
Distributed Systems in practice
HS 2007
Gustavo Alonso
Institute for Pervasive Computing
Computer Science Department
Swiss Federal Institute of Technology (ETHZ)
alonso@inf.ethz.ch
http://www.iks.inf.ethz.ch/

©IKS, ETH Zürich. 2

Distributed systems in practice
Motivation and examples

Enterprise computing / Enterprise Architecture
Modern distributed systems

2 Phase Commit – Transactions (Dec. 3, 2007)
Transactional exchanges
2PC
3PC

Data Replication (Dec. 10, 2007)
Data replication models
Data replication systems

Web services (Dec. 17, 2007)
SOAP, WSDL, UDDI / Service Oriented Architecture

©IKS, ETH Zürich. 3

and as a complement …
Building a distributed system with embedded
devices and sensors

René Müller (Dec 7., 2007)

Modular architectures and distribution
Jan Rellermeyer (Dec. 14., 2007)

Exercises (paper) will be distributed during the
lecture - due one week later

©IKS, ETH Zürich. 4

References
References to use (and read):

For 2PC and 3PC
• Concurrency Control and Recovery in Database

Systems (Bernstein, Hadzilacos, Goodman)
http://research.microsoft.com/~philbe/ccontrol/

For replication: same & slides

For web services: slides and supporting material

©IKS, ETH Zürich. 5

A prelude to
Courses in the Distributed Systems Master Track:

Enterprise Application Integration
Web Services and Service Oriented Architectures
Distributed algorithms
Sensor networks
P2P systems
…

©IKS, ETH Zürich. 6

Motivation and examples
Enterprise Architecture

©IKS, ETH Zürich. 7

Enterprise architecture at Credit Suisse
Multiple backends, multiple frontends, flexible composition

Graphic courtesy of Claus Hagen, Stephen Murer and Hanspeter Uebelbacher
of Credit Suisse

©IKS, ETH Zürich. 8

Understanding the layers
To support a client, the system
needs to have a presentation
layer through which the user can
submit operations and obtain a
result.
The application logic establishes
what operations can be
performed over the system and
how they take place. It takes care
of enforcing the business rules
and establish the business
processes.
The resource manager deals with
the organization (storage,
indexing, and retrieval) of the
data necessary to support the
application logic. This is typically a
database but it can also be any
other data management system.

Presentation logic

Application Logic

Resource Manager

2-5 years Application
(system’slogic)

1-2 years Clients and
External interface
(presentation, access channels)

~10 years Data management systems
(operational and strategic data)

©IKS, ETH Zürich. 9

INTEGRATION TIER

ACCESS TIER

CLIENT
TIER

R
E

SO
U

R
C

E
T

IE
R

APP
TIER

wrapper

wrapper

wrapper

db db db

business
object

business
object

business
object

apiapiapi

web
client

java
client

wap
client

web servers, J2EE, CGI
JAVA Servlets API

web servers, J2EE, CGI
JAVA Servlets API

databases, multi-tier systems
backends, mainframes

databases, multi-tier systems
backends, mainframes

system federations, filters
object monitors, MOM

system federations, filters
object monitors, MOM

TP-Monitors, stored procedures
programs, scripts, beans

TP-Monitors, stored procedures
programs, scripts, beans

web and wap browsers
specialized clients (Java, Notes)

SMS ...

web and wap browsers
specialized clients (Java, Notes)

SMS ... C
L

IE
N

T
A

C
C

E
SS

A
PP

IN
T

E
G

R
A

T
IO

N
R

E
SO

U
R

C
E

HTML, SOAP, XML

MOM, HTML, IIOP,
RMI-IIOP, SOAP, XML

MOM, IIOP,
RMI-IIOP, XML

ODBC, JDBC, RPC,
MOM, IIOP, RMI-IIOP

©IKS, ETH Zürich. 10

Understanding the context

Scale-up

Scale-out

Diagrams courtesy of Jim Gray, Microsoft

•Scale up is based on using a bigger
computer as the load increases. This
requires to use parallel computers (SMP)
with more and more processors.
•Scale out is based on using more
computers as the load increases instead
of using a bigger computer.
•Both are usually combined! Scale out
can be applied at any level of the scale
up.

©IKS, ETH Zürich. 11

Understanding the applications

ASPASP SSLSSL
FARM AFARM A

Games/Music Games/Music VideosVideos

Comp/SoftComp/Soft BooksBooks MusicMusic

SQL Product ServerSQL Product Server
ASP File ServerASP File Server

Cache ServerCache Server

Basket/Ad/SurplusBasket/Ad/Surplus

Receipt/FulfillmentReceipt/Fulfillment

Monitor and cacheMonitor and cache

ASPASP SSLSSL
FARM BFARM B

Games/Music Games/Music VideosVideos

Comp/SoftComp/Soft BooksBooks MusicMusic

SQL Product ServerSQL Product Server
ASP File ServerASP File Server

Search ServersSearch Servers Search ServersSearch Servers

55 2222 55 22

Diagram courtesy of Robert Barnes, Microsoft

©IKS, ETH Zürich. 12

PROCESSING LOGIC (PL) DATA MANAGEMENT (DM)

SERVER
MANAGER

DIRECTORY
SERVICES

DATA
FILTERS

REFERENCE
MANAGER

...

TMP
STORAGE

SPACE

IDL
SERVER

TMP
STORAGE

SPACE

TMP
STORAGE

SPACE

IDL
SERVER

IDL
SERVER

...

IMAGES
AND

RAW DATA
NETWORK FILE SYSTEM

DB
SPACE

DB
SPACE

DBMS 1
(Oracle)

DBMS 2
(Oracle)

LESS
RELEVAT

DATA

TAPE
ARCHIVE

FRONT
END

ARCHIVE
MANAGER

(HTTP, RMI)

PRESENTATION LAYER

APPLICATION LAYER

RESOURCE MANAGEMENT LAYER

THIN CLIENT

(HTTP)

WEB BROWSER STREAMCORDER

(HTTP)

HEDC
web server
(Apache)

www.hedc.ethz.ch JAVA CLIENT LOCAL
DB

©IKS, ETH Zürich. 13

Motivation and examples
Modern distributed systems

©IKS, ETH Zürich. 14

Distribution at the different layers

Presentation logic

Application Logic

Resource Manager

Client/Server

Separated application logic Any combination thereof

Data distribution or replication

©IKS, ETH Zürich. 15

A game of boxes and arrows
Each box represents a part of the
system.
Each arrow represents a connection
between two parts of the system.
The more boxes, the more modular
the system: more opportunities for
distribution and parallelism. This
allows encapsulation, component
based design, reuse.
The more boxes, the more arrows:
more sessions (connections) need to
be maintained, more coordination is
necessary. The system becomes more
complex to monitor and manage.
The more boxes, the greater the
number of context switches and
intermediate steps to go through
before one gets to the data.
Performance suffers considerably.
System designers try to balance the
capacity of the computers involved
and the advantages and
disadvantages of the different
architectures.

There is no problem in system
design that cannot be solved by

adding a level of indirection.
There is no performance

problem that cannot be solved
by removing a level of

indirection.

©IKS, ETH Zürich. 16

Architectures (1): 1 tier architectures
The presentation layer, application
logic and resource manager are built
as a monolithic entity.
Users/programs access the system
through display terminals but what is
displayed and how it appears is
controlled by the server. (This are the
“dumb” terminals).
This was the typical architecture of
mainframe applications, offering
several advantages:

no forced context switches in the
control flow (everything happens
within the system),
all is centralized, managing and
controlling resources is easier,
the design can be highly
optimized by blurring the
separation between layers.

This is not as unfashionable as one
may think: network computing is
based on similar ideas!

1-tier architecture

Server

©IKS, ETH Zürich. 17

Architecture (2): 2 tier architectures
As computers became more
powerful, it was possible to move the
presentation layer to the client. This
has several advantages:

Clients are independent of each
other: one could have several
presentation layers depending
on what each client wants to do.
One can take advantage of the
computing power at the client
machine.
It introduces the concept of API
(Application Program Interface).
An interface to invoke the system
from the outside. It also allows to
think about federating these
systems by linking several of
them.
The resource manager only sees
one client: the application logic.
This greatly helps with
performance since there are no
connections/sessions to
maintain.

2-tier architecture

Server

©IKS, ETH Zürich. 18

Architecture (3): 3 tier architectures
In a 3 tier system, the three layers are
fully separated.
For some people, a middleware based
system is a 3 tier architecture. This is
a bit oversimplified but conceptually
correct since the underlying systems
can be treated as black boxes. In fact,
3 tier makes only sense in the context
of middleware systems (otherwise
the client has the same problems as
in a 2 tier system!).
We will see examples of this
architecture when concrete
middleware systems are discussed.
A 3 tier systems has the same
advantages as a middleware system
and also its disadvantages.
In practice, things are not as simple
as they seem … there are several
hidden layers that are not necessarily
trivial: the wrappers.

3-tier architecture

©IKS, ETH Zürich. 19

A real 3 tier middleware based system ...
External clients

connecting logic

control

user
logic

internal
clients

2
tie

r s
ys

te
m

s

Resource
managers

wrappers

middleware

Resource
manager

2 tier system

m
id

dl
ew

ar
e

sy
st

em

External client

©IKS, ETH Zürich. 20

The Web as software layer ...
The WWW suddenly opened up
software systems that had
remained hidden within the IT
organization of a company
It is not that new types of
interactions were possible.
Behind the WWW there is the
same client/server model as in
basic RPC. However, the WWW
made everything much easier,
cheaper and efficient

integration at the level of
user interface became
possible
services could be accessed
from anywhere in the world
the clients could now be not
just an internal or selected
user but anybody with a
browser

Branch 1 Branch 2

ap
p

se
rv

er
 1

ap
p

se
r v

er
 1

’

wrappers

Front end

us
er

pr

og
ra

m

us
er

pr

og
ra

m

us
er

pr

og
ra

m

us
er

pr

og
ra

m

MI
DD

LE
W

AR
E

WEB SERVER

Browser

©IKS, ETH Zürich. 21

… on top of existing systems

Branch 1 Branch 2 Finance Dept.

