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Distributed systems in practice
Motivation and examples

Enterprise computing / Enterprise Architecture
Modern distributed systems

2 Phase Commit – Transactions (Dec. 3, 2007)
Transactional exchanges
2PC
3PC

Data Replication (Dec. 10, 2007)
Data replication models
Data replication systems

Web services (Dec. 17, 2007)
SOAP, WSDL, UDDI / Service Oriented Architecture
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and as a complement …
Building a distributed system with embedded 
devices and sensors

René Müller (Dec 7., 2007)

Modular architectures and distribution
Jan Rellermeyer (Dec. 14., 2007)

Exercises (paper) will be distributed during the 
lecture - due one week later
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References
References to use (and read):

For 2PC and 3PC 
• Concurrency Control and Recovery in Database 

Systems (Bernstein, Hadzilacos, Goodman) 
http://research.microsoft.com/~philbe/ccontrol/

For replication: same & slides

For web services: slides and supporting material
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A prelude to 
Courses in the Distributed Systems Master Track:

Enterprise Application Integration
Web Services and Service Oriented Architectures
Distributed algorithms
Sensor networks
P2P systems
…
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Motivation and examples
Enterprise Architecture



©IKS, ETH Zürich. 7

Enterprise architecture at Credit Suisse
Multiple backends, multiple frontends, flexible composition

Graphic courtesy of Claus Hagen, Stephen Murer and Hanspeter Uebelbacher
of Credit Suisse
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Understanding the layers
To support a client, the system 
needs to have a presentation 
layer through which the user can 
submit operations and obtain a 
result. 
The application logic establishes 
what operations can be 
performed over the system and 
how they take place. It takes care 
of enforcing the business rules 
and establish the business 
processes. 
The resource manager deals with 
the organization (storage, 
indexing, and retrieval) of the 
data necessary to support the 
application logic. This is typically a 
database but it can also be any 
other data management system.

Presentation logic

Application Logic

Resource Manager

2-5 years Application
(system’slogic)

1-2 years Clients and 
External interface
(presentation, access channels)

~10 years Data management systems
(operational and strategic data)
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Understanding the context

Scale-up

Scale-out

Diagrams courtesy of Jim Gray, Microsoft

•Scale up is based on using a bigger 
computer as the load increases. This 
requires to use parallel computers (SMP) 
with more and more processors.
•Scale out is based on using more 
computers as the load increases instead 
of using a bigger computer.
•Both are usually combined! Scale out 
can be applied at any level of the scale 
up.
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Understanding the applications

ASPASP SSLSSL
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Cache ServerCache Server

Basket/Ad/SurplusBasket/Ad/Surplus

Receipt/FulfillmentReceipt/Fulfillment

Monitor and cacheMonitor and cache

ASPASP SSLSSL
FARM BFARM B

Games/Music Games/Music VideosVideos

Comp/SoftComp/Soft BooksBooks MusicMusic

SQL Product ServerSQL Product Server
ASP File ServerASP File Server

Search ServersSearch Servers Search ServersSearch Servers

55 2222 55 22

Diagram courtesy of Robert Barnes, Microsoft
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Motivation and examples
Modern distributed systems
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Distribution at the different layers

Presentation logic

Application Logic

Resource Manager

Client/Server

Separated application logic Any combination thereof

Data distribution or replication



©IKS, ETH Zürich. 15

A game of boxes and arrows
Each box represents a part of the 
system.
Each arrow represents a connection 
between two parts of the system.
The more boxes, the more modular 
the system: more opportunities for 
distribution and parallelism. This 
allows encapsulation, component 
based design, reuse.
The more boxes, the more arrows: 
more sessions (connections) need to 
be maintained, more coordination is 
necessary. The system becomes more 
complex to monitor and manage.
The more boxes, the greater the 
number of context switches and 
intermediate steps to go through 
before one gets to the data. 
Performance suffers considerably.
System designers try to balance the 
capacity of the computers involved 
and the advantages and 
disadvantages of the different 
architectures.

There is no problem in system 
design that cannot be solved by 

adding a level of indirection. 
There is no performance 

problem that cannot be solved 
by removing a level of 

indirection.
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Architectures (1): 1 tier architectures
The presentation layer, application 
logic and resource manager are built 
as a monolithic entity.
Users/programs access the system 
through display terminals but what is 
displayed and how it appears is 
controlled by the server. (This are the 
“dumb” terminals).
This was the typical architecture of 
mainframe applications, offering 
several advantages:

no forced context switches in the 
control flow (everything happens 
within the system),
all is centralized, managing and 
controlling resources is easier,
the design can be highly 
optimized by blurring the 
separation between layers.

This is not as unfashionable as one 
may think: network computing is 
based on similar ideas!

1-tier architecture

Server
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Architecture (2): 2 tier architectures
As computers became more 
powerful, it was possible to move the 
presentation layer to the client. This 
has several advantages:

Clients are independent of each 
other: one could have several 
presentation layers depending 
on what each client wants to do.
One can take advantage of the 
computing power at the client 
machine.
It introduces the concept of API 
(Application Program Interface). 
An interface to invoke the system 
from the outside. It also allows to 
think about federating these 
systems by linking several of 
them.
The resource manager only sees 
one client: the application logic. 
This greatly helps with 
performance since there are no 
connections/sessions to 
maintain.

2-tier architecture

Server
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Architecture (3): 3 tier architectures
In a 3 tier system, the three layers are 
fully separated. 
For some people, a middleware based 
system is a 3 tier architecture. This is 
a bit oversimplified but conceptually 
correct since the underlying systems 
can be treated as black boxes. In fact, 
3 tier makes only sense in the context 
of middleware systems (otherwise 
the client has the same problems as 
in a 2 tier system!).
We will see examples of this 
architecture when concrete 
middleware systems are discussed.
A 3 tier systems has the same 
advantages as a middleware system 
and also its disadvantages. 
In practice, things are not as simple 
as they seem … there are several 
hidden layers that are not necessarily 
trivial: the wrappers.

3-tier architecture



©IKS, ETH Zürich. 19

A real 3 tier middleware based system ...
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The Web as software layer ...
The WWW suddenly opened up 
software systems that had 
remained hidden within the IT 
organization of a company
It is not that new types of 
interactions were possible. 
Behind the WWW there is the 
same client/server model as in 
basic RPC. However, the WWW 
made everything much easier, 
cheaper and efficient

integration at the level of 
user interface became 
possible
services could be accessed 
from anywhere in the world
the clients could now be not 
just an internal or selected 
user but anybody with a 
browser

Branch 1 Branch 2

ap
p 

se
rv

er
 1

ap
p 

se
r v

er
 1

’

wrappers

Front end

us
er

 
pr

og
ra

m

us
er

 
pr

og
ra

m

us
er

 
pr

og
ra

m

us
er

 
pr

og
ra

m

MI
DD

LE
W

AR
E

WEB SERVER

Browser



©IKS, ETH Zürich. 21

… on top of existing systems
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Business to Business (B2B)
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Motivation and examples
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Basic middleware: RPC
One cannot expect the 
programmer to implement a 
complete infrastructure for every 
distributed application. Instead, 
one can use an RPC system (our 
first example of low level 
middleware)
What does an RPC system do?

Hides distribution behind 
procedure calls
Provides an interface 
definition language (IDL) to 
describe the services
Generates all the additional 
code necessary to make a 
procedure call remote and to 
deal with all the 
communication aspects
Provides a binder in case it 
has a distributed name and 
directory service system

CLIENT
call to remote procedure

CLIENT stub procedure
Bind
Marshalling
Send Communication 

module

Client process

Communication 
module

Dispatcher
(select
stub)

SERVER stub procedure
Unmarshalling
Return

SERVER
remote procedure Server process
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What can go wrong here? INVENTORY 
CONTROL CLIENT
Lookup_product
Check_inventory
IF supplies_low
THEN 

Place_order
Update_inventory

...

Products
databaseDB

MS Inventory
and order
databaseDB

MS

New_product
Lookup_product
Delete_product
Update_product

Place_order
Cancel_order

Update_inventory
Check_inventory

Server 3 (inventory)Server 2 (products)

RPC is a point to point protocol in the sense 
that it supports the interaction between 
two entities: the client and the server
When there are more entities interacting 
with each other (a client with two servers,
a client with a server and the server with
a database), RPC treats the calls as 
independent of each other. 
However, the calls are not
independent
Recovering from partial system
failures is very complex. For
instance, the order was placed but
the inventory was not updated, 
or payment was made but the
order was not recorded …
Avoiding these problems using
plain RPC systems is very
cumbersome
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Transactional RPC
The limitations of RPC can 
be resolved by making RPC 
calls transactional. In 
practice, this means that 
they are controlled by a 
2PC protocol 
As before, an intermediate 
entity is needed to run 2PC 
(the client and server could 
do this themselves but it is 
neither practical nor 
generic enough)
This intermediate entity is 
usually called a 
transaction manager (TM) 
and acts as intermediary in 
all interactions between 

l   d 

database

DBMS

client

server

database

DBMS

server

TM

TMTM
TP

monitor

XA XA
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Basic TRPC (making calls)

Client
BOT
…

Service_call
…

Client stub
Get tid
from TM

Add tid to
call

Server

Service 
procedure

Server stub
Get tid
register with

the TM
Invoke service
return

Transaction Manager (TM)
Generate tid
store context for tid

Associate server to tid

1 2

3

4

5

©IKS, ETH Zürich. 28

Basic TRPC (committing calls)

Client
...
Service_call
…
EOT

Client stub

Send to TM
commit(tid)

ServerServer stub
Participant
in 2PC

Transaction Manager (TM)
Look up tid

Run 2PC with all servers
associated with tid

Confirm commit

1

3

2
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What we will see next
2 Phase Commit

Consistency across a distributed system (data 
replication)

Extending RPC/RMI to Internet scale systems
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2PC-3PC:
Basics of transaction processing
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Transaction Processing
Why is transaction processing relevant?

