may not be a pre-
requisite for all control applications.

The problem with mean square stability, however, is that
it only requires the variance of the state process to be asymp-
totically bounded. This means that sample state trajectories
of mean square stable processes have a finite probability of
being arbitrarily far from the system’s equilibrium point. So
while the system may be well-behaved on the average, there
is always the possibility of a large transient occurring and
for many applications this sort of behavior is unacceptable.
Demanding applications, therefore, should satisfy a much
stronger stability concept than mean square stability. One
such stability concept is almost sure stability.

Almost sure stability requires the probability of the sys-
tem’s largest excursion from equilibrium for all times k > T
go to zero as T goes to infinity. In other words, the further
out one goes along the state trajectory, the probability of be-
ing arbitrarily far from the equilibrium becomes vanishingly
small. This stronger form of stochastic stability is difficult to
guarantee in dynamical systems with external disturbances.
In fact, it has been shown that if the system disturbance is
uniformly bounded, then the resulting system will be almost
surely unstable [10]. On the basis of these results, therefore,
it may appear highly unlikely that wireless communication
should ever be used for highly critical control applications.
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The reason for this instability is the wireless channel’s
propensity for generating a long string or burst of dropped
data packets [10]. This observation suggests that if one were
able to limit the probability of long bursts of dropouts, it
may still be possible to ensure the almost sure stability of
the process. This fact was recently exploited in [9] to show
that if no dropout bursts greater than a given length occur,
then quantized control systems will be almost sure practi-
cally stable in the presence of uniformly bounded distur-
bances. While this finding is encouraging, it is of little value
in building wireless NCS since there is always a probability
that a burst of dropouts may occur.

In wireless NCS it is impossible to require the probabil-
ity of long dropout bursts to be zero. It may, however be
possible to compensate for a long burst by reconfiguring
the controller or network. This is the viewpoint adopted
in this paper. In particular, this paper shows that if the
dropout process has exponentially bounded burstiness, then
one can guarantee the almost sure stability of the control
system provided its response to an admissible disturbance
satisfies certain bounds. In particular, let’s characterize a
channel’s burstiness by a burst exponent, γ. This parameter
is chosen to be inversely proportional to the probability of
a long burst of dropouts. Let’s also characterize a system’s
disturbance rejection in terms of an exponent, s, which pa-
rameterizes the closed-loop system’s disturbance rejection
ability. The main finding in this paper shows that provided
the product sγ is large enough, then we can guarantee the
almost sure stability of the closed-loop process. This suffi-
cient condition, therefore, suggests that it may be possible
to adaptively reconfigure the controller and network to as-
sure almost-sure stability. Controller reconfiguration selects
a controller whose disturbance rejection renders the param-
eter s sufficiently large. Network reconfiguration adjusts the
communication channel to increase the burst exponent γ.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the system model under study. The main
result of this paper will be found in section 3. This result
is the aforementioned sufficient condition for almost sure
stability in networked control systems with single hop wire-
less networks. Experimental results validating this condition
will be found in section 4. This experimental section also
presents preliminary simulation results concerning the adap-
tive reconfiguration of the controller in response to changes
in the wireless channel’s state. Section 5 extends the re-
sult in section 3 multi-hop wireless networks. This section
presents a network optimization problem that seeks to min-
imize overall network energy consumption subject to a con-
straint on the burstiness in individual network links. Final
remarks will be found in section 6.

2. SYSTEM MODEL
The system under study is shown in figure 1. In this fig-

ure, one is interested in stabilizing a discrete-time dynamical
system called the plant. The plant accepts two real-valued
inputs; a positive external disturbance, {wk}∞k=0, and a con-
trolled input, {uk}∞k=0. In response to these inputs, the plant
generates a real valued state, {xk}∞k=0, that satisfies the fol-
lowing equation,

xk+1 = αxk + uk +wk (1)

for k = 0, 1, . . . ,∞ where α > 1 and the initial condition
0 ≤ x0 ∈ R is given. The only thing known about the
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Figure 1: System Model

disturbance is that it is bounded in a sense to be specified
in the next section. The control input at time k is assumed
to satisfy the following equation,

uk = (β − α)x̂k (2)

for k = 0, 1, . . . ,∞ where 0 < β < 1 and x̂k is the output of
another system called the channel.

The channel is a memoryless system that accepts two in-
puts. Physically this channel is a single-hop wireless com-
munication network. The first input is the plant’s state, xk,
measured by a perfect sensor. The second input is a bi-
nary valued stochastic process, {dk}∞k=0 called the dropout
process. The relationship between the channel’s output, x̂k,
and its two inputs is

x̂k =

{
xk if dk = 0
0 if dk = 1

(3)

for all k ≥ 0. The dropout process, dk, therefore takes the
value of 0 if the channel successfully transport the sensor’s
measurement, xk. If dk = 1, then the channel is said to have
dropped or erased the sensor’s measurement and it outputs
the value 0.