Yearly balance ? Monthly
average revenue ?

ap
p

se
rv

er
 1

ap
p

se
r v

er
 1

’

wrappers

ap
p

se
rv

er
 2

app server 3

recoverable
queue

Front end

us
er

pr

og
ra

m

us
er

pr

og
ra

m

us
er

pr

og
ra

m

us
er

pr

og
ra

m

Control (load balancing,
cc and rec., replication,
distribution, scheduling,
priorities, monitoring …)

TP-Monitor
environment

TP Client TP Client WEB SERVER

browser

In
te

rn
etCGI scrip calls

©IKS, ETH Zürich. 22

Business to Business (B2B)

Resource 1 Resource 2

Se
rv

ic
e

1

Se
r v

ic
e

2

wrappers

Front end

us
er

pr

og
ra

m

us
er

pr

og
ra

m

us
er

pr

og
ra

m

us
er

pr

og
ra

m

MI
DD

LE
W

AR
E

WEB SERVER

FIREWALL

Resource X Resource Y

Se
rv

ic
e

A

Se
r v

ic
e

B

wrappers

Front end

us
er

pr

og
ra

m

us
er

pr

og
ra

m

us
er

pr

og
ra

m

us
er

pr

og
ra

m

MI
DD

LE
W

AR
E

WEB SERVER

FIREWALL INTERNET

©IKS, ETH Zürich. 23

Motivation and examples

©IKS, ETH Zürich. 24

Basic middleware: RPC
One cannot expect the
programmer to implement a
complete infrastructure for every
distributed application. Instead,
one can use an RPC system (our
first example of low level
middleware)
What does an RPC system do?

Hides distribution behind
procedure calls
Provides an interface
definition language (IDL) to
describe the services
Generates all the additional
code necessary to make a
procedure call remote and to
deal with all the
communication aspects
Provides a binder in case it
has a distributed name and
directory service system

CLIENT
call to remote procedure

CLIENT stub procedure
Bind
Marshalling
Send Communication

module

Client process

Communication
module

Dispatcher
(select
stub)

SERVER stub procedure
Unmarshalling
Return

SERVER
remote procedure Server process

©IKS, ETH Zürich. 25

What can go wrong here? INVENTORY
CONTROL CLIENT
Lookup_product
Check_inventory
IF supplies_low
THEN

Place_order
Update_inventory

...

Products
databaseDB

MS Inventory
and order
databaseDB

MS

New_product
Lookup_product
Delete_product
Update_product

Place_order
Cancel_order

Update_inventory
Check_inventory

Server 3 (inventory)Server 2 (products)

RPC is a point to point protocol in the sense
that it supports the interaction between
two entities: the client and the server
When there are more entities interacting
with each other (a client with two servers,
a client with a server and the server with
a database), RPC treats the calls as
independent of each other.
However, the calls are not
independent
Recovering from partial system
failures is very complex. For
instance, the order was placed but
the inventory was not updated,
or payment was made but the
order was not recorded …
Avoiding these problems using
plain RPC systems is very
cumbersome

©IKS, ETH Zürich. 26

Transactional RPC
The limitations of RPC can
be resolved by making RPC
calls transactional. In
practice, this means that
they are controlled by a
2PC protocol
As before, an intermediate
entity is needed to run 2PC
(the client and server could
do this themselves but it is
neither practical nor
generic enough)
This intermediate entity is
usually called a
transaction manager (TM)
and acts as intermediary in
all interactions between

l d

database

DBMS

client

server

database

DBMS

server

TM

TMTM
TP

monitor

XA XA

©IKS, ETH Zürich. 27

Basic TRPC (making calls)

Client
BOT
…

Service_call
…

Client stub
Get tid
from TM

Add tid to
call

Server

Service
procedure

Server stub
Get tid
register with

the TM
Invoke service
return

Transaction Manager (TM)
Generate tid
store context for tid

Associate server to tid

1 2

3

4

5

©IKS, ETH Zürich. 28

Basic TRPC (committing calls)

Client
...
Service_call
…
EOT

Client stub

Send to TM
commit(tid)

ServerServer stub
Participant
in 2PC

Transaction Manager (TM)
Look up tid

Run 2PC with all servers
associated with tid

Confirm commit

1

3

2

©IKS, ETH Zürich. 29

What we will see next
2 Phase Commit

Consistency across a distributed system (data
replication)

Extending RPC/RMI to Internet scale systems

©IKS, ETH Zürich. 30

2PC-3PC:
Basics of transaction processing

©IKS, ETH Zürich. 31

Transaction Processing
Why is transaction processing relevant?

Most of the information systems used in businesses are transaction
based (either databases or TP-Monitors). The market for transaction
processing is many tens billions of dollars per year
Not long ago, transaction processing was used mostly in large
companies (both users and providers). This is no longer the case
(CORBA, WWW, Commodity TP-Monitors, Internet providers,
distributed computing)
Transaction processing is not just database technology, it is core
distributed systems technology

Why distributed transaction processing?
It is an accepted, proven, and tested programming model and
computing paradigm for complex applications
The convergence of many technologies (databases, networks,
workflow management, ORB frameworks, clusters of workstations …)
is largely based on distributed transactional processing

©IKS, ETH Zürich. 32

From business to transactions
A business transaction usually involves an exchange between two or more
entities (selling, buying, renting, booking …).
When computers are considered, these business transactions become
electronic transactions:

The ideas behind a business transaction are intuitive. These same ideas
are used in electronic transactions.
Electronic transactions open up many possibilities that are unfeasible with
traditional accounting systems.

BUYER SELLER
TRANSACTION

STATE STATE STATE

book-keeping

©IKS, ETH Zürich. 33

The problems of electronic transactions
Transactions are a great idea:

Hack a small, cute program and that’s it.

Unfortunately, they are also a complex idea:
From a programming point of view, one must be able to encapsulate the
transaction (not everything is a transaction).
One must be able to run high volumes of these transactions (buyers want
fast response, sellers want to run many transactions cheaply).
Transactions must be correct even if many of them are running
concurrently (= at the same time over the same data).
Transactions must be atomic. Partially executed transactions are almost
always incorrect (even in business transactions).
While the business is closed, one makes no money (in most business).
Transactions are “mission critical”.
Legally, most business transactions require a written record. So do
electronic transactions.

©IKS, ETH Zürich. 34

What is a transaction?
Transactions originated as “spheres of control” in which to encapsulate

certain behavior of particular pieces of code.
A transaction is basically a set of service invocations, usually from a
program (although it can also be interactive).
A transaction is a way to help the programmer to indicate when the
system should take over certain tasks (like semaphores in an operating
system, but much more complicated).
Transactions help to automate many tedious and complex operations:

record keeping,
concurrency control,
recovery,
durability,
consistency.

It is in this sense that transactions are considered ACID (Atomic,
Consistent, Isolated, and Durable).

©IKS, ETH Zürich. 35

Transactional properties
These systems would have been very difficult to build without the concept of

transaction. To understand why, one needs to understand the four key
properties of a transaction:

ATOMICITY: necessary in any distributed system (but also in centralized
ones). A transaction is atomic if it is executed in its entirety or not at all.

CONSISTENCY: used in database environments. A transactions must
preserve the data consistency.

ISOLATION: important in multi-programming, multi-user environments. A
transaction must execute as if it were the only one in the system.

DURABILITY: important in all cases. The changes made by a transaction
must be permanent (= they must not be lost in case of failures).

©IKS, ETH Zürich. 36

Transactional properties

consistent
database

consistent
database

Transaction

consistent
database

inconsistent
database

Txn

Failure

inconsistent
database

A

C

I

D
consistent
database

consistent
database

Txn

consistent
database

consistent
database

Txn 1

Txn 2
inconsistent

database

system
crash

recovery

recovery

©IKS, ETH Zürich. 37

Transactional atomicity
Transactional atomicity is an “all or nothing” property: either the entire
transaction takes place or it does not take place at all.
A transaction often involves several operations that are executed at
different times (control flow dependencies). Thus, transactional atomicity
requires a mechanism to eliminate partial, incomplete results (a recovery
protocol).

consistent
database

inconsistent
database

Txn

Failure

RECOVERY
MANAGER

database
log

Txn

consistent
database

inconsistent
database

consistent
database

Failure

©IKS, ETH Zürich. 38

Transactional isolation
Isolation addresses the problem of ensuring correct results even when
there are many transactions being executed concurrently over the same
data.
The goal is to make transactions believe there is no other transaction in
the system (isolation).
This is enforced by a concurrency control protocol, which aims at
guaranteeing serializability.

consistent
database

consistent
database

Txn 1

Txn 2
inconsistent

database

consistent
database

Txn 1 Txn 2 consistent
database

consistent
database

Txn 1
Txn 2

CONCURRENCY
CONTROL

©IKS, ETH Zürich. 39

Transactional consistency
Concurrency control and recovery protocols are based on a strong
assumption: the transaction is always correct.
In practice, transactions make mistakes (introduce negative salaries,
empty social security numbers, different names for the same person …).
These mistakes violate database consistency.
Transaction consistency is enforced through integrity constraints:

Null constrains: when an attribute can be left empty.
Foreign keys: indicating when an attribute is a key in another table.
Check constraints: to specify general rules (“employees must be either
managers or technicians”).

Thus, integrity constraints acts as filters determining whether a
transaction is acceptable or not.
NOTE: integrity constraints are checked by the system, not by the
transaction programmer.