Most of the information systems used in businesses are transaction 
based (either databases or TP-Monitors). The market for transaction 
processing is many tens billions of dollars per year
Not long ago, transaction processing was used mostly in large 
companies (both users and providers). This is no longer the case
(CORBA, WWW, Commodity TP-Monitors, Internet providers, 
distributed computing)
Transaction processing is not just database technology, it is core 
distributed systems technology

Why distributed transaction processing?
It is an accepted, proven, and tested programming model and 
computing paradigm for complex applications
The convergence of many technologies (databases, networks, 
workflow management, ORB frameworks, clusters of workstations …) 
is largely based on distributed transactional processing
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From business to transactions
A business transaction usually involves an exchange between two or more 
entities (selling, buying, renting, booking …).
When computers are considered, these business transactions become 
electronic transactions:

The ideas behind a business transaction are intuitive. These same ideas 
are used in electronic transactions.
Electronic transactions open up many possibilities that are unfeasible with 
traditional accounting systems.

BUYER SELLER
TRANSACTION

STATE STATE STATE

book-keeping
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The problems of electronic transactions
Transactions are a great idea:

Hack a small, cute program and that’s it.

Unfortunately, they are also a complex idea:
From a programming point of view, one must be able to encapsulate the 
transaction (not everything is a transaction).
One must be able to run high volumes of these transactions (buyers want 
fast response, sellers want to run many transactions cheaply).
Transactions must be correct even if many of them are running 
concurrently (= at the same time over the same data).
Transactions must be atomic. Partially executed transactions are almost 
always incorrect (even in business transactions).
While the business is closed, one makes no money (in most business). 
Transactions are “mission critical”.
Legally, most business transactions require a written record. So do 
electronic transactions.
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What is a transaction?
Transactions originated as “spheres of control” in which to encapsulate 

certain behavior of particular pieces of code.
A transaction is basically a set of service invocations, usually from a 
program (although it can also be interactive).
A transaction is a way to help the programmer to indicate when the 
system should take over certain tasks (like semaphores in an operating 
system, but much more complicated).
Transactions help to automate many tedious and complex operations:

record keeping,
concurrency control,
recovery,
durability,
consistency.

It is in this sense that transactions are considered ACID (Atomic, 
Consistent, Isolated, and Durable).
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Transactional properties 
These systems would have been very difficult to build without the concept of 

transaction. To understand why, one needs to understand the four key 
properties of a transaction:

ATOMICITY: necessary in any distributed system (but also in centralized 
ones). A transaction is atomic if it is executed in its entirety or not at all.

CONSISTENCY: used in database environments. A transactions must 
preserve the data consistency.

ISOLATION: important in multi-programming, multi-user environments. A 
transaction must execute as if it were the only one in the system.

DURABILITY: important in all cases. The changes made by a transaction 
must be permanent (= they must not be lost in case of failures).
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Transactional properties
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Transactional atomicity
Transactional atomicity is an “all or nothing” property: either the entire 
transaction takes place or it does not take place at all.
A transaction often involves several operations that are executed at 
different times (control flow dependencies). Thus, transactional atomicity 
requires a mechanism to eliminate partial, incomplete results (a recovery
protocol).

consistent
database

inconsistent
database

Txn

Failure

RECOVERY
MANAGER

database
log

Txn

consistent
database

inconsistent
database

consistent
database

Failure
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Transactional isolation
Isolation addresses the problem of ensuring correct results even when 
there are many transactions being executed concurrently over the same 
data.
The goal is to make transactions believe there is no other transaction in 
the system (isolation).
This is enforced by a concurrency control protocol, which aims at 
guaranteeing serializability.

consistent
database

consistent
database

Txn 1

Txn 2
inconsistent

database

consistent
database

Txn 1 Txn 2 consistent
database

consistent
database

Txn 1
Txn 2

CONCURRENCY
CONTROL
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Transactional consistency
Concurrency control and recovery protocols are based on a strong
assumption: the transaction is always correct.
In practice, transactions make mistakes (introduce negative salaries, 
empty social security numbers, different names for the same person …). 
These mistakes violate database consistency.
Transaction consistency is enforced through integrity constraints:

Null constrains: when an attribute can be left empty.
Foreign keys: indicating when an attribute is a key in another table.
Check constraints: to specify general rules (“employees must be either 
managers or technicians”).

Thus, integrity constraints acts as filters determining whether a 
transaction is acceptable or not.
NOTE: integrity constraints are checked by the system, not by the 
transaction programmer.
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Transactional durability
Transactional system often deal with valuable information. There must be 
a guarantee that the changes introduced by a transaction will last.
This means that the changes introduced by a transaction must survive 
failures (if you deposit money in your bank account, you don’t want the 
bank to tell you they have lost all traces of the transaction because there 
was a disk crash).
In practice, durability is guaranteed by using replication: database 
backups, mirrored disks.
Often durability is combined with other desirable properties such as 
availability:

Availability is the percentage of time the system can be used for its 
intended purpose (common requirement: 99.86% or 1 hour a month of 
down time).
Availability plays an important role in many systems. Consider, for 
instance, the name server used in a CORBA implementation.
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Atomic commitment:
2PC-3PC
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Atomic Commitment

The
Consensus
Problem

2 Phase
Commit

3 Phase
Commit

Applications
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Atomic Commitment
Properties to enforce:

AC1 = All processors that reach a decision reach the 
same one (agreement, consensus).
AC2 = A processor cannot reverse its decision.
AC3 = Commit can only be decided if all processors 
vote YES (no imposed decisions).
AC4 = If there are no failures and all processors voted 
YES, the decision will be to commit (non triviality).
AC5 = Consider an execution with normal failures. If 
all failures are repaired and no more failures occur 
for sufficiently long, then all processors will 
eventually reach a decision (liveness).
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Simple 2PC Protocol and its correctness
PROTOCOL:

Coordinator send VOTE-REQ to all 
participants.
Upon receiving a VOTE-REQ, a 
participant sends a message with 
YES or NO (if the vote is NO, the 
participant aborts the transaction 
and stops).
Coordinator collects all votes:

All YES = Commit and send 
COMMIT to all others.
Some NO = Abort and send 
ABORT to all which voted YES.

A participant receiving COMMIT 
or ABORT messages from the 
coordinator decides accordingly 
and stops.

CORRECTNESS:
The protocol meets the 5 AC 

conditions (I - V):
ACI = every processor decides 
what the coordinator decides (if 
one decides to abort, the 
coordinator will decide to abort).
AC2 = any processor arriving at a 
decision “stops”.
AC3 = the coordinator will decide 
to commit if all decide to commit 
(all vote YES).
AC4 = if there are no failures and 
everybody votes YES, the decision 
will be to commit.
AC5 = the protocol needs to be 
extended in case of failures (in 
case of timeout, a site may need 
to “ask around”).
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Timeout Possibilities

COORDINATOR

send
VOTE-REQ

wait
for votes

send
COMMIT

send
ABORT

COMMIT

ABORT

all vote YES

some vote NO
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Timeout Possibilities

PARTICIPANT

wait for
VOTE-REQ

wait for
decision

ABORT

COMMITvote YES

vote NO

ABORT
received

COMMIT
received
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Timeout and termination 
In those three waiting periods:

If the coordinator times-out 
waiting for votes: it can decide to 
abort (nobody has decided 
anything yet, or if they have, it 
has been to abort)
If a participant times-out waiting 
for VOTE-REQ: it can decide to 
abort (nobody has decided 
anything yet, or if they have, it 
has been to abort)
If a participant times-out waiting 
for a decision: it cannot decide 
anything unilaterally, it must ask 
(run a Cooperative Termination 
Protocol). If everybody is in the 
same situation no decision can be 
made: all processors will block. 
This state is called uncertainty 
period

When in doubt, ask. If anybody has 
decided, they will tell us what the 
decision was:
There is always at least one 
processor that has decided or is 
able to decide (the coordinator 
has no uncertainty period). Thus, 
if all failures are repaired, all 
processors will eventually reach a 
decision
If the coordinator fails after 
receiving all YES votes but before 
sending any COMMIT message: 
all participants are uncertain and 
will not be able to decide 
anything until the coordinator 
recovers. This is the blocking 
behavior of 2PC (compare with 
the impossibility result discussed 
previously)
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Recovery and persistence
Processors must know their 

state to be able to tell 
others whether they have 
reached a decision. This 
state must be persistent: 

Persistence is achieved by 
writing a log record. This 
requires flushing the log 
buffer to disk (I/O).
This is done for every state 
change in the protocol.
This is done for every 
distributed transaction.
This is expensive!

When sending VOTE-REQ, 
the coordinator writes a 
START-2PC log record (to 
know the coordinator).
If a participant votes YES, it 
writes a YES record in the 
log BEFORE it send its vote. 
If it votes NO, then it writes 
a NO record.
If the coordinator decides to 
commit or abort, it writes a 
COMMIT or ABORT  record 
before sending any 
message.
After receiving the 
coordinator’s decision, a 
participant writes its own 
decision in the log.
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Linear 2PC
Linear 2PC commit exploits a particular network 
configuration to minimize the number of messages:

YES

...

YES

YES

COM
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Linear 2PC
The total number of messages is 2n instead of 3n, but 
the number of rounds is 2n instead of 3

YES

YES

NO NO

NO NO
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3 Phase Commit Protocol
2PC may block if the coordinator fails 

after having sent a VOTE-REQ to 
all processes and all processes 
vote YES. It is possible to reduce 
the window of vulnerability even 
further by using a slightly more 
complex protocol (3PC).

In practice 3PC is not used. It is too 
expensive (more than 2PC) and 
the probability of blocking is 
considered to be small enough to 
allow using 2PC instead.

But 3PC is a good way to understand 
better the subtleties of atomic 
commitment

We will consider two versions of 3PC:
One capable of tolerating only 
site failures (no communication 
failures). Blocking occurs only 
when there is a total failure 
(every process is down). This 
version is useful if all participants 
reside in the same site.
One capable of tolerating both 
site and communication failures 
(based on quorums). But blocking 
is still possible if no quorum can 
be formed.
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Blocking in 2PC
Why does a process block in 2PC?