If one combines equations (1)-(3), then the closed-loop
system’s dynamics are characterized by the following switched
difference equation,

xk+1 =

{
αxk + wk if dk = 1
βxk + wk if dk = 0

(4)

for all k = 0, 1, . . . ,∞. Since 1 < α and 0 < β < 1, the un-
driven system’s state is increasing if sensor data is dropped
and it is decreasing asymptotically to zero if there are no
dropouts. In particular, if we let x(k;x0) denote the system
state at time k assuming initial input x0, then at time k ≥ 0
the system state can be shown to be

x(k;x0) = αd0,kβk−d0,k +
k∑

�=1

αd�,kβk−�−d�,kw�−1 (5)

where

d�,k =
k−1∑
j=�

dj (6)

is the total number of packets that were dropped over the

time interval [�, k−1] and dk,k = 0. We let ρ�,k =
d�,k
k−�

denote

the local average dropout rate over time interval [�, k − 1].
The dropout process {dk}∞k=0 is a stochastic process. The

process will be Bernoulli with dropout rate λ ≥ 0 if the
probability of a dropout at any time k > 0 is λ. We will also
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consider dropout processes that have exponentially bounded
burstiness or EBB [15]. In particular, given two constants
ρ, γ > 0, we say the process {dk}∞k=0 is (ρ, γ)-EBB if and
only if for all σ > 0 and all 0 ≤ � < k,

Pr {d�,k > ρ(k − �) + σ} ≤ e−γσ. (7)

In the above equation, ρ may be viewed as a long term
dropout rate and σ may be viewed as the length of a dropout
burst (i.e. a dropout burst consists of a several consecutive
dropouts). A dropout process is therefore (ρ, γ)-EBB if the
probability of the total number of dropouts over an interval
Δ being greater than ρΔ+ σ can be exponentially bounded
as a function of the dropout burst length, σ. Throughout this
paper, γ will be referred to as the process’ burst exponent.

This paper studies the almost sure stability of the process
in equation (4) when the dropouts form a stochastic process.
Let the event Aε

k(x0) be defined as

Aε
k = {|x(k;x0)| > ε} (8)

then the system is almost sure asymptotically stable if and
only if for all ε > 0

Pr

{
lim sup

k
Aε

k(x0)

}
= 0. (9)

It is almost sure practically stable if there exists ε > 0 such
that equation (9) holds. Finally the process is said to be
almost sure unstable if there exists ε > 0 such that

Pr

{
lim sup

k
Aε

k(x0)

}
= 1. (10)

3. SINGLE-HOP NETWORKS
This section examines the almost sure stability of the con-

trol system shown in figure 1 assuming that the dropout
process has exponentially bounded burstiness. The feed-
back channel in this system can be considered a single-hop
network. The following theorem shows that any Bernoulli
process has exponentially bounded burstiness. A version of
this theorem was proven in [15]. The following theorem dif-
fers from the earlier version in that it explicitly characterizes
the burst exponent γ.

Theorem 3.1. Let {dk}∞k=0 be a Bernoulli process with
parameter λ. For any ρ > λ there exists a constant γ > 0
such that

Pr {d�,k ≥ ρ(k − �) + σ} ≤ e−γσ (11)

for all k > � ≥ 0 where

γ = sup
{
z ∈ R

+ : λez + 1− λ ≤ eρz
}
. (12)

Proof. The Markov inequality implies that

Pr {d�,k ≥ ρ(k − �) + σ} = Pr
{
ezd�,k ≥ ez(ρ(k−�)+σ)

}
≤ E

[
ezd�,k

]
e−z(ρ(k−�)+σ)

for any z > 0. E[ezd�,k ] is the moment generating function
for the random variable d�,k. Since dk is an independent and
identically distributed process we can see that

E[ezd�,k ] = (λez + 1− λ)k−�.

The probability in equation (11) may therefore be bounded
as

Pr {d�,k ≥ ρ(k − �) + σ} ≤ f(z)k−�g(−z)k−�e−zσ, (13)

where

f(z) = (λez + 1− λ)

g(z) = eρz.

Note that

f(0) = g(0) = 1

f ′(0) = λ < ρ = g′(0).

This means that 1 ≤ f(z) ≤ g(z) for all z ∈ [0, γ] for the γ
given in the theorem’s statement. We can use this fact in
equation (13) to obtain

Pr {d�,k ≥ ρ(k − �) + σ} ≤ g(z)k−�g(−z)k−�e−zσ

≤ e−zσ

for any z ∈ [0, γ] which completes the proof.

A number of papers (see [8] for instance) characterize the
mean square stability of a linear process under Bernoulli
dropouts. The following theorem establishes similar results
for homogeneous (i.e. no input) versions of the linear sys-
tems in equation (4) assuming the dropout process has ex-
ponentially bounded burstiness.

Theorem 3.2. Assume the dropout process is (ρ, γ)-EBB
where

0 < ρ < ρ∗ = − log β

logα− log β
< 1. (14)

If the input wk = 0 for all k ≥ 0, then the system in equation
(4) is almost sure asymptotically stable.