©IKS, ETH Zürich. 40

Transactional durability
Transactional system often deal with valuable information. There must be
a guarantee that the changes introduced by a transaction will last.
This means that the changes introduced by a transaction must survive
failures (if you deposit money in your bank account, you don’t want the
bank to tell you they have lost all traces of the transaction because there
was a disk crash).
In practice, durability is guaranteed by using replication: database
backups, mirrored disks.
Often durability is combined with other desirable properties such as
availability:

Availability is the percentage of time the system can be used for its
intended purpose (common requirement: 99.86% or 1 hour a month of
down time).
Availability plays an important role in many systems. Consider, for
instance, the name server used in a CORBA implementation.

©IKS, ETH Zürich. 41

Atomic commitment:
2PC-3PC

©IKS, ETH Zürich. 42

Atomic Commitment

The
Consensus
Problem

2 Phase
Commit

3 Phase
Commit

Applications

©IKS, ETH Zürich. 43

Atomic Commitment
Properties to enforce:

AC1 = All processors that reach a decision reach the
same one (agreement, consensus).
AC2 = A processor cannot reverse its decision.
AC3 = Commit can only be decided if all processors
vote YES (no imposed decisions).
AC4 = If there are no failures and all processors voted
YES, the decision will be to commit (non triviality).
AC5 = Consider an execution with normal failures. If
all failures are repaired and no more failures occur
for sufficiently long, then all processors will
eventually reach a decision (liveness).

©IKS, ETH Zürich. 44

Simple 2PC Protocol and its correctness
PROTOCOL:

Coordinator send VOTE-REQ to all
participants.
Upon receiving a VOTE-REQ, a
participant sends a message with
YES or NO (if the vote is NO, the
participant aborts the transaction
and stops).
Coordinator collects all votes:

All YES = Commit and send
COMMIT to all others.
Some NO = Abort and send
ABORT to all which voted YES.

A participant receiving COMMIT
or ABORT messages from the
coordinator decides accordingly
and stops.

CORRECTNESS:
The protocol meets the 5 AC

conditions (I - V):
ACI = every processor decides
what the coordinator decides (if
one decides to abort, the
coordinator will decide to abort).
AC2 = any processor arriving at a
decision “stops”.
AC3 = the coordinator will decide
to commit if all decide to commit
(all vote YES).
AC4 = if there are no failures and
everybody votes YES, the decision
will be to commit.
AC5 = the protocol needs to be
extended in case of failures (in
case of timeout, a site may need
to “ask around”).

©IKS, ETH Zürich. 45

Timeout Possibilities

COORDINATOR

send
VOTE-REQ

wait
for votes

send
COMMIT

send
ABORT

COMMIT

ABORT

all vote YES

some vote NO

©IKS, ETH Zürich. 46

Timeout Possibilities

PARTICIPANT

wait for
VOTE-REQ

wait for
decision

ABORT

COMMITvote YES

vote NO

ABORT
received

COMMIT
received

©IKS, ETH Zürich. 47

Timeout and termination
In those three waiting periods:

If the coordinator times-out
waiting for votes: it can decide to
abort (nobody has decided
anything yet, or if they have, it
has been to abort)
If a participant times-out waiting
for VOTE-REQ: it can decide to
abort (nobody has decided
anything yet, or if they have, it
has been to abort)
If a participant times-out waiting
for a decision: it cannot decide
anything unilaterally, it must ask
(run a Cooperative Termination
Protocol). If everybody is in the
same situation no decision can be
made: all processors will block.
This state is called uncertainty
period

When in doubt, ask. If anybody has
decided, they will tell us what the
decision was:
There is always at least one
processor that has decided or is
able to decide (the coordinator
has no uncertainty period). Thus,
if all failures are repaired, all
processors will eventually reach a
decision
If the coordinator fails after
receiving all YES votes but before
sending any COMMIT message:
all participants are uncertain and
will not be able to decide
anything until the coordinator
recovers. This is the blocking
behavior of 2PC (compare with
the impossibility result discussed
previously)

©IKS, ETH Zürich. 48

Recovery and persistence
Processors must know their

state to be able to tell
others whether they have
reached a decision. This
state must be persistent:

Persistence is achieved by
writing a log record. This
requires flushing the log
buffer to disk (I/O).
This is done for every state
change in the protocol.
This is done for every
distributed transaction.
This is expensive!

When sending VOTE-REQ,
the coordinator writes a
START-2PC log record (to
know the coordinator).
If a participant votes YES, it
writes a YES record in the
log BEFORE it send its vote.
If it votes NO, then it writes
a NO record.
If the coordinator decides to
commit or abort, it writes a
COMMIT or ABORT record
before sending any
message.
After receiving the
coordinator’s decision, a
participant writes its own
decision in the log.

©IKS, ETH Zürich. 49

Linear 2PC
Linear 2PC commit exploits a particular network
configuration to minimize the number of messages:

YES

...

YES

YES

COM

©IKS, ETH Zürich. 50

Linear 2PC
The total number of messages is 2n instead of 3n, but
the number of rounds is 2n instead of 3

YES

YES

NO NO

NO NO

©IKS, ETH Zürich. 51

3 Phase Commit Protocol
2PC may block if the coordinator fails

after having sent a VOTE-REQ to
all processes and all processes
vote YES. It is possible to reduce
the window of vulnerability even
further by using a slightly more
complex protocol (3PC).

In practice 3PC is not used. It is too
expensive (more than 2PC) and
the probability of blocking is
considered to be small enough to
allow using 2PC instead.

But 3PC is a good way to understand
better the subtleties of atomic
commitment

We will consider two versions of 3PC:
One capable of tolerating only
site failures (no communication
failures). Blocking occurs only
when there is a total failure
(every process is down). This
version is useful if all participants
reside in the same site.
One capable of tolerating both
site and communication failures
(based on quorums). But blocking
is still possible if no quorum can
be formed.

©IKS, ETH Zürich. 52

Blocking in 2PC
Why does a process block in 2PC?

If a process fails and everybody
else is uncertain, there is no way
to know whether this process has
committed or aborted (NOTE: the
coordinator has no uncertainty
period. To block the coordinator
must fail).
Note, however, that the fact that
everybody is uncertain implies
everybody voted YES!
Why, then, uncertain processes
cannot reach a decision among
themselves?

The reason why uncertain process
cannot make a decision is that
being uncertain does not mean
all other processes are uncertain.
Processes may have decided and
then failed. To avoid this
situation, 3PC enforces the
following rule:

NB rule: No operational process
can decide to commit if there are
operational processes that are
uncertain.

How does the NB rule prevent
blocking?

©IKS, ETH Zürich. 53

Avoiding Blocking in 3PC
The NB rule guarantees that if anybody is uncertain,

nobody can have decided to commit. Thus, when
running the cooperative termination protocol, if a
process finds out that everybody else is uncertain,
they can all safely decide to abort.
The consequence of the NB rule is that the
coordinator cannot make a decision by itself as in
2PC. Before making a decision, it must be sure that
everybody is out of the uncertainty area. Therefore,
the coordinator, must first tell all processes what is
going to happen: (request votes, prepare to commit,
commit). This implies yet another round of
messages!

©IKS, ETH Zürich. 54

3PC Coordinator

bcast
vote-req

wait
for votes

ABORT

COMMIT bcast
commit

bcast
abort

bcast
pre-commit

wait
for ACKs
*

Possible time-out actions

all vote YES

some vote NO

all ACKs
received

©IKS, ETH Zürich. 55

3PC Participant

wait for
vote-req

ABORT

COMMIT
wait for

pre-commit
send
ACK

wait for
commit

Possible time-out actions

vote YES

abort
received

vote NO

pre-commit
received

commit
received

©IKS, ETH Zürich. 56

3PC and Knowledge (using the NB rule)
3PC is interesting in that the

processes know what will happen
before it happens:
Once the coordinator reaches the
“bcast pre-commit”, it knows the
decision will be to commit.
Once a participant receives the
pre-commit message from the
coordinator, it knows that the
decision will be to commit.

Why is the extra-round of messages
useful?
The extra round of messages is
used to spread knowledge across
the system. They provide
information about what is going
on at other processes (NB rule).

The NB rule is used when time-outs
occur (remember, however, that
there are no communication
failures):
If coordinator times out waiting
for votes = ABORT.
If participant times out waiting
for vote-req = ABORT.
If coordinator times out waiting
for ACKs = ignore those who did
not sent the ACK! (at this stage
everybody has agreed to commit).
If participant times out waiting
for pre-commit = still in the
uncertainty period, ask around.
If participant times out waiting
for commit message = not
uncertain any more but needs to
ask around!

©IKS, ETH Zürich. 57

Persistence and recovery in 3PC
Similarly to 2PC, a process has to

remember its previous actions to
be able to participate in any
decision. This is accomplished by
recording every step in the log:
Coordinator writes “start-3PC”
record before doing anything. It
writes an “abort” or “commit”
record before sending any abort
or commit message.
Participant writes its YES vote to
the log before sending it to the
coordinator. If it votes NO, it
writes it to the log after sending
it to the coordinator. When
reaching a decision, it writes it in
the log (abort or commit).

Processes in 3PC cannot
independently recover unless
they had already reached a
decision or they have not
participated at all:
If the coordinator recovers and
finds a “start 3PC” record in its log
but no decision record, it needs to
ask around to find out what the
decision was. If it does not find a
“start 3PC”, it will find no records
of the transaction, then it can
decide to abort.
If a participant has a YES vote in
its log but no decision record, it
must ask around. If it has not
voted, it can decide to abort.

©IKS, ETH Zürich. 58

Termination Protocol
Elect a new coordinator.
New coordinator sends a “state
req” to all processes. participants
send their state (aborted,
committed, uncertain,
committable).
TR1 = If some “aborted” received,
then abort.
TR2 = If some “committed”
received, then commit.
TR3 = If all uncertain, then abort.
TR4 = If some “committable” but
no “committed” received, then
send “PRE-COMMIT” to all, wait
for ACKs and send commit
message.