If a process fails and everybody 
else is uncertain, there is no way 
to know whether this process has 
committed or aborted (NOTE: the 
coordinator has no uncertainty 
period. To block the coordinator 
must fail).
Note, however, that the fact that 
everybody is uncertain implies 
everybody voted YES!
Why, then, uncertain processes 
cannot reach a decision among 
themselves?

The reason why uncertain process 
cannot make a decision is that 
being uncertain does not mean 
all other processes are uncertain. 
Processes may have decided and 
then failed. To avoid this 
situation, 3PC enforces the 
following rule:

NB rule: No operational process 
can decide to commit if there are 
operational processes that are 
uncertain.

How does the NB rule prevent 
blocking?  
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Avoiding Blocking in 3PC
The NB rule guarantees that if anybody is uncertain, 

nobody can have decided to commit. Thus, when 
running the cooperative termination protocol, if a 
process finds out that everybody else is uncertain, 
they can all safely decide to abort.
The consequence of the NB rule is that the 
coordinator cannot make a decision by itself as in 
2PC. Before making a decision, it must be sure that 
everybody is out of the uncertainty area. Therefore, 
the coordinator, must first tell all processes what is 
going to happen: (request votes, prepare to commit, 
commit). This implies yet another round of 
messages!
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3PC Coordinator

bcast
vote-req

wait
for votes

ABORT

COMMIT bcast
commit

bcast
abort

bcast
pre-commit

wait
for ACKs
*

Possible time-out actions

all vote YES

some vote NO

all ACKs
received
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3PC Participant

wait for
vote-req

ABORT

COMMIT
wait for

pre-commit
send
ACK

wait for
commit

Possible time-out actions

vote YES

abort
received

vote NO

pre-commit
received

commit
received
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3PC and Knowledge (using the NB rule)
3PC is interesting in that the 

processes know what will happen 
before it happens:
Once the coordinator reaches the 
“bcast pre-commit”, it knows the 
decision will be to commit.
Once a participant receives the 
pre-commit message from the 
coordinator, it knows that the 
decision will be to commit.

Why is the extra-round of messages 
useful?
The extra round of messages is 
used to spread knowledge across 
the system. They provide 
information about what is going 
on at other processes (NB rule).

The NB rule is used when time-outs 
occur (remember, however, that 
there are no communication 
failures):
If coordinator times out waiting 
for votes = ABORT.
If participant times out waiting 
for vote-req = ABORT.
If coordinator times out waiting 
for ACKs = ignore those who did 
not sent the ACK! (at this stage 
everybody has agreed to commit).
If participant times out waiting 
for pre-commit = still in the 
uncertainty period, ask around.
If participant times out waiting 
for commit message = not 
uncertain any more but needs to 
ask around!
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Persistence and recovery in 3PC
Similarly to 2PC, a process has to 

remember its previous actions to 
be able to participate in any 
decision. This is accomplished by 
recording every step in the log:
Coordinator writes “start-3PC”
record before doing anything. It 
writes an “abort” or “commit”
record before sending any abort 
or commit message.
Participant writes its YES vote to 
the log before sending it to the 
coordinator. If it votes NO, it 
writes it to the log after sending 
it to the coordinator. When 
reaching a decision, it writes it in 
the log (abort or commit).

Processes in 3PC cannot 
independently recover unless 
they had already reached a 
decision or they have not 
participated at all:
If the coordinator recovers and 
finds a “start 3PC” record in its log 
but no decision record, it needs to 
ask around to find out what the 
decision was. If it does not find a 
“start 3PC”, it will find no records 
of the transaction, then it can 
decide to abort.
If a participant has a YES vote in 
its log but no decision record, it 
must ask around. If it has not 
voted, it can decide to abort.
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Termination Protocol
Elect a new coordinator.
New coordinator sends a “state 
req” to all processes. participants 
send their state (aborted, 
committed, uncertain, 
committable).
TR1 = If some “aborted” received, 
then abort.
TR2 = If some “committed”
received, then commit.
TR3 = If all uncertain, then abort.
TR4 = If some “committable” but 
no “committed” received, then 
send “PRE-COMMIT” to all, wait 
for ACKs and send commit 
message. 

TR4 is similar to 3PC, have we 
actually solved the problem?
Yes, failures of the participants 
on the termination protocol can 
be ignored. At this stage, the 
coordinator knows that 
everybody is uncertain, those 
who have not sent an ACK have 
failed and cannot have made a 
decision. Therefore, all remaining 
can safely decide to commit after 
going over the pre-commit and 
commit phases.
The problem is when the new 
coordinator fails after asking for 
the state but before sending any 
pre-commit message. In this case, 
we have to start all over again.
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Partition and total failures
This protocol does not tolerate 

communication failures:
A site decides to vote NO, but its 
message is lost.
All vote YES and then a partition 
occurs. Assume the sides of the 
partition are A and B and all 
processes in A are uncertain and 
all processes in B are 
committable. When they run the 
termination protocol, those in A 
will decide to abort and those in B 
will decide to commit.
This can be avoided is quorums 
are used, that is, no decision can 
be made without having a 
quorum of processes who agree 
(this reintroduces the possibility 
of blocking, all processes in A will 
block).

Total failures require special 
treatment, if after the total 
failure every process is still 
uncertain, it is necessary to find 
out which process was the last on 
to fail. If the last one to fail is 
found and is still uncertain, then 
all can decide to abort.
Why? Because of partitions. 
Everybody votes YES, then all 
processes in A fail. Processes in B 
will decide to commit once the 
coordinator times out waiting for 
ACKs. Then all processes in B fail. 
Processes in A recover. They run 
the termination protocol and 
they are all uncertain. Following 
the termination protocol will lead 
them to abort.
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2PC in Practice
2PC is  a protocol used in many applications from 
distributed systems to Internet environments
2PC is not only a database protocol, it is used in many 
systems that are not necessarily databases but, 
traditionally, it has been associated with 
transactional systems
2PC appears in a variety of forms: distributed 
transactions, transactional remote procedure calls, 
Object Transaction Services, Transaction Internet 
Protocol …
In any of these systems, it is important to remember 
the main characteristic of 2PC: if failures occur the 
protocol may block. In practice, in many systems, 
blocking does not happen but the outcome is not 
deterministic and requires manual intervention
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ORB

SOFTWARE BUS (ORB)

Application Objects Common Facilities

Common Object Services

naming events security transactions

...
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Object Transaction Service
The OTS provides transactional guarantees to the 
execution of invocations between different 
components of a distributed application built on top 
of the ORB
The OTS is fairly similar to a TP-Monitor and provides 
much of the same functionality discussed before for 
RPC and TRPC, but in the context of the CORBA 
standard
Regardless of whether it is a TP-monitor or an OTS, 
the functionality needed to support transactional 
interactions is the same:

transactional protocols (like 2PC)
knowing who is participating
knowing the interface supported by each 
participant
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Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

Assume App A wants to update its database and also that in B

©Gustavo Alonso, ETH Zurich. 64

Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

BEGIN
TXN
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Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

Register
DB

OTS now knows
that there is database

behind App A
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Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

TXN(1)
… but the transaction does not commit
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Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B
Call

B txn(1)
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Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

Register
DB

OTS now knows
that there is database

behind App B
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Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

TXN(1)… but the transaction does not commit
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Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

COMMIT
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Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

2PC 2PC
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OTS Sequence of Messages
DB A APP A OTS APP B DB Bbegin

register
TXN

invoke

register
TXN

commit
prepare prepare

vote yes vote yes
commit commit
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Data replication:
Replication models

©IKS, ETH Zürich. 74

Introduction to Database Replication
What is database replication
The advantages of database replication
A taxonomy of replication strategies:

Synchronous
Asynchronous
Update everywhere
Primary copy

Discussion on the various replication strategies.



©IKS, ETH Zürich. 75

Database Replication
Why replication?

PERFORMANCE: Location 
transparency is difficult to 
achieve in a distributed 
environment. Local accesses are 
fast, remote accesses are slow. If 
everything is local, then all 
accesses should be fast.
FAULT TOLERANCE: Failure 
resilience is also difficult to 
achieve. If a site fails, the data it 
contains becomes unavailable. By 
keeping several copies of the data 
at different sites, single site 
failures should not affect the 
overall availability.
APPLICATION TYPE: Databases 
have always tried to separate 
queries form updates to avoid 
interference. This leads to two 
different application types OLTP 
and OLAP, depending on whether 
they are update or read intensive.

NETWORK

DB DB

Replication is a common strategy 
in data management: RAID 
technology (Redundant Array of 
Independent Disks), Mirror sites 
for web pages, Back up 
mechanisms (1-safe, 2-safe, 
hot/cold stand by) 
Here we will focus our attention 
on replicated databases but 
many of the ideas we will discuss 
apply to other environments as 
well. 
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Remote access to data?

DATA

Zurich London New York Tokyo

LOAD
RESPONSE

TIME
CRITICAL
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Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

LOAD RESPONSE
TIME

CRITICAL
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How to replicate data?
There are two basic parameters to select when 
designing a replication strategy: where and when.
Depending on when the updates are propagated:

Synchronous (eager)
Asynchronous (lazy)

Depending on where the updates can take place:
Primary Copy (master)
Update Everywhere (group)

Sync

Async

master group
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Synchronous Replication
Synchronous replication propagates any changes to 
the data immediately to all existing copies. 
Moreover, the changes are propagated within the 
scope of the transaction making the changes. The 
ACID properties apply to all copy updates.