Proof. Under the assumption that wk = 0 for all k,
equation (5) reduces to

xk = αd0,kβk−d0,kx0. (15)

Now assume that a particular instance of the dropout pro-
cess satisfies the inequality

d�,k ≤ ρ(k − �) + σ (16)

for 0 < � < k and for a given σ > 0. With this particular
dropout process the above equation (15) can be bounded as

xk ≤ μk

(
α

β

)σ

x0

for all k ≥ 0 where μ = αρβ1−ρ. The right hand side of the
above inequality can be bounded by a polynomial function
of k. In particular, for any γ > 0 there exists a positive
C > 0 such that

μk < Ck− 2
γ

log(α/β)

for all k ≥ 1. This allows us to bound xk with a polynomial
function of k,

xk ≤ Ck− 2
γ

log(α/β)

(
α

β

)σ

x0. (17)

So if the dropout sequence dk satisfies equation (16) then
the system state is bounded above as in equation (17).

So let’s consider the event Aε
k(x0). From equation (17)

we know that if xk > ε and if d�,k ≤ ρ(k − �) + σ for some
choice of σ, then

ε < Ck
− 2

γ
log(α/β)

(α/β)σx0.
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Taking the log of both sides and solving for σ provides a
bound on σ of the form,

σ >
log(ε/Ck

− 2
γ

log(α/β)
x0)

log(α/β)
= σ∗(ε). (18)

The right hand side of equation (18) is a lower bound on the
burst length σ giving rise to the system state, xk > ε. In
other words, if xk > ε, then the dropout process must have
had burst length σ > σ∗(ε). Since we assumed the process is
(ρ, γ)-EBB, the probability of this event occurring must be

less than e−γσ∗
. We may, therefore, bound the probability

of Aε
k(x0) as

Pr {Aε
k(x0)} ≤ Pr {d�,k > ρ(k − �) + σ∗(ε)}

≤ exp

(
−γ

(
log(ε/Ck

− 2
γ

log(α/β)
x0)

log(α/β)

))

= C1k
−2

where C1 =
(
Cx0
ε

) γ
log(α/β) .

If we now sum these probabilities over all k ≥ 1, we obtain

∞∑
k=1

Pr {Aε
k(x0)} ≤ C1

∞∑
k=1

k−2 =
C1π

2

6
.

This sum is clearly bounded for any finite ε so by the first
Borel-Cantelli lemma we can conclude that

Pr

{
lim sup

k
Aε

k(x0)

}
= 0

for any ε > 0 which means the system is almost sure asymp-
totically stable.

It is well known that homogeneous systems under Bernoulli
dropouts are almost sure stable [8] [11]. The result in the-
orem 3.2 extends that prior result to the larger class of
dropout processes with exponentially bounded burstiness.
We now extend these results to inhomogeneous systems. In
general, it is well known that the system in equation (4) is
almost surely unstable when driven by a uniformly bounded
disturbance [10]. This is because at any time k there is a
finite probability of having a dropout burst whose length
is great enough to force xk to exceed ε. One way to get
around this issue is to simply require that no burst occurs
with length beyond the critical threshold of σ∗. This ap-
proach was adopted in [9] for quantized feedback control sys-
tems with random dropouts. The following theorem adopts
a less heavy-handed approach. In particular, we assume the
dropout process is (ρ, γ)-EBB and identify a class of inputs
for which the system is almost sure asymptotically stable.

The following theorem assumes that the dropout process
is (ρ, γ)-EBB with a given ρ that is less than the bound
ρ∗ defined in equation (14) of theorem 3.2. The other pa-
rameter, γ, is the burst exponent of the dropout process.
Since we already know that this system is almost sure un-
stable under uniformly bounded dropouts, we relax the uni-
form bound and require that the response of an ”averaged”
closed-loop system is bounded above Ck−s where s > 0. We
refer to s as the system’s response exponent. The larger s is,
the faster the system rejects the input disturbance w. The
following theorem asserts that if the product sγ is greater
than logα−log β, then the closed-loop system will be almost
surely asymptotically stable.

Theorem 3.3. Assume the dropout process is (ρ, γ)-EBB
where

ρ < ρ∗ = − log β

logα− log β
< 1. (19)

Assume that the system input, w is such that there exist
positive real constants C and s such that

μkx0 +

k−1∑
j=0

μjwk−j−1 ≤ Ck−s (20)

where μ = αρβ1−ρ. If s and γ satisfy,

sγ > logα− log β (21)

then the driven system in equation (4) is almost sure asymp-
totically stable.

Proof. From equation (5) we know

xk = αd0,kβk−d0,kx0 +

k∑
�=1

αd�,kβk−�−d�,kw�−1.

Consider a dropout sequence that satisfies the bound,

d�,k ≤ ρ(k − �) + σ (22)

for all 0 < � < k where σ > 0 is given. This implies that

xk ≤ αρk+σβ(1−ρ)k−σx0 (23)

+
k∑

�=1

αρ(k−�)+σβ(1−ρ)(k−�)−σw�−1

=

(
μkx0 +

k−1∑
j=0

μjwk−j−1

)(
α

β

)σ

(24)

where μ = αρβ1−ρ. Under the assumption in equation (19),
it can be readily shown that 0 < μ < 1. Moreover, the
other assumption in equation (20) and the above relation in
equation (24) imply that

xk ≤ Ck−s

(
α

β

)σ

. (25)

So if the dropout sequence, dk, satisfies equation (22), then
the system state xk must be bounded as in equation (25).