TR4 is similar to 3PC, have we
actually solved the problem?
Yes, failures of the participants
on the termination protocol can
be ignored. At this stage, the
coordinator knows that
everybody is uncertain, those
who have not sent an ACK have
failed and cannot have made a
decision. Therefore, all remaining
can safely decide to commit after
going over the pre-commit and
commit phases.
The problem is when the new
coordinator fails after asking for
the state but before sending any
pre-commit message. In this case,
we have to start all over again.

©IKS, ETH Zürich. 59

Partition and total failures
This protocol does not tolerate

communication failures:
A site decides to vote NO, but its
message is lost.
All vote YES and then a partition
occurs. Assume the sides of the
partition are A and B and all
processes in A are uncertain and
all processes in B are
committable. When they run the
termination protocol, those in A
will decide to abort and those in B
will decide to commit.
This can be avoided is quorums
are used, that is, no decision can
be made without having a
quorum of processes who agree
(this reintroduces the possibility
of blocking, all processes in A will
block).

Total failures require special
treatment, if after the total
failure every process is still
uncertain, it is necessary to find
out which process was the last on
to fail. If the last one to fail is
found and is still uncertain, then
all can decide to abort.
Why? Because of partitions.
Everybody votes YES, then all
processes in A fail. Processes in B
will decide to commit once the
coordinator times out waiting for
ACKs. Then all processes in B fail.
Processes in A recover. They run
the termination protocol and
they are all uncertain. Following
the termination protocol will lead
them to abort.

©Gustavo Alonso, ETH Zurich. 60

2PC in Practice
2PC is a protocol used in many applications from
distributed systems to Internet environments
2PC is not only a database protocol, it is used in many
systems that are not necessarily databases but,
traditionally, it has been associated with
transactional systems
2PC appears in a variety of forms: distributed
transactions, transactional remote procedure calls,
Object Transaction Services, Transaction Internet
Protocol …
In any of these systems, it is important to remember
the main characteristic of 2PC: if failures occur the
protocol may block. In practice, in many systems,
blocking does not happen but the outcome is not
deterministic and requires manual intervention

©Gustavo Alonso, ETH Zurich. 61

ORB

SOFTWARE BUS (ORB)

Application Objects Common Facilities

Common Object Services

naming events security transactions

...

©Gustavo Alonso, ETH Zurich. 62

Object Transaction Service
The OTS provides transactional guarantees to the
execution of invocations between different
components of a distributed application built on top
of the ORB
The OTS is fairly similar to a TP-Monitor and provides
much of the same functionality discussed before for
RPC and TRPC, but in the context of the CORBA
standard
Regardless of whether it is a TP-monitor or an OTS,
the functionality needed to support transactional
interactions is the same:

transactional protocols (like 2PC)
knowing who is participating
knowing the interface supported by each
participant

©Gustavo Alonso, ETH Zurich. 63

Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

Assume App A wants to update its database and also that in B

©Gustavo Alonso, ETH Zurich. 64

Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

BEGIN
TXN

©Gustavo Alonso, ETH Zurich. 65

Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

Register
DB

OTS now knows
that there is database

behind App A

©Gustavo Alonso, ETH Zurich. 66

Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

TXN(1)
… but the transaction does not commit

©Gustavo Alonso, ETH Zurich. 67

Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B
Call

B txn(1)

©Gustavo Alonso, ETH Zurich. 68

Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

Register
DB

OTS now knows
that there is database

behind App B

©Gustavo Alonso, ETH Zurich. 69

Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

TXN(1)… but the transaction does not commit

©Gustavo Alonso, ETH Zurich. 70

Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

COMMIT

©Gustavo Alonso, ETH Zurich. 71

Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

2PC 2PC

©Gustavo Alonso, ETH Zurich. 72

OTS Sequence of Messages
DB A APP A OTS APP B DB Bbegin

register
TXN

invoke

register
TXN

commit
prepare prepare

vote yes vote yes
commit commit

©IKS, ETH Zürich. 73

Data replication:
Replication models

©IKS, ETH Zürich. 74

Introduction to Database Replication
What is database replication
The advantages of database replication
A taxonomy of replication strategies:

Synchronous
Asynchronous
Update everywhere
Primary copy

Discussion on the various replication strategies.

©IKS, ETH Zürich. 75

Database Replication
Why replication?

PERFORMANCE: Location
transparency is difficult to
achieve in a distributed
environment. Local accesses are
fast, remote accesses are slow. If
everything is local, then all
accesses should be fast.
FAULT TOLERANCE: Failure
resilience is also difficult to
achieve. If a site fails, the data it
contains becomes unavailable. By
keeping several copies of the data
at different sites, single site
failures should not affect the
overall availability.
APPLICATION TYPE: Databases
have always tried to separate
queries form updates to avoid
interference. This leads to two
different application types OLTP
and OLAP, depending on whether
they are update or read intensive.

NETWORK

DB DB

Replication is a common strategy
in data management: RAID
technology (Redundant Array of
Independent Disks), Mirror sites
for web pages, Back up
mechanisms (1-safe, 2-safe,
hot/cold stand by)
Here we will focus our attention
on replicated databases but
many of the ideas we will discuss
apply to other environments as
well.

©IKS, ETH Zürich. 76

Remote access to data?

DATA

Zurich London New York Tokyo

LOAD
RESPONSE

TIME
CRITICAL

©IKS, ETH Zürich. 77

Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

LOAD RESPONSE
TIME

CRITICAL

©IKS, ETH Zürich. 78

How to replicate data?
There are two basic parameters to select when
designing a replication strategy: where and when.
Depending on when the updates are propagated:

Synchronous (eager)
Asynchronous (lazy)

Depending on where the updates can take place:
Primary Copy (master)
Update Everywhere (group)

Sync

Async

master group

©IKS, ETH Zürich. 79

Synchronous Replication
Synchronous replication propagates any changes to
the data immediately to all existing copies.
Moreover, the changes are propagated within the
scope of the transaction making the changes. The
ACID properties apply to all copy updates.

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit

©IKS, ETH Zürich. 80

Synchronous Replication

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50

DATA

Zurich

Price = $ 50

DATA IS CONSISTENT AT ALL SITES

©IKS, ETH Zürich. 81

Synchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

A SITE WANTS TO UPDATE THE PRICE ...

©IKS, ETH Zürich. 82

Synchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

… IT FIRST CONSULTS WITH EVERYBODY ELSE ...

©IKS, ETH Zürich. 83

Synchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

… AN AGREEMENT IS REACHED ...

©IKS, ETH Zürich. 84

Synchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 100 Price = $ 100 Price = $ 100 Price = $ 100

… THE PRICE IS UPDATED AND PROCESSING CONTINUES.

©IKS, ETH Zürich. 85

Asynchronous Replication
Asynchronous replication first executes the updating
transaction on the local copy. Then the changes are
propagated to all other copies. While the
propagation takes place, the copies are inconsistent
(they have different values).
The time the copies are inconsistent is an adjustable
parameter which is application dependent.

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit

©IKS, ETH Zürich. 86

Asynchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

DATA IS CONSISTENT AT ALL SITES

©IKS, ETH Zürich. 87

Asynchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

A SITE WANTS TO UPDATE THE PRICE ...

©IKS, ETH Zürich. 88

Asynchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 100 Price = $ 50 Price = $ 50

THEN IT UPDATES THE PRICE LOCALLY AND
CONTINUES PROCESSING (DATA IS NOT CONSISTENT!)...

©IKS, ETH Zürich. 89

Asynchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 100 Price = $ 100 Price = $ 100 Price = $ 50

THE UPDATE IS EVENTUALLY PROPAGATED TO ALL
SITES (PUSH, PULL MODELS)

©IKS, ETH Zürich. 90

Update Everywhere
With an update everywhere approach, changes can
be initiated at any of the copies. That is, any of the
sites which owns a copy can update the value of the
data item

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit

©IKS, ETH Zürich. 91

Update Everywhere

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

ALL SITES ARE ALLOWED TO UPDATE THEIR COPY

©IKS, ETH Zürich. 92

Primary Copy
With a primary copy approach, there is only one copy
which can be updated (the master), all others
(secondary copies) are updated reflecting the
changes to the master.

Site 1 Site 2 Site 3 Site 4

Site 1 Site 2 Site 3 Site 4

©IKS, ETH Zürich. 93

Primary Copy

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

ONLY ONE SITE IS ALLOWED TO DO UPDATES,
THE OTHER ARE READ ONLY COPIES

©IKS, ETH Zürich. 94

Forms of replication
Synchronous

Advantages:
No inconsistencies (identical
copies)
Reading the local copy yields the
most up to date value
Changes are atomic

Disadvantages: A transaction has to
update all sites (longer execution
time, worse response time)

Asynchronous
Advantages: A transaction is always
local (good response time)
Disadvantages:

Data inconsistencies
A local read does not always
return the most up to date value
Changes to all copies are not
guaranteed
Replication is not transparent

Update everywhere
Advantages:

Any site can run a transaction
Load is evenly distributed

Disadvantages:
Copies need to be synchronized

Primary Copy
Advantages:

No inter-site synchronization is
necessary (it takes place at the
primary copy)
There is always one site which
has all the updates

Disadvantages:
The load at the primary copy can
be quite large
Reading the local copy may not
yield the most up to date value

©IKS, ETH Zürich. 95

Replication Strategies

Synchronous
(eager)

Asynchronous
(lazy)

Primary copy Update everywhere

synchronous
primary copy

synchronous
update everywhere

asynchronous
update everywhere

asynchronous
primary copy

The previous ideas can be combined into 4 different replication strategies:

©IKS, ETH Zürich. 96

Replication Strategies

Sy
nc

hr
on

ou
s

A
sy

n c
hr

on
o u

s

Primary copy Update everywhere

Advantages:
Updates not coordinated
No inconsistencies

Disadvantages:
Longest response time
Only useful with few updates
Local copies can only be read

Advantages:
No inconsistencies
Elegant (symmetrical solution)

Disadvantages:
Long response times
Updates need to be coordinated

Advantages:
No coordination necessary
Short response times

Disadvantages:
Local copies are not up to date
Inconsistencies

Advantages:
No centralized coordination
Shortest response times

Disadvantages:
Inconsistencies
Updates can be lost
(reconciliation)

©IKS, ETH Zürich. 97

Replication (Ideal)

Synchronous
(eager)

Asynchronous
(lazy)

Primary copy Update everywhere

Globally correct
Remote writes

Globally correct
Local writes

Inconsistent reads Inconsistent reads
Reconciliation

©IKS, ETH Zürich. 98

Replication (Practical)

Synchronous
(eager)

Asynchronous
(lazy)

Primary copy Update everywhere

Too Expensive
(usefulness?)