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit
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Synchronous Replication

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50

DATA

Zurich

Price = $ 50

DATA IS CONSISTENT AT ALL SITES
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Synchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

A SITE WANTS TO UPDATE THE PRICE ...
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Synchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

… IT FIRST CONSULTS WITH EVERYBODY ELSE ...
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Synchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

… AN AGREEMENT IS REACHED ...
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Synchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 100 Price = $ 100 Price = $ 100 Price = $ 100

… THE PRICE IS UPDATED AND PROCESSING CONTINUES.
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Asynchronous Replication
Asynchronous replication first executes the updating 
transaction on the local copy. Then the changes are 
propagated to all other copies. While the 
propagation takes place, the copies are inconsistent 
(they have different values).
The time the copies are inconsistent is an adjustable 
parameter which is application dependent.

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit
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Asynchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

DATA IS CONSISTENT AT ALL SITES
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Asynchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

A SITE WANTS TO UPDATE THE PRICE ...
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Asynchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 100 Price = $ 50 Price = $ 50

THEN IT UPDATES THE PRICE LOCALLY AND
CONTINUES PROCESSING (DATA IS NOT CONSISTENT!)...



©IKS, ETH Zürich. 89

Asynchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 100 Price = $ 100 Price = $ 100 Price = $ 50

THE UPDATE IS EVENTUALLY PROPAGATED TO ALL
SITES (PUSH, PULL MODELS)
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Update Everywhere
With an update everywhere approach, changes can 
be initiated at any of the copies. That is, any of the 
sites which owns a copy can update the value of the 
data item

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit
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Update Everywhere 

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

ALL SITES ARE ALLOWED TO UPDATE THEIR COPY
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Primary Copy
With a primary copy approach, there is only one copy 
which can be updated (the master), all others 
(secondary copies) are updated reflecting the 
changes to the master.

Site 1 Site 2 Site 3 Site 4

Site 1 Site 2 Site 3 Site 4
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Primary Copy

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

ONLY ONE SITE IS ALLOWED TO DO UPDATES,
THE OTHER ARE READ ONLY COPIES
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Forms of replication
Synchronous

Advantages:
No inconsistencies (identical 
copies)
Reading the local copy yields the 
most up to date value
Changes are atomic 

Disadvantages: A transaction has to 
update all sites (longer execution 
time, worse response time)

Asynchronous
Advantages: A transaction is always 
local (good response time)
Disadvantages:

Data inconsistencies
A local read does not always 
return the most up to date value
Changes to all copies are not 
guaranteed
Replication is not transparent

Update everywhere
Advantages:

Any site can run a transaction
Load is evenly distributed 

Disadvantages:
Copies need to be synchronized 

Primary Copy
Advantages:

No inter-site synchronization is 
necessary (it takes place at the 
primary copy)
There is always one site which 
has all the updates

Disadvantages:
The load at the primary copy can 
be quite large
Reading the local copy may not 
yield the most up to date value



©IKS, ETH Zürich. 95

Replication Strategies

Synchronous
(eager)

Asynchronous
(lazy)

Primary copy Update everywhere

synchronous
primary copy 

synchronous
update everywhere

asynchronous
update everywhere

asynchronous
primary copy 

The previous ideas can be combined into 4 different replication strategies:
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Replication Strategies

Sy
nc

hr
on

ou
s

A
sy

n c
hr

on
o u

s

Primary copy Update everywhere

Advantages:
Updates not coordinated
No inconsistencies

Disadvantages:
Longest response time 
Only useful with few updates
Local copies can only be read

Advantages:
No inconsistencies
Elegant (symmetrical solution)

Disadvantages:
Long response times
Updates need to be coordinated

Advantages:
No coordination necessary
Short response times

Disadvantages:
Local copies are not up to date
Inconsistencies

Advantages:
No centralized coordination
Shortest response times

Disadvantages:
Inconsistencies
Updates can be lost 
(reconciliation)
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Replication (Ideal)

Synchronous
(eager)

Asynchronous
(lazy)

Primary copy Update everywhere

Globally correct
Remote writes

Globally correct
Local writes

Inconsistent reads Inconsistent reads
Reconciliation
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Replication (Practical)

Synchronous
(eager)

Asynchronous
(lazy)

Primary copy Update everywhere

Too Expensive
(usefulness?)

Too expensive
(does not scale)

Feasible Feasible in some
applications
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Summary - I
Replication is used for performance and fault 
tolerant purposes.
There are four possible strategies to implement 
replication solutions depending on whether it is 
synchronous or asynchronous, primary copy or 
update everywhere.
Each strategy has advantages and disadvantages 
which are more or less obvious given the way they 
work.
There seems to be a trade-off between correctness 
(data consistency) and performance (throughput and 
response time).
The next step is to analyze these strategies in more 
detail to better understand how they work and 
where the problems lie.
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Database Replication Strategies
Database environments
Managing replication
Technical aspects and correctness/performance 
issues of each replication strategy:

Synchronous - primary copy
Synchronous - update everywhere
Asynchronous - primary copy
Asynchronous - update everywhere
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Basic Database Notation
A user interacts with the 
database by issuing read and 
write operations.
These read and write operations 
are grouped into transactions 
with the following properties:

Atomicity: either all of the 
transaction is executed or 
nothing at all.

Consistency: the transaction 
produces consistent changes.

Isolation: transactions do not 
interfere with each other.

Durability: Once the transaction 
commits, its changes remain.

User

Database

BoT
r(x) r(y) r (z) w(x) w(y)

EoT

x   y
z

Transaction
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Isolation
Isolation is guaranteed by a 
concurrency control protocol.
In commercial databases, this is 
usually 2 Phase Locking (2PL):

conflicting locks cannot 
coexist (writes conflict with 
reads and writes on the same 
item)
Before accessing an item, the 
item must be locked.
After releasing a lock, a 
transaction cannot obtain any 
more locks.

User A

Database

BoT
r(x) r(y) r (z) w(x) w(y)

EoT

x             y

z

Transaction

Write-lock
user A

Write-lock
user A

Read-lock
user A
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Atomicity
A transaction must commit all its 
changes.
When a transaction executes at 
various sites, it must execute an 
atomic commitment protocol, i.e., 
it must commit at all sites or at 
none of them.
Commercial systems use 2 Phase 
Commit:

A coordinator asks everybody 
whether they want to commit
If everybody agrees, the 
coordinator sends a message 
indicating they can all commit

User

Database
A

BoT
r(x) r(y) r (z) w(x) w(y)

EoT

Transaction

Database
B

Database
C

x y z
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Transaction Manager
The transaction manager takes 
care of isolation and atomicity.
It acquires locks on behalf of all 
transactions and tries to come up 
with a serializable execution, i.e., 
make it look like the transactions 
were executed one after the 
other.
If the transactions follow 2 Phase 
Locking, serializability is 
guaranteed. Thus, the scheduler 
only needs to enforce 2PL 
behaviour.

scheduler

Transactions from
different users

Operations from the
different transactions

2 Phase Locking
is enforced

Transactions are
serialized
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Managing Replication
When the data is replicated, we 
still need to guarantee atomicity 
and isolation.
Atomicity can be guaranteed by 
using 2 Phase Commit. This is the 
easy part.
The problem is how to make sure 
the serialization orders are the 
same at all sites, i.e., make sure 
that all sites do the same things 
in the same order (otherwise the 
copies would be inconsistent).

Scheduler A Scheduler B
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Managing Replication
To avoid this, replication 
protocols are used.
A replication protocol 
specifies how the 
different sites must be 
coordinated in order to 
provide a concrete set of 
guarantees.
The replication 
protocols depend on the 
replication strategy 
(synchronous, 
asynchronous, primary 
copy, update 
everywhere).

Scheduler A Scheduler B

Replication

Protocol
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Replication Strategies

Synchronous
(eager)

Asynchronous
(lazy)

Primary copy Update everywhere

synchronous
primary copy 

synchronous
update everywhere

asynchronous
update everywhere

asynchronous
primary copy 

Now we can analyze the advantages and disadvantages of each strategy:
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Cost of Replication

0

10

20

30

40

50

60

0 0.1 0.3 0.5 0.7 0.9 1

System with
50 nodes

Available
CPU

ws
(replication

factor)

Assume a 50 node replicated 
system where a fraction s of the 
data is replicated and w 
represents the fraction of updates 
made (ws = replication factor)
Overall computing power of the 
system:

No performance gain with large 
ws factor (many updates or many 
replicated data items)
Reads must be local to get 
performance advantages.

N
1 w s (N 1)+ ⋅ ⋅ −
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Synchronous - update everywhere
Assume all sites contain the same data.
READ ONE-WRITE ALL

Each sites uses 2 Phase Locking.
Read operations are performed locally.
Write operations are performed at all sites (using a distributed locking 
protocol).

This protocol guarantees that every site will behave as if there were only one 
database. The execution is serializable (correct) and all reads access the 
latest version.

This simple protocol illustrates the main idea behind replication, but it needs 
to be extended in order to cope with realistic environments:
Sites fail, which reduces the availability (if a site fails, no copy can be 
written). 
Sites eventually have to recover (a recently recovered site may not have 
the latest updates).
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Dealing with Site Failures
Assume, for the moment, that there are no 

communication failures. Instead of writing to all 
copies, we could

WRITE ALL AVAILABLE COPIES
READ = read any copy, if time-out, read another copy.
WRITE = send Write(x) to all copies. If one site rejects 
the operation, then abort. Otherwise, all sites not 
responding are “missing writes”.
VALIDATION = To commit a transaction

Check that all sites in “missing writes” are still 
down. If not, then abort the transaction.
Check that all sites that were available are still 
available. If some do not respond, then abort.
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Each site uses 2PL
Read operations are performed 
locally
Write operations involve locking 
all copies of the data item 
(request a lock, obtain the lock, 
receive an acknowledgement)
The transaction is committed 
using 2PC
Main optimizations are based on 
the idea of  quorums (but all we 
will say about this protocol also 
applies to quorums)

SITE A SITE B SITE C

BOT

R(x)

W(x)
Lock Lock

Upd

Upd Upd

... ...

request

ack

change

Synchronous - Update Everywhere Protocol
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Response Time and Messages

centralized database update

T=

T=

replicated database update: 2N messages
2PC

The way replication takes place (one operation at a time),
increases the response time and, thereby, the conflict
profile of the transaction. The message overhead is too
high (even if broadcast facilities are available).
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The Deadlock Problem
Approximated deadlock 
rate:

if the database size remains 
constant, or

if the database size grows 
with the number of nodes.
Optimistic approaches may 
result in too many aborts.