Now consider the event Aε
k(x0) so that xk > ε at time

instant k. If the dropout sequence also satisfies equation
(22) then we can use equation (25) to infer that

ε ≤ Ck−s

(
α

β

)σ

.

Taking the log of both sides and solving for σ yields the
bound

σ >
log(ε/Ck−s)

log(α/β)
= σ∗(ε) (26)

The right hand side of equation (26) is a lower bound on the
burst length, σ , that gives rise to xk > ε. Since the dropout
process was assumed to be (ρ, γ)-EBB, the probability of

this event occurring is e−γσ∗
. We may therefore bound the

probability of event Aε
k(x0) as

Pr {Aε
k(x0)} ≤ Pr {d�,k > ρ(k − �) + σ∗(ε)}

≤ exp

(
−γ

(
log(ε/Ck−s)

log(α/β)

))

= C1k
− sγ

log(α/β)
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where C1 =
(
C
ε

) γ
log(α/β) .

So as we did in the proof for theorem 3.1, we sum these
probabilities over k = 1 to ∞ to obtain

∞∑
k=1

Pr {Aε
k(x0)} ≤ C1

∞∑
k=1

k
− γ

log(α/β) .

This sum is convergent if sγ
log(α/β)

is greater than one and

that sum is given by the Riemann zeta function, ζ(s). This
is precisely the condition assumed in equation (21). We
can therefore conclude that the sum of these probabilities is
bounded for any choice of ε we can make. By the first Borel-
Cantelli lemma this implies that Pr {lim supk A

ε
k} = 0 which

means the system is almost sure asymptotically stable.

Unlike the earlier result in [10] where the disturbance
was uniformly bounded, theorem 3.3 restricts the input to
asymptotically approach zero in the manner prescribed by
equation (20). We may take, however, the polynomial ex-
ponent, s, on the right hand side of equation (20) to be
arbitrarily close to zero so that in the limiting case one ap-
proaches the uniformly bounded case. To guarantee almost
sure asymptotic stability as s → 0, one would then need
to have the burst exponent γ go to infinity as well, which
means that the probability of any burst essentially goes to
zero. If, however, we are only interested in assuring almost
sure practical stability (for a specified ε), then these limiting
conditions require that the probability of a burst of length
greater than σ∗(ε) goes to zero. This finding is consistent
with recent results in [9].

The results in this section confined their attention to lin-
ear scalar systems in which the state xk is always going to
be positive. This may, at first, appear to be a significant
limitation. We view the system in equation (4), however, as
a Lyapunov comparison system. In other words xk corre-
sponds to the Lyapunov function of the system at time k.
This is precisely what was done for so-called noise-to-state
stable (NSS) systems [4]. In this regard, we believe it may
be possible to extend these results to characterize stability
in probability for discrete-time nonlinear systems with ex-
ponential dropouts.

4. EXPERIMENTAL RESULTS
This section presents experimental results from prelimi-

nary Monte Carlo simulations examining how tight the suf-
ficient condition in theorem 3.3 might be. We consider the
system in equation (4) with Bernoulli dropouts having pa-
rameter λ. The closed-loop dynamic is characterized by the
parameter β = .2. The open-loop dynamic constant α takes
values of 5, 2, and 1.25. These are the three systems exam-
ined in these simulation studies.

We first study these systems by fixing the input to the
system and then varying the dropout parameter λ. We select
a parameter ρ < ρ∗ where

ρ∗ = − log β

logα− log β
,

was defined in equation (14) of theorem 3.2. We selected
ρ = 0.8ρ∗. We then drove the system in equation (4) with
an input function wk = 1√

k
for k ≥ 1 and determined a

response ,exponent s, which over bounds the system’s actual
response xk with the function Ck−s. The value of s was then
used in equation (21) to determine an upper bound, γ∗, on

0

5

10

α = 5, β = .2, λ = .1

0

5

10 α = 2, β = .2, λ = .1

10
−2

10
−1

10
0

0

5

10

α = 1.25, β = .2, λ = .1

dropout rate, λ

Figure 2: Simulation results where system input was
held constant and dropout process parameter, λ, was
varied between 0.01 to 0.5

the burst exponent γ such that the overall system would be
almost surely asymptotically stable. From this γ∗, we then
computed the dropout parameter λ∗ using the relation

λ∗eγ
∗
+ 1− λ∗ = eργ

∗

in equation (12). The dropout parameter λ∗ computed above
represents a threshold level above which we can expect the
driven system to be almost surely unstable.