Too expensive
(does not scale)

Feasible Feasible in some
applications

©IKS, ETH Zürich. 99

Summary - I
Replication is used for performance and fault
tolerant purposes.
There are four possible strategies to implement
replication solutions depending on whether it is
synchronous or asynchronous, primary copy or
update everywhere.
Each strategy has advantages and disadvantages
which are more or less obvious given the way they
work.
There seems to be a trade-off between correctness
(data consistency) and performance (throughput and
response time).
The next step is to analyze these strategies in more
detail to better understand how they work and
where the problems lie.

©IKS, ETH Zürich. 100

Database Replication Strategies
Database environments
Managing replication
Technical aspects and correctness/performance
issues of each replication strategy:

Synchronous - primary copy
Synchronous - update everywhere
Asynchronous - primary copy
Asynchronous - update everywhere

©IKS, ETH Zürich. 101

Basic Database Notation
A user interacts with the
database by issuing read and
write operations.
These read and write operations
are grouped into transactions
with the following properties:

Atomicity: either all of the
transaction is executed or
nothing at all.

Consistency: the transaction
produces consistent changes.

Isolation: transactions do not
interfere with each other.

Durability: Once the transaction
commits, its changes remain.

User

Database

BoT
r(x) r(y) r (z) w(x) w(y)

EoT

x y
z

Transaction

©IKS, ETH Zürich. 102

Isolation
Isolation is guaranteed by a
concurrency control protocol.
In commercial databases, this is
usually 2 Phase Locking (2PL):

conflicting locks cannot
coexist (writes conflict with
reads and writes on the same
item)
Before accessing an item, the
item must be locked.
After releasing a lock, a
transaction cannot obtain any
more locks.

User A

Database

BoT
r(x) r(y) r (z) w(x) w(y)

EoT

x y

z

Transaction

Write-lock
user A

Write-lock
user A

Read-lock
user A

©IKS, ETH Zürich. 103

Atomicity
A transaction must commit all its
changes.
When a transaction executes at
various sites, it must execute an
atomic commitment protocol, i.e.,
it must commit at all sites or at
none of them.
Commercial systems use 2 Phase
Commit:

A coordinator asks everybody
whether they want to commit
If everybody agrees, the
coordinator sends a message
indicating they can all commit

User

Database
A

BoT
r(x) r(y) r (z) w(x) w(y)

EoT

Transaction

Database
B

Database
C

x y z

©IKS, ETH Zürich. 104

Transaction Manager
The transaction manager takes
care of isolation and atomicity.
It acquires locks on behalf of all
transactions and tries to come up
with a serializable execution, i.e.,
make it look like the transactions
were executed one after the
other.
If the transactions follow 2 Phase
Locking, serializability is
guaranteed. Thus, the scheduler
only needs to enforce 2PL
behaviour.

scheduler

Transactions from
different users

Operations from the
different transactions

2 Phase Locking
is enforced

Transactions are
serialized

©IKS, ETH Zürich. 105

Managing Replication
When the data is replicated, we
still need to guarantee atomicity
and isolation.
Atomicity can be guaranteed by
using 2 Phase Commit. This is the
easy part.
The problem is how to make sure
the serialization orders are the
same at all sites, i.e., make sure
that all sites do the same things
in the same order (otherwise the
copies would be inconsistent).

Scheduler A Scheduler B

©IKS, ETH Zürich. 106

Managing Replication
To avoid this, replication
protocols are used.
A replication protocol
specifies how the
different sites must be
coordinated in order to
provide a concrete set of
guarantees.
The replication
protocols depend on the
replication strategy
(synchronous,
asynchronous, primary
copy, update
everywhere).

Scheduler A Scheduler B

Replication

Protocol

©IKS, ETH Zürich. 107

Replication Strategies

Synchronous
(eager)

Asynchronous
(lazy)

Primary copy Update everywhere

synchronous
primary copy

synchronous
update everywhere

asynchronous
update everywhere

asynchronous
primary copy

Now we can analyze the advantages and disadvantages of each strategy:

©IKS, ETH Zürich. 108

Cost of Replication

0

10

20

30

40

50

60

0 0.1 0.3 0.5 0.7 0.9 1

System with
50 nodes

Available
CPU

ws
(replication

factor)

Assume a 50 node replicated
system where a fraction s of the
data is replicated and w
represents the fraction of updates
made (ws = replication factor)
Overall computing power of the
system:

No performance gain with large
ws factor (many updates or many
replicated data items)
Reads must be local to get
performance advantages.

N
1 w s (N 1)+ ⋅ ⋅ −

©IKS, ETH Zürich. 109

Synchronous - update everywhere
Assume all sites contain the same data.
READ ONE-WRITE ALL

Each sites uses 2 Phase Locking.
Read operations are performed locally.
Write operations are performed at all sites (using a distributed locking
protocol).

This protocol guarantees that every site will behave as if there were only one
database. The execution is serializable (correct) and all reads access the
latest version.

This simple protocol illustrates the main idea behind replication, but it needs
to be extended in order to cope with realistic environments:
Sites fail, which reduces the availability (if a site fails, no copy can be
written).
Sites eventually have to recover (a recently recovered site may not have
the latest updates).

©IKS, ETH Zürich. 110

Dealing with Site Failures
Assume, for the moment, that there are no

communication failures. Instead of writing to all
copies, we could

WRITE ALL AVAILABLE COPIES
READ = read any copy, if time-out, read another copy.
WRITE = send Write(x) to all copies. If one site rejects
the operation, then abort. Otherwise, all sites not
responding are “missing writes”.
VALIDATION = To commit a transaction

Check that all sites in “missing writes” are still
down. If not, then abort the transaction.
Check that all sites that were available are still
available. If some do not respond, then abort.

©IKS, ETH Zürich. 111

Each site uses 2PL
Read operations are performed
locally
Write operations involve locking
all copies of the data item
(request a lock, obtain the lock,
receive an acknowledgement)
The transaction is committed
using 2PC
Main optimizations are based on
the idea of quorums (but all we
will say about this protocol also
applies to quorums)

SITE A SITE B SITE C

BOT

R(x)

W(x)
Lock Lock

Upd

Upd Upd

... ...

request

ack

change

Synchronous - Update Everywhere Protocol

©IKS, ETH Zürich. 112

Response Time and Messages

centralized database update

T=

T=

replicated database update: 2N messages
2PC

The way replication takes place (one operation at a time),
increases the response time and, thereby, the conflict
profile of the transaction. The message overhead is too
high (even if broadcast facilities are available).

©IKS, ETH Zürich. 113

The Deadlock Problem
Approximated deadlock
rate:

if the database size remains
constant, or

if the database size grows
with the number of nodes.
Optimistic approaches may
result in too many aborts.

TPS Action_ Time Actions N
4 DB_ Size

2 5 3

2
⋅ ⋅ ⋅

⋅

TPS Action_ Time Actions N
4 DB_ Size

2 5

2

⋅ ⋅ ⋅
⋅

A B C

BOT

R(x)

W(x)
Lock

D

Lock
W(x)

BOT

©IKS, ETH Zürich. 114

Synchronous - update everywhere
Advantages:

No inconsistencies
Elegant (symmetrical solution)

Disadvantages:
Very high number of messages involved
Transaction response time is very long
The system will not scale because of deadlocks (as the
number of nodes increases, the probability of getting into
a deadlock gets too high)

Data consistency is guaranteed. Performance may be
seriously affected with this strategy. The system may also
have scalability problems (deadlocks). High fault tolerance.

©IKS, ETH Zürich. 115

Synchronous - primary copy
Advantages:

Updates do not need to be coordinated
No inconsistencies, no deadlocks.

Disadvantages:
Longest response time
Only useful with few updates (primary copy is a
bottleneck)
Local copies are almost useless
Not used in practice

Similar problems to those of Sync - update everywhere.
Including scalability problems (bottlenecks). Data
consistency is guaranteed. Fault tolerant.

©IKS, ETH Zürich. 116

Async - primary copy protocol
Update transactions are
executed at the primary
copy site
Read transactions are
executed locally
After the transaction is
executed, the changes are
propagated to all other sites
Locally, the primary copy
site uses 2 Phase Locking
In this scenario, there is no
atomic commitment
problem (the other sites are
not updated until later)

SITE A SITE B SITE C

BOT

R(x)

W(x)

Upd

Upd Upd
... ...

change

Txn

EOT

R(x)

©IKS, ETH Zürich. 117

Asynchronous - primary copy
Advantages:

No coordination necessary
Short response times (transaction is local)

Disadvantages:
Local copies are not up to date (a local read will not always
include the updates made at the local copy)
Inconsistencies (different sites have different values of the
same data item)

Performance is good (almost same as if no replication).
Fault tolerance is limited. Data inconsistencies arise.

©IKS, ETH Zürich. 118

Async - update everywhere protocol
All transactions are
executed locally
After the transaction is
executed, the changes
are propagated to all
other sites
Locally, a site uses 2
Phase Locking
In this scenario, there is
no atomic commitment
problem (the other sites
are not updated until
later)
However, unlike with
primary copy, updates
need to be coordinated

SITE A SITE B SITE C

BOT

W(x)

Upd Upd

EOT

BOT

W(x)

EOT

©IKS, ETH Zürich. 119

Async / Update Everywhere

DB 1

DB 3

DB 2

Probability of needing
reconciliation:

What does it mean to
commit a transaction
locally? There is no
guarantee that a
committed transaction
will be valid (it may be
eliminated if “the other
value” wins).