TPS Action_ Time Actions N
4 DB_ Size

2 5 3

2
⋅ ⋅ ⋅

⋅

TPS Action_ Time Actions N
4 DB_ Size

2 5

2

⋅ ⋅ ⋅
⋅

A B C

BOT

R(x)

W(x)
Lock

D

Lock
W(x)

BOT
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Synchronous - update everywhere
Advantages:

No inconsistencies
Elegant (symmetrical solution)

Disadvantages:
Very high number of messages involved
Transaction response time is very long
The system will not scale because of deadlocks (as the 
number of nodes increases, the probability of getting into 
a deadlock gets too high)

Data consistency is guaranteed. Performance may be 
seriously affected with this strategy. The system may also 
have scalability problems (deadlocks). High fault tolerance.
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Synchronous - primary copy
Advantages:

Updates do not need to be coordinated
No inconsistencies, no deadlocks.

Disadvantages:
Longest response time 
Only useful with few updates (primary copy is a 
bottleneck)
Local copies are almost useless
Not used in practice

Similar problems to those of Sync - update everywhere.
Including scalability problems (bottlenecks). Data
consistency is guaranteed. Fault tolerant.
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Async - primary copy protocol
Update transactions are 
executed at the primary 
copy site
Read transactions are 
executed locally
After the transaction is 
executed, the changes are 
propagated to all other sites
Locally, the primary copy 
site uses 2 Phase Locking
In this scenario, there is no 
atomic commitment 
problem (the other sites are 
not updated until later)

SITE A SITE B SITE C

BOT

R(x)

W(x)

Upd

Upd Upd
... ...

change

Txn

EOT

R(x)
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Asynchronous - primary copy
Advantages:

No coordination necessary
Short response times (transaction is local)

Disadvantages:
Local copies are not up to date (a local read will not always 
include the updates made at the local copy)
Inconsistencies (different sites have different values of the 
same data item)

Performance is good (almost same as if no replication). 
Fault tolerance is limited. Data inconsistencies arise. 
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Async - update everywhere protocol
All transactions are 
executed locally
After the transaction is 
executed, the changes 
are propagated to all 
other sites
Locally, a site uses 2 
Phase Locking
In this scenario, there is 
no atomic commitment 
problem (the other sites 
are not updated until 
later)
However, unlike with 
primary copy, updates 
need to be coordinated

SITE A SITE B SITE C

BOT

W(x)

Upd Upd

EOT

BOT

W(x)

EOT
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Async / Update Everywhere

DB 1

DB 3

DB 2

Probability of needing  
reconciliation:

What does it mean to 
commit a transaction 
locally? There is no 
guarantee that a 
committed transaction 
will be valid (it may be 
eliminated if “the other 
value” wins).

TPS Action_ time Actions N
2 DB_ Size

2 3 3⋅ ⋅ ⋅
⋅

X=3 X=5
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Reconciliation
Such problems can be solved using pre-arranged 
patterns:

Latest update win (newer updates preferred over 
old ones) 
Site priority (preference to updates from 
headquarters)
Largest value (the larger transaction is preferred)

or using ad-hoc decision making procedures:
identify the changes and try to combine them
analyze the transactions and eliminate the non-
important ones
implement your own priority schemas
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Asynchronous - update everywhere
Advantages:

No centralized coordination
Shortest response times

Disadvantages:
Inconsistencies
Updates can be lost (reconciliation)

Performance is excellent (same as no replication). High
fault tolerance. No data consistency. Reconciliation is
a tough problem (to be solved almost manually).
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Summary - II 
We have seen the different technical issues 
involved with each replication strategy
Each replication strategy has well defined 
problems (deadlocks, reconciliation, message 
overhead, consistency) related to the way the 
replication protocols work
The trade-off between correctness (data 
consistency) and performance (throughput 
and response time) is now clear
The next step is to see how these ideas are 
implemented in practice
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Data replication:
Data replication systems
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Replication in Practice
Replication scenarios
On Line Transaction Processing (OLTP)
On Line Analytical Processing (OLAP)
Replication in Sybase
Replication in IBM
Replication in Oracle
Replication in Domino (Lotus Notes)
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Replication Scenarios
In practice, replication is used in many different scenarios. Each one has its 
own demands. A commercial system has to be flexible enough to 
implement several of these scenarios, otherwise it would not be 
commercially viable.
Database systems, however, are very big systems and evolve very slowly. 
Most were not designed with replication in mind. Commercial solutions 
are determined by the existing architecture, not necessarily by a sound 
replication strategy. Replication is fairly new in commercial databases! 
The focus on OLTP and OLAP determines the replication strategy in many 
products.
From a practical standpoint, the trade-off between correctness and 
performance seems to have been resolved in favor of performance.
It is important to understand how each system works in order to 
determine whether the system will ultimately scale, perform well, require 
frequent manual intervention ...
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OLTP vs. OLAP
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OLTP

complex
queries

data
Mart

OLTP

OLAP

High performance (Txn/s)
High availability
High fault tolerance
Working with the latest data
On line

OLTP
online

DB

online
DB
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OLAP

online
DB

OLTP

data gathering 
and processing
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complex
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Data storage
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Commercial replication
When evaluating a commercial replication strategy, keep in 

mind:
The customer base (who is going to use it?).
The underlying database (what can the system do?).
What competitors are doing (market pressure).
There is no such a thing as a “better approach”.
The complexity of the problem.

Replication will keep evolving in the future, current systems may 
change radically.
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Sybase Replication Server

Goal of replication: Avoid server bottlenecks by moving data 
to the clients. To maintain performance, asynchronous 
replication is used (changes are propagated only after the 
transaction commits). The changes are propagated on a 
transaction basis (get the replicas up-to-date as quickly as 
possible). Capture of changes is done “off-line”, using the log 
to minimize the impact on the running server.
Applications: OLTP, client/server architectures, distributed 
database environments.
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Sybase Replication Architecture
primary

data log

DATA
MANAGER

LOG
TRANSFER
MANAGER

REPLICATION
SERVER

REPLICATION
SERVER

DATA
MANAGER

replicated
data

asynchronous
stored procedure

synchronous 
stored procedure

(2PC)

decoupled

change detection
wrapping

subscription
data change detection

updates
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Sybase Replication (basics)
Loose consistency (= 
asynchronous). Primary copy.
PUSH model: replication takes 
place by “subscription”. A site 
subscribes to copies of data. 
Changes are propagated from the 
primary as soon as they occur. 
The goal is to minimize the time 
the copies are not consistent but 
still within an asynchronous 
environment (updates are sent 
only after they are committed).
Updates are taken from the log in 
stable storage (only committed 
transactions).
Remote sites update using special 
stored procedures (synchronous 
or a synchronous).
Persistent queues are used to 
store changes in case of 
disconnection.

The Log Transfer Manager
monitors the log of Sybase SQL 
Server and notifies any changes 
to the replication server. It acts as 
a light weight process that 
examines the log to detect 
committed transactions (a 
wrapper). It is possible to write 
your own Log Transfer Manager 
for other systems. When a 
transaction is detected, its log 
records are sent to the:
The Replication Server usually 
runs on a different system than 
the database to minimize the 
load. It takes updates, looks who 
is subscribed to them and send 
them to the corresponding 
replication servers at the remote 
site. Upon receiving these 
changes, a replication server 
applies them at the remote site. 
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Sybase Replication (updates)
Primary copy. All updates must be done at the primary using 

either :
Synchronous stored procedures, which reside at the primary 
and are invoked (RPC) by any site who wants to update. 2 
Phase Commit is used.
Stored procedures for asynchronous transactions: invoked 
locally, but sent asynchronously to the primary for execution. 
If the transaction fails manual intervention is required to fix 
the problem.
It is possible to fragment a table and make different sites the 
primary copy for each fragment.
It is possible to subscribe to selections of tables using WHERE 
clauses.
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IBM Data Propagator

Goal: Replication is seen as part of the “Information 
Warehousing” strategy. The goal is to provide complex views 
of the data for decision-support. The source systems are 
usually highly tuned, the replication system is designed to 
interfere as less as possible with them: replication is 
asynchronous and there are no explicit mechanisms for 
updating.
Applications: OLAP, decision-support, data warehousing, data 
mining.
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IBM Replication (architecture)

DATA
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PROGRAM

Replicated
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UOW change
consistent

change
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IBM Data Propagator (basics)
Asynchronous replication.
No explicit update support 
(primary copy, if anything).
PULL MODEL: (smallest interval 1 
minute) the replicated data is 
maintained by querying either 
the primary data, the change 
table, the consistent change 
table, or any combination of the 
three. The goal is to support 
sophisticated views of the data 
(data warehousing). Pull model 
means replication is driven by the 
recipient of the replica. The 
replica must “ask” for updates to 
keep up-to-date.
Updates are taken from the main 
memory buffer containing log 
entries (both committed and 
uncommitted entries; this is an 
adjustable parameter).

Updates are sent to the primary 
(updates converted into inserts if 
tuple has been deleted, inserts 
converted into updates if tuple
already exists, as in Sybase). The 
system is geared towards 
decision support, replication 
consistency is not a key issue. 
Sophisticated data replication is 
possible (base aggregation, 
change aggregation, time slices 
…)
Sophisticated optimizations for 
data propagation (from where to 
get the data).
Sophisticated views of the data 
(aggregation, time slicing).
Capture/MVS is a separate 
address space monitor, to 
minimize interference it captures 
log records from the log buffer 
area



©IKS, ETH Zürich. 137

IBM Data Propagator
There are two key components in the 

architecture:
Capture:  analyzes raw log 
information from the buffer area 
(to avoid I/O). It reconstructs the 
logical log records and creates a 
“change table” and a 
“transaction table” (a dump of all 
database activity).
Apply Program: takes information 
from the database, the change 
table and the transaction table to 
built “consistent change table” to 
allow consistent retrieval and 
time slicing. It works by 
“refreshing” data (copies the 
entire data source) or “updating”
(copies changes only). It allows 
very useful optimizations (get the 
data from the database directly, 
reconstruct, etc.).