To test this hypothesis, we simulated the driven system
with the given input where the dropout rate λ was varied be-
tween 0.01 and 0.5. For each λ, the system was simulated 10
times over the time interval from 0 to 10000. The maximum
excursion of the state after time instant 5000 was recorded
for each simulation run. The mean, maximum, and mini-
mum value of each collection was recorded and then plot-
ted. Figure 2 shows this plot for the three systems in which
α = 5, 2, or 1.25. The x-axis in the plot represents the
dropout parameter λ on a log scale. The y-axis represents
the mean, maximum, and minimum values that xk achieved
over the 10 simulation runs at the specified dropout param-
eter. The dark blue line shows the mean value. The max
and min values are marked by the dashed error bars. For
each simulation, the computed threshold, λ∗, is marked by
the black vertical line.

The parameters of these three systems are shown in table
1. The threshold dropout rates for the three systems are
λ∗ = 0.015, 0.125, and 0.25, respectively. These thresholds
are marked by the dark vertical line in each plot in figure
2. The plots show that to the right of the threshold, the
variation in the state, xk, increases dramatically. To the
left of this threshold, the state remains close to zero for all
times after 5000. This is precisely the behavior one would
expect if the systems were almost sure asymptotically stable
for λ < λ∗. These results, therefore, seem to confirm the
findings in theorem 3.3.

We also studied this system from the standpoint of vary-
ing the response exponent s in equation (20). For these
experiments, we used the same three systems and we fixed
the dropout rate λ = 0.1. Under these assumptions we can
then compute ρ∗ as before and selected ρ = 0.8ρ∗. For this
value of ρ we computed the bound, γ∗, on the burst expo-
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α β ρ∗ γ∗ λ∗

system 1 5 .2 .5 6.19 0.015
system 2 2 .2 .69 4.42 0.125
system 3 1.25 .2 .88 3.52 0.25

Table 1: Parameter Values for Simulation Experi-
ment Varying Dropout Rate λ

α β λ γ∗ s∗

system 1 5 .2 .1 3.4 -0.95
system 2 2 .2 .1 5.1 -0.45
system 3 1.25 .2 .1 7.7 -0.24

Table 2: Parameters for simulation where system
responsiveness was varied

nent using equation (12). This value of γ∗ was then used in
equation (21) to determine the threshold s∗ for the system’s
response exponent. For systems whose actual response ex-
ponent, s > s∗, we expect the system to no longer be almost
surely asymptotically stable. The computed values for γ∗

and s∗ are shown in table 2
The results from this simulation experiment are plotted

in figure 3 for all three systems. The x-axis is the response
exponent, s, that was actually seen in the simulation. As
before in figure 2, the y-axis is the mean, max, and min
values achieved by the system state after time instant 5000
over 10 independent simulation runs. The dark vertical line
in each plot marks the threshold, s∗, computed for table
2. For simulation runs to the right of these vertical lines,
we expect a large increase in the variation of the state (as
shown by the larger error bars and larger mean values). To
the left of this line, the system states are relatively small. We
take this behavior as indicative of the dividing line between
almost sure stability and instability as suggested in theorem
3.3. Once again, therefore, these simulation results seem to
predict over what range of burst exponents, γ, and response
exponents, s, we can expect these systems to be almost sure
asymptotically stable.

The simulation results in figures 2 and 3 support theorem
3.3’s assertion regarding a tradeoff between the system’s re-
sponse exponent, s, and the dropout process’ burst expo-
nent, γ. This suggests a strategy for reconfiguring the con-
trol law in wireless networked control systems. It is well
known that radio communication channels with Ralyeigh
fading can be modeled as two state Markov chains whose
two states represent the channel state [14]. The channel
state can be detected quickly by monitoring the signal to
noise ratio (SNR) at the receiver. From the SNR, one may
compute the bit error rate and thereby predict the dropout
rate expected at the receiver. What this means is that the
channel state and the channel’s dropout parameter can be
observed and may be used by the control application to re-
configure its controller and thereby guarantee the almost
sure stability of the process, even if the channel state ran-
domly changes according to a Markov chain.

A simple simulation was devised to test this idea. We as-
sume a dropout process whose dropout parameter λ switches
between 0.01 and 0.1 according to a two-state Markov chain.
The Markov chain state, q is either q1 = GOOD with λ = 0.01
and q2 = BAD with λ = 0.1. The transition probability
Pr (qi : qj) is 0.99 if i = j and is 0.01 if i �= j. The sys-
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Figure 3: Simulation results where the dropout rate
was held to λ = 0.1 and the response exponent, s, for
the system was varied between −1.5 and −.1.

tem under study has a state xk that satisfies the following
difference equation

xk+1 =

⎧⎨
⎩

5xk +wk if dk = 1 (dropout)
0.75xk +wk if dk = 0 and q = GOOD

0.5xk + wk if dk = 0 and q = BAD

where wk = 1
k0.8 . In this case, the control system’s gain is a

function of the channel state. The top plot in figure 4 shows
a state trajectory for this system. This system is almost
surely asymptotically stable since the pulses due to packet
dropouts grow less frequent as time increases. As a point
of comparison, the second plot in figure 4 shows the state
trajectory of a system in which the control gain is indepen-
dent of channel state. In particular, we let xk = 0.75xk+wk

when dk = 0, regardless of the channel condition. For this
case, one sees very large pulses (some on the order of 104)
arbitrarily far out in time. So without this channel aware
switching the system loses almost sure asymptotic stability.