TPS Action_ time Actions N
2 DB_ Size

2 3 3⋅ ⋅ ⋅
⋅

X=3 X=5

©IKS, ETH Zürich. 120

Reconciliation
Such problems can be solved using pre-arranged
patterns:

Latest update win (newer updates preferred over
old ones)
Site priority (preference to updates from
headquarters)
Largest value (the larger transaction is preferred)

or using ad-hoc decision making procedures:
identify the changes and try to combine them
analyze the transactions and eliminate the non-
important ones
implement your own priority schemas

©IKS, ETH Zürich. 121

Asynchronous - update everywhere
Advantages:

No centralized coordination
Shortest response times

Disadvantages:
Inconsistencies
Updates can be lost (reconciliation)

Performance is excellent (same as no replication). High
fault tolerance. No data consistency. Reconciliation is
a tough problem (to be solved almost manually).

©IKS, ETH Zürich. 122

Summary - II
We have seen the different technical issues
involved with each replication strategy
Each replication strategy has well defined
problems (deadlocks, reconciliation, message
overhead, consistency) related to the way the
replication protocols work
The trade-off between correctness (data
consistency) and performance (throughput
and response time) is now clear
The next step is to see how these ideas are
implemented in practice

©IKS, ETH Zürich. 123

Data replication:
Data replication systems

©IKS, ETH Zürich. 124

Replication in Practice
Replication scenarios
On Line Transaction Processing (OLTP)
On Line Analytical Processing (OLAP)
Replication in Sybase
Replication in IBM
Replication in Oracle
Replication in Domino (Lotus Notes)

©IKS, ETH Zürich. 125

Replication Scenarios
In practice, replication is used in many different scenarios. Each one has its
own demands. A commercial system has to be flexible enough to
implement several of these scenarios, otherwise it would not be
commercially viable.
Database systems, however, are very big systems and evolve very slowly.
Most were not designed with replication in mind. Commercial solutions
are determined by the existing architecture, not necessarily by a sound
replication strategy. Replication is fairly new in commercial databases!
The focus on OLTP and OLAP determines the replication strategy in many
products.
From a practical standpoint, the trade-off between correctness and
performance seems to have been resolved in favor of performance.
It is important to understand how each system works in order to
determine whether the system will ultimately scale, perform well, require
frequent manual intervention ...

©IKS, ETH Zürich. 126

OLTP vs. OLAP

updates

complex
queries

data gathering
and processing

online
DB

data
Mart

Knowledge
Information

OLTP

Data
Warehouse

Data Mining

OLAP

©IKS, ETH Zürich. 127

OLTP

complex
queries

data
Mart

OLTP

OLAP

High performance (Txn/s)
High availability
High fault tolerance
Working with the latest data
On line

OLTP
online

DB

online
DB

©IKS, ETH Zürich. 128

OLAP

online
DB

OLTP

data gathering
and processing

Data
Warehouse

complex
queries

Knowledge
Information

Data Mining

OLAP

data
Mart

Data storage
Data cross referencing
Decision support
Statistical analysis
Off line

©IKS, ETH Zürich. 129

Commercial replication
When evaluating a commercial replication strategy, keep in

mind:
The customer base (who is going to use it?).
The underlying database (what can the system do?).
What competitors are doing (market pressure).
There is no such a thing as a “better approach”.
The complexity of the problem.

Replication will keep evolving in the future, current systems may
change radically.

©IKS, ETH Zürich. 130

Sybase Replication Server

Goal of replication: Avoid server bottlenecks by moving data
to the clients. To maintain performance, asynchronous
replication is used (changes are propagated only after the
transaction commits). The changes are propagated on a
transaction basis (get the replicas up-to-date as quickly as
possible). Capture of changes is done “off-line”, using the log
to minimize the impact on the running server.
Applications: OLTP, client/server architectures, distributed
database environments.

©IKS, ETH Zürich. 131

Sybase Replication Architecture
primary

data log

DATA
MANAGER

LOG
TRANSFER
MANAGER

REPLICATION
SERVER

REPLICATION
SERVER

DATA
MANAGER

replicated
data

asynchronous
stored procedure

synchronous
stored procedure

(2PC)

decoupled

change detection
wrapping

subscription
data change detection

updates

©IKS, ETH Zürich. 132

Sybase Replication (basics)
Loose consistency (=
asynchronous). Primary copy.
PUSH model: replication takes
place by “subscription”. A site
subscribes to copies of data.
Changes are propagated from the
primary as soon as they occur.
The goal is to minimize the time
the copies are not consistent but
still within an asynchronous
environment (updates are sent
only after they are committed).
Updates are taken from the log in
stable storage (only committed
transactions).
Remote sites update using special
stored procedures (synchronous
or a synchronous).
Persistent queues are used to
store changes in case of
disconnection.

The Log Transfer Manager
monitors the log of Sybase SQL
Server and notifies any changes
to the replication server. It acts as
a light weight process that
examines the log to detect
committed transactions (a
wrapper). It is possible to write
your own Log Transfer Manager
for other systems. When a
transaction is detected, its log
records are sent to the:
The Replication Server usually
runs on a different system than
the database to minimize the
load. It takes updates, looks who
is subscribed to them and send
them to the corresponding
replication servers at the remote
site. Upon receiving these
changes, a replication server
applies them at the remote site.

©IKS, ETH Zürich. 133

Sybase Replication (updates)
Primary copy. All updates must be done at the primary using

either :
Synchronous stored procedures, which reside at the primary
and are invoked (RPC) by any site who wants to update. 2
Phase Commit is used.
Stored procedures for asynchronous transactions: invoked
locally, but sent asynchronously to the primary for execution.
If the transaction fails manual intervention is required to fix
the problem.
It is possible to fragment a table and make different sites the
primary copy for each fragment.
It is possible to subscribe to selections of tables using WHERE
clauses.

©IKS, ETH Zürich. 134

IBM Data Propagator

Goal: Replication is seen as part of the “Information
Warehousing” strategy. The goal is to provide complex views
of the data for decision-support. The source systems are
usually highly tuned, the replication system is designed to
interfere as less as possible with them: replication is
asynchronous and there are no explicit mechanisms for
updating.
Applications: OLAP, decision-support, data warehousing, data
mining.

©IKS, ETH Zürich. 135

IBM Replication (architecture)

DATA
MANAGER

CAPTURE
MVS

APPLY
PROGRAM

Replicated
data

APPLY
PROGRAM

data log

Primary data

UOW change
consistent

change

©IKS, ETH Zürich. 136

IBM Data Propagator (basics)
Asynchronous replication.
No explicit update support
(primary copy, if anything).
PULL MODEL: (smallest interval 1
minute) the replicated data is
maintained by querying either
the primary data, the change
table, the consistent change
table, or any combination of the
three. The goal is to support
sophisticated views of the data
(data warehousing). Pull model
means replication is driven by the
recipient of the replica. The
replica must “ask” for updates to
keep up-to-date.
Updates are taken from the main
memory buffer containing log
entries (both committed and
uncommitted entries; this is an
adjustable parameter).

Updates are sent to the primary
(updates converted into inserts if
tuple has been deleted, inserts
converted into updates if tuple
already exists, as in Sybase). The
system is geared towards
decision support, replication
consistency is not a key issue.
Sophisticated data replication is
possible (base aggregation,
change aggregation, time slices
…)
Sophisticated optimizations for
data propagation (from where to
get the data).
Sophisticated views of the data
(aggregation, time slicing).
Capture/MVS is a separate
address space monitor, to
minimize interference it captures
log records from the log buffer
area

©IKS, ETH Zürich. 137

IBM Data Propagator
There are two key components in the

architecture:
Capture: analyzes raw log
information from the buffer area
(to avoid I/O). It reconstructs the
logical log records and creates a
“change table” and a
“transaction table” (a dump of all
database activity).
Apply Program: takes information
from the database, the change
table and the transaction table to
built “consistent change table” to
allow consistent retrieval and
time slicing. It works by
“refreshing” data (copies the
entire data source) or “updating”
(copies changes only). It allows
very useful optimizations (get the
data from the database directly,
reconstruct, etc.).

The emphasis is on extracting
information:
Data Propagator/2 is used to
subscribe and request data.
It is possible to ask for the state
of data at a given time (time
slicing or snapshots).
It is possible to ask for changes:

how many customers have
been added?
how many customers have
been removed?
how many customers were
between 20 and 30 years old?

This is not the conventional idea
of replication!

©IKS, ETH Zürich. 138

Oracle Symmetric Replication

Goals: Flexibility. It tries to provide a platform
that can be tailored to as many applications as
possible. It provides several approaches to
replication and the user must select the most
appropriate to the application. There is no
such a thing as a “bad approach”, so all of
them must be supported (or as many as
possible)
Applications: intended for a wide range of
applications.

©IKS, ETH Zürich. 139

Oracle Replication (architecture)

DATA
MANAGER

read-only
snapshot

updatable
snapshot

deferred RPC
PUSH

PULL (periodically)

primary site

local queue
deferred RPC

deferred
RPC DATA

MANAGER

synchronous
PL/SQL 2PC

synchronous
copy

asynchronous
copies

trigger

©IKS, ETH Zürich. 140

Oracle Replication
“DO-IT-YOURSELF” model
supporting almost any kind of
replication (push model, pull
model), Dynamic Ownership (the
site designated as the primary
can change over time), and
Shared Ownership (update
anywhere, asynchronously).
One of the earliest
implementations: Snapshot. This
was a copy of the database.
Refreshing was done by getting a
new copy.
Symmetric replication: changes
are forwarded at time intervals
(push) or on demand (pull).
Asynchronous replication is the
default but synchronous is also
possible.
Primary copy (static / dynamic) or
update everywhere.