The emphasis is on extracting 
information:
Data Propagator/2 is used to 
subscribe and request data.
It is possible to ask for the state 
of data at a given time (time 
slicing or snapshots).
It is possible to ask for changes:

how many customers have 
been added?
how many customers have 
been removed?
how many customers were 
between 20 and 30 years old?

This is not the conventional idea 
of replication!
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Oracle  Symmetric Replication

Goals: Flexibility. It tries to provide a platform 
that can be tailored to as many applications as 
possible. It provides several approaches to 
replication and the user must select the most 
appropriate to the application. There is no 
such a thing as a “bad approach”, so all of 
them must be supported (or as many as 
possible)
Applications: intended for a wide range of 
applications.
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Oracle Replication (architecture)

DATA
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Oracle  Replication
“DO-IT-YOURSELF” model 
supporting  almost any kind of 
replication (push model, pull 
model), Dynamic Ownership (the 
site designated as the primary 
can change over time), and 
Shared Ownership (update 
anywhere, asynchronously).
One of the earliest 
implementations: Snapshot. This 
was a copy of the database. 
Refreshing was done by getting a 
new copy. 
Symmetric replication: changes 
are forwarded at time intervals 
(push) or on demand (pull).
Asynchronous replication is the 
default but synchronous is also 
possible. 
Primary copy (static / dynamic) or 
update everywhere.

Readable Snapshots: A copy of 
the database. Refresh is 
performed by examining the log 
records of all operations 
performed, determining the 
changes and applying them to 
the snapshot. The snapshot 
cannot be modified but they are 
periodically refreshed 
(complete/fast refreshes)
Writable Snapshots: fast-
refreshable table snapshots but 
the copy can be updated (if 
changes are sent to the master 
copy, it becomes a form of 
asynchronous - update 
everywhere replication). 
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Oracle  Replication (basics)
Replication is based on these two 

ideas:
Triggers: changes to a copy are 
captured by triggers. The trigger 
executes a RPC to a local queue 
and it inserts the changes in the 
queue. These changes take the 
form of an invocation to a stored 
procedure at the remote site. 
These triggers are “deferred” in 
the sense that they work 
asynchronously with respect to 
the transaction
Queues: queues follow a FIFO 
discipline and 2PC is used to 
guarantee the call makes it to the 
queue at the remote site. At the 
remote site, the queue is read 
and the call made in the order 
they arrive.

Dynamic ownership: It is possible 
to dynamically reassign the 
“master copy” to different sites. 
That is, the primary copy can 
move around (doing it well, it is 
then possible to always read and 
write locally)
Shared ownership: (= update 
everywhere!). Conflicts are 
detected by propagating both the 
before and the after image of 
data. When a conflict is detected, 
there are several predefined 
routines that can be 
automatically called or the user 
can write and ad-hoc routine to 
resolve the conflict
Synchronous, update everywhere: 
using the sync -update 
everywhere protocol previosuly
discussed
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Replication in Lotus Notes (Domino) 
Lotus Notes implements asynchronous (lazy), update every-
where replication in an epidemic environment.
Lotus Notes distinguishes between a replica and a copy (a 
snapshot). All replicas have the same id. Each copy has its own 
id.
Lotus allows to specify what to replicate (in addition to replica 
stubs and field level replication) to minimize overhead. 
Replication conflicts are detected and some attempt is made 
at reconciliation (user intervention is usually required).
Lotus Notes is a cooperative environment, the goal is data 
distribution and sharing. Consistency is largely user defined 
and not enforced by the system.
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Replication in Lotus Notes
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Replication in  Lotus Notes 
Notes also allows to specify when to replicate …

.. and in which direction to replicate:

database

forms views
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Data replication:
Additional protocols
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Token Passing Protocol
Replication is used in many applications other 

than databases. For these applications, there is 
a large number of protocols and algorithms 
that can be used to guarantee “correctness”:
The token based protocol is used as an 
example of replication in distributed systems 
to illustrate the problems of fault-tolerance 
and starvation. 



©IKS, ETH Zürich. 147

Distributed Mutual Exclusion
The original protocol was proposed for distributed 
mutual exclusion. It can be used, however, to 
maintain replicated data and to implement the 
notion of dynamic ownership (Oracle replication).

In here, it will be used for the following:
Asynchronous, master copy (dynamic ownership)
The protocol will be used to locate the master copy
Requirements:

there is only one master copy at all times
deadlock free
fault-tolerant
starvation free
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Token Passing (model)

Working assumptions
Communications are by message passing
Sites are fail-stop or may fail to send and receive messages
Failed sites eventually recover (failure detection by time-out)
Network partitions may occur
No duplicate messages and FIFO delivery
Causality enforced by logical clocks (Lamport)

Happen Before Relation 
(1) events in a process are ordered
(2) sending(m)       receiving(m)
(3) if a      b  and b      c,then a      c

Clock condition
(1) each event has a timestamp
(2) succesive events have

increasing timestamps
(3) receiving(m) has a higher 
timestamp than sending(m)
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Basic Protocol (no failures)
Assume no communication or site failures
A node with the token is the master copy
Each site, s, has a pointer, Owner(s), indicating where 
that site believes the master copy is located
The master copy updates locally
Other sites sent their updates following the pointer
When the master copy reassigns the token (the 
master copy moves to another site), the ex-master 
copy readjusts its pointer so it points towards the 
new master copy
For correctness reasons, assume the master copy is 
never reassigned while updates are taking place.
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Basic Protocol (owner)

Owner(s) = k
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Basic Protocol (update)
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Basic Protocol (token change)
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Basic Protocol (update)
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Basic Protocol (token change)
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Basic Protocol (update)
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Basic Protocol (algorithms)
Requesting the master 

copy (s)

IF Owner(s) = s THEN
master copy already in s

ELSE
SEND(request) to 
Owner(s)
RECEIVE(Token)
Owner(s) = s

END (*IF*)

Receiving a request (q)

Receive (request(s))
IF Owner(q) = q THEN

Owner(q) = s
SEND(Token) to s

ELSE
SEND(request(s)) to 
Owner(q)

END (*IF*)
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Failures
If communication failures occur, the token may 

disappear while in transit (message is lost).
First, the loss of the token must be detected
Second, the token must be regenerated
Third, after the regeneration, there must be only one 
token in the system (only one master copy)

To do this, logical clocks are used:
OwnerTime(s) is a logical clock associated with the 
token, it indicates when site s sent or received the 
token
TokenState(s) is the state of the shared resource 
(values associated with the token itself)
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Token Loss Protocol
Assume bounded delay (if a message does not arrive 
after time t, it has been lost). Sites do not fail
When a site sends the token, it sends along its own 
OwnerTime
When a site receives the token, it sets its OwnerTime
to a value greater than that received with the token
From here, it follows that the values of the 
OwnerTime variables along the chain of pointers 
must increase
If, along the chain of pointers, there is a pair of values 
that is not increasing, the token has been lost 
between these two sites and must be regenerated
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Token Loss Protocol
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Detecting Token Loss
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Detecting Token Loss
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Detecting Token Loss
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Regenerating the Token
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Token Recovered
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Token Loss (algorithm 1)
Request (s)
IF Owner(s) = s THEN

already master copy
ELSE

SEND(request(s),OwnerTime(s)) to Owner(s)
Receive(Token,TTime) on Timeout(ReqDelay) ABORT
Owner(s) = s
OwnerTime(s) = TTime + 1
TokenState = Token

END (*IF*)
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Token Loss (algorithm 2)

Receive (request(s),timestamp) FROM p
IF timestamp > OwnerTime(q) THEN (* TOKEN IS LOST *)

SEND(GetToken) TO p
Receive(Token,TTime) FROM p ON Timeout ABORT
Owner(q) = q
OwnerTime(q) = TTime + 1
TokenState = Token

END (*IF*)
IF Owner(q) <> q THEN 

SEND(request(s),timestamp) TO Owner(q)
ELSE

Owner(q) = s
SEND(Token, OwnerTime(q)) TO s      

END (*IF*)
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Site Failures
Sites failures interrupt the chain of pointers (and 
may also result in the token being lost, if the failed 
site had the token)
In this case, the previous algorithm ABORTs the 
protocol
Instead of aborting, and to tolerate site failures, a 
broadcast algorithm can be used to ask everybody 
and find out what has happened in the system
Two “states” are used

TokenReceived: the site has received the token
TokenLoss: a site determines that somewhere in 
the system there are p,q such that Owner(p) = q 
and OwnerTime(p) > OwnerTime(q)
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Chain Loss due to Site Failure
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Chain Loss due to Site Failure
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Chain Loss due to Site Failure
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Chain Loss due to Site Failure
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Token Loss due to Site Failure
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Token Loss due to Site Failure
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Chain Loss due to Site Failure

Owner(s) = k

A

OwnerTime(s)

1

B

4

4 D

3



©IKS, ETH Zürich. 175

Detecting Token Loss in Others
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Detecting Token Loss in Others
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Detecting Token Loss in Others
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Detecting Token Loss in Others
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Regenerating Token in Others
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Regenerating the Token
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Token Recovered
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Broadcast (algorithm)

SITE s: SEND (Bcast) TO all sites
COLLECT replies UNTIL TokenReceived OR TokenLoss
IF TokenReceived THEN

Owner(s) = s
OwnerTime = TTime + 1
TokenState = Token

END (*IF*)
IF TokenLoss THEN

DetectionTime = OwnerTime(q)
SEND(Regenerate, DetectionTime, p) TO q
RESTART

END (*IF*)
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Broadcast Request (algorithm)
Broadcast Request arrives at q from s:
Receive(Bcast)
IF Owner(q) = q THEN