5. MULTI-HOP NETWORKS
The results in section 3 pertain to a networked control

system in which the feedback communication channel has
a single hop. The last section suggested that if the burst
exponent of this single hop is too small, then we can mod-
ify the controller to still assure closed-loop stability. We
may, however, also consider this from the standpoint of con-
trolling the network. In other words, for a given response
exponent, how might we reconfigure the network to enforce
the sufficient stability condition in theorem 3.3? This sec-
tion examines that question with regard to a multi-hop com-
munication network (rather than single-hop). In particular,
we use a probabilistic extension of the network calculus to
identify an optimization problem whose solution yields the
burst exponents of individual network links whose end-to-
end quality of service enforces the almost sure stability con-
dition in theorem 3.3.

Consider a networked control system whose feedback in-
formation is transported over the network shown in figure
5. This network consists of N wireless nodes connected in
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switch on channel state.
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Figure 5: Traffic flow through N forwarding nodes

series. The first node receives sensor data and transports
this over a multi-hop network to a destination node that is
connected to the control system’s actuator.

Rather than assuming that each link’s dropout process is
Bernoulli, we adopt the viewpoint used in probabilistic ex-
tensions of the network calculus [15] where each link provides
its arriving packets with a statistical service curve. Using re-
cent results in [1], we use these link service curves to identify
a network statistical service curve and then show that this
network service curve results in an end-to-end dropout pro-
cess that has exponentially bounded burstiness. The main
finding is that the network’s burst exponent can be related
back to burst exponents for each link in the network. This
relationship takes the form of a constraint on the link burst
exponents which guides the reconfiguration of the overall
network. The following subsections first review some basic
results in [1] regarding statistical service curves. We then go
on to use these results to characterize the network’s burst
exponent.

Probabilistic Network Calculus: The network calcu-
lus [2, 3, 7] uses a min-plus algebra to relate the end-to-end
quality of service (latency) in deterministic networks to the
QoS of each link. Our problem needs a probabilistic exten-
sion of the network calculus that relates the burstiness of
each link to the network’s end-to-end burstiness [15]. If one
uses the techniques in [15] to bound end-to-end network la-
tency, one finds that this bound grows as O(N3) where N is
the number of network nodes. A recent alternative approach
[1] allows one to obtain an upper bound on a network’s la-
tency that grows as O(N logN). The following discussion
uses this later method to bound the network’s burst expo-
nent. The method makes use of statistical service curves

To define a statistical service curve, it will be useful to
introduce some notational conventions. In particular, we let

(x)+ = max(0, x) where x is any real number. We let x∧y =
min{x, y} for any real x and y. Given a function S(·) : Z →
R, we let Sδ be the function where Sδ(k) = S(k)+δk. Given
two functions A(·) : Z → R and S(·) : Z → R, we define the
min-plus convolution of A and S as the function A ∗ S that
takes values

(A ∗ S)(k) = inf
0≤�≤k

{A(k − �) + S(�)} (27)

for all k ≥ 0. With these notational conventions, we can
now introduce the concept of a statistical service curve.

Consider a network node whose input is a stochastic pro-
cess A = {A(k)}∞k=0 called the arrival process. A(k) denotes
the total number of packets received by the node over the
time interval [0, k]. We let the output of the node be a
stochastic process D = {D(k)}∞k=0 called the departure pro-
cess. D(k) represents the total number of packets that have
departed the node over the interval [0, k]. Given a function
S(·) : Z → R, we say that S is a statistical service curve for
the node provided for any real σ > 0,

Pr {D(k) < (A ∗ (S − σ)+)(k)} < ε(σ) (28)

where ε(·) : R → R is a non-increasing function called the
error function.

Theorem 1 in [1] characterizes the network service curve
for the network shown in figure 5. Assuming that node i
for i = 1, 2, . . . , N provides a statistical service curve Si(·) :
Z → R with error function εi(·), then for any δ > 0, the
function

Snet = S1 ∗ S2
−δ ∗ S3

−2δ ∗ · · · ∗ SN
(N−1)δ (29)

is a statistical service curve for the network with an error
function

εnet(σ) = inf
σ1+···+σN=σ

[
εN (σN ) +

N−1∑
j=1

∫ ∞

σj

εj(u)du

]
. (30)

The proof for the above result will be found in [1].
Network Burst Exponent: We now use the result in

equations (29) and (30) to bound the network’s end-to-end
burst exponent. We start by showing that a single node
with a statistical service curve will have a dropout process
that has exponentially bounded burstiness. The proof of
this assertion requires the following technical lemma.