Readable Snapshots: A copy of
the database. Refresh is
performed by examining the log
records of all operations
performed, determining the
changes and applying them to
the snapshot. The snapshot
cannot be modified but they are
periodically refreshed
(complete/fast refreshes)
Writable Snapshots: fast-
refreshable table snapshots but
the copy can be updated (if
changes are sent to the master
copy, it becomes a form of
asynchronous - update
everywhere replication).

©IKS, ETH Zürich. 141

Oracle Replication (basics)
Replication is based on these two

ideas:
Triggers: changes to a copy are
captured by triggers. The trigger
executes a RPC to a local queue
and it inserts the changes in the
queue. These changes take the
form of an invocation to a stored
procedure at the remote site.
These triggers are “deferred” in
the sense that they work
asynchronously with respect to
the transaction
Queues: queues follow a FIFO
discipline and 2PC is used to
guarantee the call makes it to the
queue at the remote site. At the
remote site, the queue is read
and the call made in the order
they arrive.

Dynamic ownership: It is possible
to dynamically reassign the
“master copy” to different sites.
That is, the primary copy can
move around (doing it well, it is
then possible to always read and
write locally)
Shared ownership: (= update
everywhere!). Conflicts are
detected by propagating both the
before and the after image of
data. When a conflict is detected,
there are several predefined
routines that can be
automatically called or the user
can write and ad-hoc routine to
resolve the conflict
Synchronous, update everywhere:
using the sync -update
everywhere protocol previosuly
discussed

©IKS, ETH Zürich. 142

Replication in Lotus Notes (Domino)
Lotus Notes implements asynchronous (lazy), update every-
where replication in an epidemic environment.
Lotus Notes distinguishes between a replica and a copy (a
snapshot). All replicas have the same id. Each copy has its own
id.
Lotus allows to specify what to replicate (in addition to replica
stubs and field level replication) to minimize overhead.
Replication conflicts are detected and some attempt is made
at reconciliation (user intervention is usually required).
Lotus Notes is a cooperative environment, the goal is data
distribution and sharing. Consistency is largely user defined
and not enforced by the system.

©IKS, ETH Zürich. 143

Replication in Lotus Notes

database

forms views

D1 D2

F1 V1

database

forms views

D1 D2

F1 V1FULL REPLICA

database

forms views

D1 D2

F1 V1

database

forms views

D1

F1 V1
PARTIAL REPLICA

©IKS, ETH Zürich. 144

Replication in Lotus Notes
Notes also allows to specify when to replicate …

.. and in which direction to replicate:

database

forms views

D1 D2

F1 V1

database

forms views

D1 D2

F1 V1
AUTOMATIC

MANUAL

BI-DIRECTIONAL

database

forms views

D1 D2

F1 V1

database

forms views

D1 D2

F1 V1

UNI-DIRECTIONAL

©IKS, ETH Zürich. 145

Data replication:
Additional protocols

©IKS, ETH Zürich. 146

Token Passing Protocol
Replication is used in many applications other

than databases. For these applications, there is
a large number of protocols and algorithms
that can be used to guarantee “correctness”:
The token based protocol is used as an
example of replication in distributed systems
to illustrate the problems of fault-tolerance
and starvation.

©IKS, ETH Zürich. 147

Distributed Mutual Exclusion
The original protocol was proposed for distributed
mutual exclusion. It can be used, however, to
maintain replicated data and to implement the
notion of dynamic ownership (Oracle replication).

In here, it will be used for the following:
Asynchronous, master copy (dynamic ownership)
The protocol will be used to locate the master copy
Requirements:

there is only one master copy at all times
deadlock free
fault-tolerant
starvation free

©IKS, ETH Zürich. 148

Token Passing (model)

Working assumptions
Communications are by message passing
Sites are fail-stop or may fail to send and receive messages
Failed sites eventually recover (failure detection by time-out)
Network partitions may occur
No duplicate messages and FIFO delivery
Causality enforced by logical clocks (Lamport)

Happen Before Relation
(1) events in a process are ordered
(2) sending(m) receiving(m)
(3) if a b and b c,then a c

Clock condition
(1) each event has a timestamp
(2) succesive events have

increasing timestamps
(3) receiving(m) has a higher
timestamp than sending(m)

©IKS, ETH Zürich. 149

Basic Protocol (no failures)
Assume no communication or site failures
A node with the token is the master copy
Each site, s, has a pointer, Owner(s), indicating where
that site believes the master copy is located
The master copy updates locally
Other sites sent their updates following the pointer
When the master copy reassigns the token (the
master copy moves to another site), the ex-master
copy readjusts its pointer so it points towards the
new master copy
For correctness reasons, assume the master copy is
never reassigned while updates are taking place.

©IKS, ETH Zürich. 150

Basic Protocol (owner)

Owner(s) = k

A

B

C

D

TOKEN

©IKS, ETH Zürich. 151

Basic Protocol (update)

Owner(s) = k

A

B

C

D

UPD

©IKS, ETH Zürich. 152

Basic Protocol (token change)

Owner(s) = k

A

B

C

D

©IKS, ETH Zürich. 153

Basic Protocol (update)

Owner(s) = k

A

B

C

D

UPD

UPD

©IKS, ETH Zürich. 154

Basic Protocol (token change)

Owner(s) = k

A

B

C

D

©IKS, ETH Zürich. 155

Basic Protocol (update)

Owner(s) = k

A

B

C

D

UPD

UPD

UPD

©IKS, ETH Zürich. 156

Basic Protocol (algorithms)
Requesting the master

copy (s)

IF Owner(s) = s THEN
master copy already in s

ELSE
SEND(request) to
Owner(s)
RECEIVE(Token)
Owner(s) = s

END (*IF*)

Receiving a request (q)

Receive (request(s))
IF Owner(q) = q THEN

Owner(q) = s
SEND(Token) to s

ELSE
SEND(request(s)) to
Owner(q)

END (*IF*)

©IKS, ETH Zürich. 157

Failures
If communication failures occur, the token may

disappear while in transit (message is lost).
First, the loss of the token must be detected
Second, the token must be regenerated
Third, after the regeneration, there must be only one
token in the system (only one master copy)

To do this, logical clocks are used:
OwnerTime(s) is a logical clock associated with the
token, it indicates when site s sent or received the
token
TokenState(s) is the state of the shared resource
(values associated with the token itself)

©IKS, ETH Zürich. 158

Token Loss Protocol
Assume bounded delay (if a message does not arrive
after time t, it has been lost). Sites do not fail
When a site sends the token, it sends along its own
OwnerTime
When a site receives the token, it sets its OwnerTime
to a value greater than that received with the token
From here, it follows that the values of the
OwnerTime variables along the chain of pointers
must increase
If, along the chain of pointers, there is a pair of values
that is not increasing, the token has been lost
between these two sites and must be regenerated

©IKS, ETH Zürich. 159

Token Loss Protocol

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 0

0

1

©IKS, ETH Zürich. 160

Detecting Token Loss

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 0

2

2

©IKS, ETH Zürich. 161

Detecting Token Loss

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 0

2

2

©IKS, ETH Zürich. 162

Detecting Token Loss

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 0

2

UPD

UPD

UPD

0

1

2

©IKS, ETH Zürich. 163

Regenerating the Token

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 0

2

G
et

 T
ok

en

©IKS, ETH Zürich. 164

Token Recovered

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 3

2

3

©IKS, ETH Zürich. 165

Token Loss (algorithm 1)
Request (s)
IF Owner(s) = s THEN

already master copy
ELSE

SEND(request(s),OwnerTime(s)) to Owner(s)
Receive(Token,TTime) on Timeout(ReqDelay) ABORT
Owner(s) = s
OwnerTime(s) = TTime + 1
TokenState = Token

END (*IF*)

©IKS, ETH Zürich. 166

Token Loss (algorithm 2)

Receive (request(s),timestamp) FROM p
IF timestamp > OwnerTime(q) THEN (* TOKEN IS LOST *)

SEND(GetToken) TO p
Receive(Token,TTime) FROM p ON Timeout ABORT
Owner(q) = q
OwnerTime(q) = TTime + 1
TokenState = Token

END (*IF*)
IF Owner(q) <> q THEN

SEND(request(s),timestamp) TO Owner(q)
ELSE

Owner(q) = s
SEND(Token, OwnerTime(q)) TO s

END (*IF*)

©IKS, ETH Zürich. 167

Site Failures
Sites failures interrupt the chain of pointers (and
may also result in the token being lost, if the failed
site had the token)
In this case, the previous algorithm ABORTs the
protocol
Instead of aborting, and to tolerate site failures, a
broadcast algorithm can be used to ask everybody
and find out what has happened in the system
Two “states” are used

TokenReceived: the site has received the token
TokenLoss: a site determines that somewhere in
the system there are p,q such that Owner(p) = q
and OwnerTime(p) > OwnerTime(q)

©IKS, ETH Zürich. 168

Chain Loss due to Site Failure

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 3

2

3

©IKS, ETH Zürich. 169

Chain Loss due to Site Failure

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 3

2

3

©IKS, ETH Zürich. 170

Chain Loss due to Site Failure

Owner(s) = k

A

B

OwnerTime(s)

1

0

D

3
3

©IKS, ETH Zürich. 171

Chain Loss due to Site Failure

Owner(s) = k

A

B

OwnerTime(s)

1

0

UPD

UPD

0

1

TIMEOUT
D

3
3

©IKS, ETH Zürich. 172

Token Loss due to Site Failure

Owner(s) = k

A

B

OwnerTime(s)

1

0

To
ke

n
?

Token ?

D

3
3Token ?