Owner(q) = s
SEND(Token,OwnerTime(q)) TO s

ELSE
SEND(Owner(q),OwnerTime(q)) TO s

END (*IF*)
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Regenerate Token (algorithm)
A request to regenerate the token arrives at q:
Receive(Regenerate, DetectionTime, p)
IF OwnerTime(q) = DetectionTime THEN

SEND(GetToken) TO p
Receive(Token,TTime) FROM p ON Timeout ABORT
Owner(q) = q
OwnerTime(q) = TTime + 1
TokenState = Token

END (*IF*)
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Starvation
Starvation can occur if a request for the token keeps 
going around the system behind the token but it 
always arrives after another request
One way to solve this problem is to make a list of all 
requests, order the requests by timestamp and only 
grant a request when it is the one with the lowest 
timestamp in the list
The list can be passed around with the token and 
each site can keep a local copy of the list that will be 
merged with that arriving with the token (thereby 
avoiding that requests get lost in the pointer chase)
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Web services
Background
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The Web as software layer (N-tier)
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Web Server

Browser
N-tier architectures result from 
connecting several three tier 
systems to each other and/or by 
adding an additional layer to allow 
clients to access the system through 
a Web server
The Web layer was initially external 
to the system (a true additional 
layer); today, it is slowly being 
incorporated into a presentation 
layer that resides on the server side 
(part of the middleware 
infrastructure in a three tier system, 
or part of the server directly in a two 
tier system)
The addition of the Web layer led to 
the notion of “application servers”, 
which was used to refer to 
middleware platforms supporting 
access through the Web
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WWW basics
BROWSER

URL

response
page

INTERNET

WEB SERVER
map URL to CGI script
execute CGI script
get results back (stdout of CGI script)
prepare response page
send page to browser

CGI
script

Existing Middleware Infrastructure

The earliest implementations 
were very simple and built 
directly upon the existing 
systems (client/server based on 
RPC, TP-Monitors, or any other 
form of middleware which 
allowed interaction through a 
programmable client)

the CGI script (or program) 
acted as client in the 
traditional sense (for instance 
using RPC)
the user clicked in a given URL 
and the server invoked the 
corresponding script 
the script executed, produced 
the results and passed them 
back to the server (usually as 
the address of a web page)
the server retrieved the page 
and send it to the browser

Implemented
as a normal client
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Applets and clients
The problem of the using a web 
browser as universal client is that 
it does not do much beyond 
displaying data (it is a thin client):

multiple interactions are 
needed to complete complex 
operations
the same operations must be 
done over and over again for 
all clients
the processing power at the 
client is not used 

By adding a JVM (Java Virtual 
Machine) to the browser, now it 
becomes possible to dynamically 
download the client functionality 
(an applet) every time it is needed
The client becomes truly 
independent of the operating 
system and is always under the 
control of the server

browser
JVM

applet
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1. Get
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Web server as a client of a EAI system
CGI scripts were initially widely 
used as there was no other way 
of connecting the web server 
with the IT system so that it could 
do something beyond sending 
static documents
However, CGI scripts have several 
problems that are not easy to 
solve:

CGI scripts are separate 
processes, requiring 
additional context switches 
when a call is made (and 
thereby adding to the overall 
delay)
Fast-CGI allows calls to be 
made to a single running 
process but it still requires 
two context switches
CGI is really a quick hack not 
designed for performance, 
security, scalability, etc.

Request 1 Request 2

Web server process

CGI script
child process 1

CGI script
child process 2

Call to
underlying
middlewareRequest 1 Request 2

Web server process

CGI script
child process 1

Call to
underlying
middleware

Normal CGI calls

Fast CGI calls
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Servlets
Servlets fulfill the same role as 
CGI scripts: they provide a way to 
invoke a program in response to 
an http request.
However:

Servlets run as threads of the 
Java server process (not 
necessarily the web server) 
not as separate OS processes
unlike CGI scripts, that can be 
written in any language, 
Servlets are always written in 
Java (and are, therefore, 
portable)
can use all the mechanisms 
provided by the JVM for 
security purposes

Request 1 Request 2

Java server process

Servlet
child thread 1

Servlet
child thread 2

Call to
underlying
middleware

th
re

ad
s

Call servlets
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Just one more layer ...
SALES POINT CLIENT
IF no_customer_#
THEN New_customer
ELSE Lookup_customer
Check_inventory
IF enough_supplies
THEN Place_order
ELSE ...

Customer
database

INVENTORY
CONTROL
CLIENT
Lookup_product
Check_inventory
IF supplies_low
THEN 

Place_order
Update_inventory

...

D
BM

S

Products
databaseD

BM
S

Inventory
and order
databaseD

BM
S

New_customer
Lookup_customer
Delete_customer
Update_customer

New_product
Lookup_product
Delete_product
Update_product

Place_order
Cancel_order

Update_inventory
Check_inventory

Server 1

Server 3

Server 2

RPC based system

WEB SERVER

Internet

BROWSER

CGI script call

CGI script call
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Business to Business (B2B)
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Limitations of the WWW
HTTP was originally designed as a 
document exchange protocol 
(request a document, get the 
document, display the 
document). It lacked support for 
client side parameters
Its architecture was originally 
designed with human users in 
mind. The document format 
(HTML) was designed to cope 
with GUI problems not with 
semantics. In EAI, the goal is 
almost always to remove humans 
from the business processes 
(mostly to reduce costs and to 
speed the process up). Strict 
formatting rules and tagging are 
key to exchanging messages 
across heterogeneous systems

Interaction through document 
exchange can be very inefficient 
when the two sides of the 
interaction are programs 
(documents must be created, 
sent, parsed on arrival, 
information extracted, etc.). 
Unfortunately, http does not 
directly support any other form of 
interaction
The initial WWW model was 
heavily biased towards the server 
side: the client (the browser) does 
not do much beyond displaying 
the document. For complex 
applications that meant 

much more traffic between 
client and server
high loads at the server as the 
number of users increases 
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Web Services Architecture
A popular interpretation of Web 
services is based on IBM’s Web 
service architecture based on 
three elements:

1. Service requester: The potential 
user of a service (the client)

2. Service provider: The entity that 
implements the service and offers 
to carry it out on behalf of the 
requester (the server)

3. Service registry: A place where 
available services are listed and 
that allows providers to advertise 
their services and requesters to 
lookup and query for services 
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Main Web Services Standards

UDDI

SOAP

WSDL

The Web service architecture 
proposed by IBM is based on two 
key concepts:

architecture of existing 
synchronous middleware 
platforms
current specifications of 
SOAP, UDDI and WSDL

The architecture has a 
remarkable client/server flavor
It reflects only what can be done 
with

SOAP (Simple Object Access 
Protocol)
UDDI (Universal Description 
and Discovery Protocol)
WSDL (Web Services 
Description Language) 
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The Service Bus
The service bus can be seen as a refactoring of the basic Web service 
architecture, where a higher degree of loose coupling has been added. 

Service Bus
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Benefits of Web services
One important difference with conventional middleware is 
related to the standardization efforts at the W3C that should 
guarantee:

Platform independence 
(Hardware, Operating System)
Reuse of existing networking infrastructure 
(HTTP has become ubiquitous)
Programming language neutrality 
(.NET talks with Java, and vice versa)
Portability across Middleware tools of different Vendors
Web services are “loosely coupled” components that foster 
software reuse
WS technologies should be composable so that they can 
be adopted incrementally
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WS Standards and Specifications

WS-Transactions
WS-Business Activities

SDOOGSA-DAIData Access

WS-Resource FrameworkStateful Resources

WS-EventingWS-NotificationEvent Notification

WS-ReliableMessagingWS-ReliabilityReliable Messaging

WS-MetadataExchange

WS-Management

WS-Trust, WS-Privacy
WS-SecureConversation

WSCDL
WS-Coordination

WS-Policy, SSDL
WS-Addressing

WSDMManagement

WS-Security
SAML, XACMLSecurity

WS-CAFTransactions

BPMLWS-BPELBusiness Processes
WSCIWSCLChoreography

UDDIDiscovery
XML Schema, WSDLDescription

XML, SOAPMessaging
HTTP, IIOP, SMTP, JMSTransport
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Web services
SOAP
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What is SOAP?
The W3C started working on SOAP in 1999. SOAP 1.0 was entirely based on 
HTTP. The current specification is SOAP 1.1 (May 2000) is more generic by 
including other transport protocols. Version 1.2 is at the working draft 
stage.
SOAP 1.1 covers the following four main areas:

A message format for one-way communication describing how a 
message can be packed into an XML document
A description of how a SOAP message (or the XML document that 
makes up a SOAP message) should be transported using HTTP (for 
Web based interaction) or SMTP(for e-mail based interaction)
A set of rules that must be followed when processing a SOAP message 
and a simple classification of the entities involved in processing a 
SOAP message. It also specifies what parts of the messages should be 
read by whom and how to react in case the content is not understood
A set of conventions on how to turn an RPC call into a SOAP message 
and back as well as how to implement the RPC style of interaction 
(how the client makes an RPC call, this is translated into a SOAP 
message, forwarded, turned into an RPC call at the server, the reply of 
the server converted into a SOAP message, sent to the client, and 
passed on to the client as the return of the RPC call)
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The background for SOAP
SOAP was originally conceived as the minimal possible infrastructure 
necessary to perform RPC through the Internet:

use of XML as intermediate representation between systems 
very simple message structure
mapping to HTTP for tunneling through firewalls and using the Web 
infrastructure