Lemma 5.1. if S(k) = ((1 − ρ)k)+ for all k and A(k) is
such that A(k + �)−A(k) < �, then for all k

(A ∗ (S − σ)+)(k) ≥ (A(k)− (ρk + σ))+ . (31)

Proof. We use the bound (A(k+�)−A(k)< �) to bound
the min-plus convolution,

(A ∗ (S − σ)+)(k)

= inf
0≤�≤k

{A(k − �) + ((1− ρ)�− σ)+}
= inf

0≤�≤k
{A(k) + (A(k − �)−A(k)) + ((1− ρ)�− σ)+}

≥ inf
0≤�≤k

{A(k)− �+ ((1− ρ)�− σ)+}
≥ inf

0≤�≤k

{
(A(k)− (ρ�+ σ))+

}
= (A(k)− (ρk + σ))+ .

The lemma follows since this holds for all k ≥ 0.
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We use lemma 5.1 to establish the following theorem. This
theorem asserts under relatively mild assumptions that if the
wireless node provides a statistical service curve with error
function e−γσ, then the dropout process has exponentially
bounded burstiness with the same error function.

Theorem 5.2. Consider a node with arrival process A(k)
and departure process D(k). Suppose there exist constants
0 < ρ < 1 and γ > 0 such that for all σ > 0, the node
provides a statistical service curve S(k) = ((1−ρ)k)+ to the
arrival process with error function ε(σ) = e−γσ. Then the
dropout process d0,k = A(k)−D(k) is (ρ, γ)-EBB.

Proof. Under the assumptions we know that

Pr {D(k) < (A ∗ (S − σ)+)(k)} < e−γσ.

Equation (31) implies that the following events satisfy

{D(k) < (A(k)− (ρk + σ))+} ⊂ {D(k) < (A ∗ (S − σ)+)(k)} .
So the probability of the left hand event must be less than
the probability of the right hand event which is, in turn, less
than e−γσ, thereby completing the proof.

Theorem 5.2 can now be used to establish the main result
of this section. Return to the network shown in figure 5
and assume that this is the feedback channel used by the
networked control system in equation (4). Further assume
that the ith node in this network (i = 1, 2, . . . , N) provides
a statistical service curve Si(k) = ((1 − ρi)k)+ with error

function εi(σ) = e−γiσ for all σ > 0, some γi > 0 and some
ρi > − log β

logα−log β
. From theorem 1 in [1], we know that the

network service curve, Snet, in equation (29) has the error
function

εnet(σ) = inf
σ1+···+σN=σ

[
e−γNσN +

N−1∑
j=1

1

δγj
e−γjσj

]

for any δ > 0. We can select a specific partition of the delays
σi =

σ
N

so that

εnet(σ) ≤
[
e−γNσ/N +

N−1∑
j=1

1

δγj
e−γjσ/N

]
.

Since the network gives the arrival process into the first
node a statistical service curve Snet, we know from theorem
5.2 that the end-to-end dropout process has exponentially
bounded burstiness. In addition to this, theorem 3.3 sug-
gests that for a given response exponent, s, the end-to-end
process burst exponent, γnet, should be greater than

γ∗ =
logα− log β

s
.

So we need to select the individual link exponents, γi for
i = 1, 2, . . . , N such that the error function εnet(σ) is less

than the burst error function e−γ∗σ. If this is done we expect
the networked control system to remain almost sure stable.
In other words, we need to select the link exponents γi so
that

εnet(σ) ≤
[
e−γNσ/N +

N−1∑
j=1

1

δγj
e−γjσ/N

]
≤ e−γ∗σ (32)

In light of theorem 3.3, if the end-to-end ρ of the network’s
service curve still satisfies the required bound in equation

(14), then equation (32) represents an inequality constraint
on the burst exponents of each link, that must be satisfied
to assure the almost sure stability of the networked control
system.

We suggest that the inequality in equation (32) can be
used to adaptively reconfigure the wireless nodes in the net-
work. Consider a wireless radio node in which a single mes-
sage packet consists of M information bits. For this packet
to be successfully received, all M information bits must be
received. Assume that the node transmits L > M bits at
R bits/second with power w. If the bit error rate is known
then we can compute the probability that M information
bits will be received within a specified deadline D > LR. If
this probability is too small we can take steps to decrease
the bit error rate (increase broadcast power) or we can in-
crease the bit transmission rate R. In either case one may,
within realistic limits, formulate an optimization problem
whose solution would generate a set of link burst exponents
that satisfy the inequality constraint in equation (32). The
decision variable in this problem would be either the link’s
bit rate or transmission power.

For example, consider a scenario in which the radio nodes
adjust their transmitted bit rate, Ri, for i = 1, 2, . . . , N .
Let E(Ri) denote the energy each node expends in trans-
mitting a packet at this bit rate. We may then pose the fol-
lowing problem that seeks to minimize the summed energy
of all network nodes subject to the end-to-end burstiness
constraint required to achieve almost sure stability. This
optimization problem could take the form,

minimize
∑N

i=1 E(Ri)
with respect to: R1, R2, · · · , RN

subject to: Ri < Ri, (i = 1, 2, . . . , N)[
e−γNσ/N +

∑N−1
j=1

1
δγj e

−γjσ/N
]
≤ e−γ∗σ

where γi (the link’s burst exponent) is a function of the
node’s transmission rate Ri, Ri is an upper bound on the
ith node’s maximum allowable transmission rate, and δ is a
tuning parameter.