The idea was to avoid the problems associated with CORBA’s IIOP/GIOP 
(which fulfilled a similar role but using a non-standard intermediate 
representation and had to be tunneled through HTTP any way)
The goal was to have an extension that could be easily plugged on top of 
existing middleware platforms to allow them to interact through the 
Internet rather than through a LAN as it is typically the case. Hence the 
emphasis on RPC from the very beginning (essentially all forms of 
middleware use RPC at one level or another)
Eventually SOAP started to be presented as a generic vehicle for computer 
driven message exchanges through the Internet and then it was open to 
support interactions other than RPC and protocols other then HTTP. This 
process, however, is only in its very early stages.
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SOAP messages
SOAP is based on message 
exchanges
Messages are seen as envelops 
where the application encloses 
the data to be sent
A message has two main parts:

header: which can be divided 
into blocks 
body: which can be divided 
into blocks

SOAP does not say what to do 
with the header and the body, it 
only states that the header is 
optional and the body is 
mandatory
Use of header and body, however, 
is implicit. The body is for 
application level data. The header 
is for infrastructure level data

SOAP Envelope

SOAP header

Header Block

SOAP Body

Body Block
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From TRPC to SOAP messages

SOAP Envelope

SOAP header

Transactional
context

SOAP Body

Input param 1

Input param 2

Name of Procedure

RPC Request

SOAP Envelope

SOAP header

SOAP Body

Return parameter

Transactional
context

RPC Response (one of the two)

SOAP Envelope

SOAP header

SOAP Body

Fault entry

Transactional
context
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SOAP and HTTP
A binding of SOAP to a 
transport protocol is a 
description of how a 
SOAP message is to be 
sent using that 
transport protocol
The typical binding for 
SOAP is HTTP
SOAP can use GET or 
POST. With GET, the 
request is not a SOAP 
message but the 
response is a SOAP 
message, with POST 
both request and 
response are SOAP 
messages (in version 1.2, 

SOAP EnvelopeSOAP Envelope
SOAP header

Transactional
context

SOAP Body

Input parameter 1

Input parameter 2

Name of Procedure

HTTP POST
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SOAP EnvelopeSOAP Envelope
SOAP header

Transactional
context

SOAP Body

Input parameter 1

Input parameter 2

Name of Procedure

HTTP POST

SOAP EnvelopeSOAP Envelope
SOAP header

Transactional
context

SOAP Body

Return parameter

HTTP Acknowledgement

SERVICE REQUESTER SERVICE PROVIDER

RPC call
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SOAP
engine

All together
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SOAP and the client server model
The close relation between SOAP, RPC and HTTP has two main 
reasons:

SOAP has been initially designed for client server type of 
interaction which is typically implemented as RPC or 
variations thereof
RPC, SOAP and HTTP follow very similar models of 
interaction that can be very easily mapped into each other 
(and this is what SOAP has done)

The advantages of SOAP arise from its ability to provide a 
universal vehicle for conveying information across 
heterogeneous middleware platforms and applications. In 
this regard, SOAP will play a crucial role in enterprise 
application integration efforts in the future as it provides the
standard that has been missing all these years
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A first use of SOAP
Some of the first systems to 
incorporate SOAP as an access 
method have been databases. 
The process is extremely simple:

a stored procedure is 
essentially an RPC interface
Web service = stored 
procedure
IDL for stored procedure = 
translated into WSDL
call to Web service = use 
SOAP engine to map to call to 
stored procedure

This use demonstrates how well 
SOAP fits with conventional 
middleware architectures and 
interfaces. It is just a natural 
extension to them

stored procedure API

Stored procedure interfaces
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Automatic conversion RPC - SOAP

stubs,
runtime
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SOAP system

Serialized
XML doc

Wrap doc
in HTTP
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Web services
WSDL
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What is WSDL?
The Web Services Description Language specification 
is in version 1.1 (March 2001) and currently under 
revision (v1.2 is in the working draft stage)
WSDL 1.1 discusses how to describe the different 
parts that comprise a Web service:

the type system used to describe the interfaces 
(based on XML)
the messages involved in invoking the service
the individual operations that make up the service
the sets of operations that constitute a service
the mapping to a transport protocol for the 
messages
the location where the service resides
groups of locations that can be used to access the 
same service

 l  l d  f  d  h   b d 
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WSDL vs IDL
WSDL can be best understood when we approach it 
as an XML version of an IDL that also covers the 
aspects related to integration through the Internet 
and the added complexity of Web services
An IDL in conventional middleware and enterprise 
application integration platforms has several 
purposes:

description of the interfaces of the services 
provided (e.g., RPC)
serve as an intermediate representation for 
bridging heterogeneity by providing a mapping of 
the native data types to the intermediate 
representation associated to the IDL in question
serve as the basis for development through an IDL 
compiler that produces stubs and libraries that 
can be use to develop the application

 l  d   l d  f  
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Elements of WSDL
WSDL document

Types (type information for the document, e.g., XML Schema)

Message 1 Message 4Message 3Message 2

Operation 1 Operation 3Operation 2

Message 6Message 5

Port Type (abstract service)

Interface 
binding 1

port 1

Interface 
binding 2

port 2

Interface 
binding 3

port 3

Interface 
binding 4

port 4

Service (the actual service in all 
its available implementations)
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Web services
UDDI
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What is UDDI?
The UDDI specification is probably the one that has 
evolved the most from all specifications we have 
seen so far. The latest version is version 3 (July 2002):

version 1 defined the basis for a business service 
registry
version 2 adapted the working of the registry to 
SOAP and WSDL
version 3 redefines the role and purpose of UDDI 
registries, emphasizes the role of private 
implementations, and deals with the problem of 
interaction across private and public UDDI 
registries

Originally, UDDI was conceived as an “Universal 
Business Registry” similar to search engines (e.g., 
Google) which will be used as the main mechanism 
to find electronic services provided by companies 
worldwide  This triggered a significant amount of 
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Role of UDDI
Services offered 
through the Internet to 
other companies 
require much more 
information that a 
typical middleware 
service
In many middleware 
and EAI efforts, the 
same people develop 
the service and the 
application using the 
service
This is obviously no 
longer the case and, 
therefore, using a 
service requires much 



©IKS, ETH Zürich. 217

UDDI data
An entry in an UDDI registry is an XML document composed of different 
elements (labeled as such in XML), the most important ones being:

businessEntity : is a description of the organization that provides the 
service.
businessService: a list of all the Web services offered by the business 
entity.
bindingTemplate: describes the technical aspects of the service being 
offered.
tModel: (“technical model”)is a generic element that can be used to 
store addotional information about the service, typically additional 
technical information on how to use the service, conditions for use, 
guarantees, etc.

Together, these elements are used to provide:
white pages information: data about the service provider (name, 
address, contact person, etc.)
yellow pages information: what type of services are offered and a list 
of the different services offered
green pages information: technical information on how to use each 
one of the services offered, including pointers to WSDL descriptions of 
the services (which do not reside in the UDDI registry)
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Summary of the data in UDDI



©IKS, ETH Zürich. 219

UDDI and WSDL
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Summary UDDI
The UDDI specification is rather complete and encompasses many aspects 
of an UDDI registry from its use to its distribution across several nodes and 
the consistency of the data in a distributed registry
Most UDDI registries are private and typically serve as the source of 
documentation for integration efforts based on Web services
UDDI registries are not necessarily intended as the final repository of the 
information pertaining Web services. Even in the “universal” version of 
the repository, the idea is to standardize basic functions and then built 
proprietary tools that exploit the basic repository. That way it is possible 
to both tailor the design and maintain the necessary compatibility across 
repositories
While being the most visible part of the efforts around Web services, UDDI 
is perhaps the least critical due to the complexities of B2B interactions 
(establishing trust, contracts, legal constrains and procedures, etc.) . The 
ultimate goal is, of course, full automation, but until that happens a long 
list of problems need to be resolved and much more standardization is 
necessary.



©IKS, ETH Zürich. 221

Web services
Service Oriented Architectures
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What is SOA

SOA = Services Oriented Architecture
Services = another name for large scale components wrapped 
behind a standard interface (Web services although not only)
Architecture = SOA is intended as a way to build applications and 
follows on previous ideas such as software bus, IT backbone, or 
enterprise bus

The part that it is not in the name
Loosely-coupled = the services are independent of each other, 
heterogeneous, distributed
Message based = interaction is through message exchanges rather 
than through direct calls (unlike Web services, CORBA, RPC, etc.)
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The novelty behind SOA
The concept of SOA is not new:

Message oriented middleware
Message brokers
Event based architectures

The current context is different
Emergence of standard interfaces (Web services)
Emphasis on simplifying development (automatic)
Use of complex underlying infrastructure (containers, middleware
stacks, etc.)

Interest in SOA arises from a number of reasons:
Basic technology in place
More clear understanding of distributed applications
The key problem is integration not programming
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The need for SOA
Most companies today have a large, heterogeneous IT infrastructure that:

Keeps changing
Needs to evolve to adopt new technology
Needs to be connected of that of commercial partners
Needs to support an increasing amount of purposes and goals

This was the field of Enterprise Application Integration using systems like 
CORBA or DCOM. However, solutions until now suffered from:

Tightly integrated systems
Vendor lock-in (e.g., vendor stacks)
Technology lock-in (e.g., CORBA)
Lack of flexibility and limitations when new technology arises (e.g., 
Internet)

SOA is an attempt to build on standards (web services) to reduce the cost 
of integration
It introduces very interesting possibilities:

Development by composition
Large scale reuse
Frees developers from “lock-in” effects of various kinds
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SOA vs. Web services
Web services are about 

Interoperability
Standardization
Integration across heterogeneous, distributed systems

Service Oriented Architectures are about:
Large scale software design
Software Engineering
Architecture of distributed systems

SOA is possible but more difficult without Web services
SOA introduces some radical changes to software:

Language independence (what matters is the interface)
Event based interaction (no longer synchronous models)
Message based exchanges (no RPC)
Composition and orchestration
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An integration backbone
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Enterprise architecture at Credit Suisse
Multiple backends, multiple frontends, flexible composition

Graphic courtesy of Claus Hagen, Stephen Murer and Hanspeter Uebelbacher
of Credit Suisse