This section has suggested how probabilistic extensions of
the network calculus might be used in conjunction with the-
orem 3.3 to adaptively reconfigure wireless networks to en-
sure almost sure stability in networked control systems. The
basic approach involves using the network calculus to form
an optimization problem whose solution minimizes overall
network energy consumption while ensuring the link trans-
mission rates satisfy a bound on the end-to-end burstiness
of the network. The resulting optimization problem appears
to be separable so that any one of a number of distributed
optimization algorithms might be used to solve this problem
[12, 5, 13].

6. CONCLUDING REMARKS
This paper studied the almost sure stability of discrete-

time linear systems under dropout processes that have expo-
nentially bounded burstiness. The main finding is theorem
3.3 which provides a sufficient characterization for almost
sure stability in systems whose driven response decays to
zero at an arbitrarily slow rate. The sufficient condition es-
tablishes a tradeoff between the system’s rate of decay and
the dropout process’ burst exponent. Preliminary simula-
tion experiments suggest that the bound in theorem 3.3 is
reasonably tight.
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Theorem 3.3 suggests a method by which one can adap-
tively reconfigure a networked control system to maintain
almost sure stability over wireless networks with random
dropouts. If, for instance, one has no control over the wire-
less channel, then it may be possible to adjust the controller
to increase the system’s rate of decay for a bounded class
of inputs. This may be used to compensate for temporary
increases in dropout burstiness. Another approach for re-
configuring the system focuses on the links in a multi-hop
network. Using results from the probabilistic network cal-
culus we identified a constraint on the network’s burst ex-
ponents that could be used to guide the adaptation of link
bit rates to try and meet the almost sure stability conditions
presented in theorem 3.3.

The results in this paper, therefore, suggest a promis-
ing direction for adaptively reconfiguring a wireless sensor-
actuator network to guarantee the almost sure stability of
the controlled process. The results in theorem 3.3 provide
guidance on how to adjust either the control application or
the network’s communication infrastructure to achieve these
goals.

7. ACKNOWLEDGEMENT
The authors acknowledge the partial financial support of

the National Science Foundation NSF-CNS-0931195.

8. REFERENCES
[1] F. Ciucu, A. Burchard, and J. Liebeherr. Scaling

properties of statistical end-to-end bounds in the
network calculus. Information Theory, IEEE
Transactions on, 52(6):2300–2312, 2006.

[2] R. Cruz. A calculus for network delay. I. Network
elements in isolation. Information Theory, IEEE
Transactions on, 37(1):114–131, 1991.

[3] R. Cruz. A calculus for network delay, part II:
Network analysis. IEEE Transactions on Information
theory, 37(1):132–141, 1991.

[4] H. Deng, M. Krstic, and R. Williams. Stabilization of
stochastic nonlinear systems driven by noise of
unknown covariance. IEEE Transactions on
Automatic Control, 46(8):1237–1253, 2001.

[5] B. Johansson, M. Rabi, and M. Johansson. A
randomized incremental subgradient method for
distributed optimization in networked systems. SIAM
Journal on Optimization, 20(3):1157–1170, 2009.

[6] K. Koumpis, L. Hanna, M. Andersson, and
M. Johansson. Wireless industrial control and
monitoring beyond cable replacement. In Proceedings
of the 2nd PROFIBUS International Conference. 2005

[7] J.-Y. Le Boudec and P. Thiran. Network Calculus: A
Theory of Deterministic Queuing Systems for the
Internet, volume 2050 of Lecture notes in computer
science. Springer, 2001.

[8] Q. Ling and M. Lemmon. Soft real-time scheduling of
networked control systems with dropouts governed by
a Markov chain. In American Control Conference,
2003. Proceedings of the 2003, volume 6, pages
4845–4850. IEEE, 2003.

[9] Q. Ling and M. Lemmon. A necessary and sufficient
feedback dropout condition to stabilize quantized
linear control system with bounded noise. to appear in
IEEE Transactions on Automatic Control, 2010.

[10] A. Matveev and A. Savkin. Comments on” control
over noisy channels” and relevant negative results.
IEEE Transactions on Automatic Control,
50(12):2105–2110, 2005.

[11] L. Montestruque and P. Antsaklis. Stability of
model-based networked control systems with
time-varying transmission times. IEEE Transactions
on Automatic Control, 49(9), 2004.

[12] A. Nedic and A. Ozdaglar. Distributed subgradient
methods for multi-agent optimization. IEEE
Transactions on Automatic Control, 54(1):48–61, 2009.

[13] P. Wan and M. Lemmon. Distributed network utility
maximization using event-triggered augmented
lagrangian methods. In Proceedings of the American
Control Conference, 2009.

[14] H. Wang and N. Moayeri. Finite-state Markov
channel–a useful model for radio communication
channels. IEEE Transactions on Vehicular Technology,
44(1):163–171, 1995.

[15] O. Yaron and M. Sidi. Performance and stability of
communication networks via robust exponential
bounds. IEEE/ACM Transactions on Networking
(TON), 1(3):385, 1993.

309