©IKS, ETH Zürich. 173

Token Loss due to Site Failure

Owner(s) = k

A

B

OwnerTime(s)

1

0

Owner(A), OwnerTime(A)

D

3

3

©IKS, ETH Zürich. 174

Chain Loss due to Site Failure

Owner(s) = k

A

OwnerTime(s)

1

B

4

4 D

3

©IKS, ETH Zürich. 175

Detecting Token Loss in Others

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 0

2

2

©IKS, ETH Zürich. 176

Detecting Token Loss in Others

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 0

2

UPD

UPD

UPD

0

1

2

©IKS, ETH Zürich. 177

Detecting Token Loss in Others

Owner(s) = k

A

B

OwnerTime(s)

1

0

To
ke

n
?

Token ?

Token ?

C

D

0

2

©IKS, ETH Zürich. 178

Detecting Token Loss in Others

Owner(s) = k

A

B

OwnerTime(s)

1

0

Owner(C), O
wnerTime(C)Owner(A),

OwnerTime(A)

Owner(D),OwnerTime(D)

C

D

0

2

©IKS, ETH Zürich. 179

Regenerating Token in Others

Owner(s) = k

A

B

OwnerTime(s)

1

0
Regenerate Token

C

D

0

2

©IKS, ETH Zürich. 180

Regenerating the Token

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 0

2

G
et

 T
ok

en

©IKS, ETH Zürich. 181

Token Recovered

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 3

2

3

©IKS, ETH Zürich. 182

Broadcast (algorithm)

SITE s: SEND (Bcast) TO all sites
COLLECT replies UNTIL TokenReceived OR TokenLoss
IF TokenReceived THEN

Owner(s) = s
OwnerTime = TTime + 1
TokenState = Token

END (*IF*)
IF TokenLoss THEN

DetectionTime = OwnerTime(q)
SEND(Regenerate, DetectionTime, p) TO q
RESTART

END (*IF*)

©IKS, ETH Zürich. 183

Broadcast Request (algorithm)
Broadcast Request arrives at q from s:
Receive(Bcast)
IF Owner(q) = q THEN

Owner(q) = s
SEND(Token,OwnerTime(q)) TO s

ELSE
SEND(Owner(q),OwnerTime(q)) TO s

END (*IF*)

©IKS, ETH Zürich. 184

Regenerate Token (algorithm)
A request to regenerate the token arrives at q:
Receive(Regenerate, DetectionTime, p)
IF OwnerTime(q) = DetectionTime THEN

SEND(GetToken) TO p
Receive(Token,TTime) FROM p ON Timeout ABORT
Owner(q) = q
OwnerTime(q) = TTime + 1
TokenState = Token

END (*IF*)

©IKS, ETH Zürich. 185

Starvation
Starvation can occur if a request for the token keeps
going around the system behind the token but it
always arrives after another request
One way to solve this problem is to make a list of all
requests, order the requests by timestamp and only
grant a request when it is the one with the lowest
timestamp in the list
The list can be passed around with the token and
each site can keep a local copy of the list that will be
merged with that arriving with the token (thereby
avoiding that requests get lost in the pointer chase)

©IKS, ETH Zürich. 186

Web services
Background

©IKS, ETH Zürich. 187

The Web as software layer (N-tier)

Branch 1 Branch 2

ap
p

se
rv

er
 1

ap
p

se
r v

er
 1

’

wrappers

Front end

us
er

pr

og
ra

m

us
er

pr

og
ra

m

us
er

pr

og
ra

m

us
er

pr

og
ra

m

M
ID

D
LE

W
AR

E

Web Server

Browser
N-tier architectures result from
connecting several three tier
systems to each other and/or by
adding an additional layer to allow
clients to access the system through
a Web server
The Web layer was initially external
to the system (a true additional
layer); today, it is slowly being
incorporated into a presentation
layer that resides on the server side
(part of the middleware
infrastructure in a three tier system,
or part of the server directly in a two
tier system)
The addition of the Web layer led to
the notion of “application servers”,
which was used to refer to
middleware platforms supporting
access through the Web

©IKS, ETH Zürich. 188

WWW basics
BROWSER

URL

response
page

INTERNET

WEB SERVER
map URL to CGI script
execute CGI script
get results back (stdout of CGI script)
prepare response page
send page to browser

CGI
script

Existing Middleware Infrastructure

The earliest implementations
were very simple and built
directly upon the existing
systems (client/server based on
RPC, TP-Monitors, or any other
form of middleware which
allowed interaction through a
programmable client)

the CGI script (or program)
acted as client in the
traditional sense (for instance
using RPC)
the user clicked in a given URL
and the server invoked the
corresponding script
the script executed, produced
the results and passed them
back to the server (usually as
the address of a web page)
the server retrieved the page
and send it to the browser

Implemented
as a normal client

©IKS, ETH Zürich. 189

Applets and clients
The problem of the using a web
browser as universal client is that
it does not do much beyond
displaying data (it is a thin client):

multiple interactions are
needed to complete complex
operations
the same operations must be
done over and over again for
all clients
the processing power at the
client is not used

By adding a JVM (Java Virtual
Machine) to the browser, now it
becomes possible to dynamically
download the client functionality
(an applet) every time it is needed
The client becomes truly
independent of the operating
system and is always under the
control of the server

browser
JVM

applet

Branch 1 Branch 2
ap

p
se

rv
er

 1

ap
p

se
r v

er
 1

’

wrappers

Front end

us
er

pr

og
ra

m

us
er

pr

og
ra

m

us
er

pr

og
ra

m

us
er

pr

og
ra

m

MI
DD

LE
W

AR
E

WEB SERVER

1. Get
client

2. Send
applet 3. C/S

system

©IKS, ETH Zürich. 190

Web server as a client of a EAI system
CGI scripts were initially widely
used as there was no other way
of connecting the web server
with the IT system so that it could
do something beyond sending
static documents
However, CGI scripts have several
problems that are not easy to
solve:

CGI scripts are separate
processes, requiring
additional context switches
when a call is made (and
thereby adding to the overall
delay)
Fast-CGI allows calls to be
made to a single running
process but it still requires
two context switches
CGI is really a quick hack not
designed for performance,
security, scalability, etc.

Request 1 Request 2

Web server process

CGI script
child process 1

CGI script
child process 2

Call to
underlying
middlewareRequest 1 Request 2

Web server process

CGI script
child process 1

Call to
underlying
middleware

Normal CGI calls

Fast CGI calls

©IKS, ETH Zürich. 191

Servlets
Servlets fulfill the same role as
CGI scripts: they provide a way to
invoke a program in response to
an http request.
However:

Servlets run as threads of the
Java server process (not
necessarily the web server)
not as separate OS processes
unlike CGI scripts, that can be
written in any language,
Servlets are always written in
Java (and are, therefore,
portable)
can use all the mechanisms
provided by the JVM for
security purposes

Request 1 Request 2

Java server process

Servlet
child thread 1

Servlet
child thread 2

Call to
underlying
middleware

th
re

ad
s

Call servlets

©IKS, ETH Zürich. 192

Just one more layer ...
SALES POINT CLIENT
IF no_customer_#
THEN New_customer
ELSE Lookup_customer
Check_inventory
IF enough_supplies
THEN Place_order
ELSE ...

Customer
database

INVENTORY
CONTROL
CLIENT
Lookup_product
Check_inventory
IF supplies_low
THEN

Place_order
Update_inventory

...

D
BM

S

Products
databaseD

BM
S

Inventory
and order
databaseD

BM
S

New_customer
Lookup_customer
Delete_customer
Update_customer

New_product
Lookup_product
Delete_product
Update_product

Place_order
Cancel_order

Update_inventory
Check_inventory

Server 1

Server 3

Server 2

RPC based system

WEB SERVER

Internet

BROWSER

CGI script call

CGI script call

©IKS, ETH Zürich. 193

Business to Business (B2B)

Resource 1 Resource 2

Se
rv

ic
e

1

Se
r v

ic
e

2

wrappers

Front end

us
er

pr

og
ra

m

us
er

pr

og
ra

m

us
er

pr

og
ra

m

us
er

pr

og
ra

m

M
ID

D
LE

W
AR

E

WEB SERVER

Resource X Resource Y

Se
rv

ic
e

A

Se
r v

ic
e

B

wrappers

Front end

us
er

pr

og
ra

m

us
er

pr

og
ra

m

us
er

pr

og
ra

m

us
er

pr

og
ra

m

M
ID

D
LE

W
AR

E

WEB SERVER

FIREWALLFIREWALL INTERNET

©IKS, ETH Zürich. 194

Limitations of the WWW
HTTP was originally designed as a
document exchange protocol
(request a document, get the
document, display the
document). It lacked support for
client side parameters
Its architecture was originally
designed with human users in
mind. The document format
(HTML) was designed to cope
with GUI problems not with
semantics. In EAI, the goal is
almost always to remove humans
from the business processes
(mostly to reduce costs and to
speed the process up). Strict
formatting rules and tagging are
key to exchanging messages
across heterogeneous systems

Interaction through document
exchange can be very inefficient
when the two sides of the
interaction are programs
(documents must be created,
sent, parsed on arrival,
information extracted, etc.).
Unfortunately, http does not
directly support any other form of
interaction
The initial WWW model was
heavily biased towards the server
side: the client (the browser) does
not do much beyond displaying
the document. For complex
applications that meant

much more traffic between
client and server
high loads at the server as the
number of users increases

©IKS, ETH Zürich. 195

Web Services Architecture
A popular interpretation of Web
services is based on IBM’s Web
service architecture based on
three elements:

1. Service requester: The potential
user of a service (the client)

2. Service provider: The entity that
implements the service and offers
to carry it out on behalf of the
requester (the server)

3. Service registry: A place where
available services are listed and
that allows providers to advertise
their services and requesters to
lookup and query for services

©IKS, ETH Zürich. 196

Main Web Services Standards

UDDI

SOAP

WSDL

The Web service architecture
proposed by IBM is based on two
key concepts:

architecture of existing
synchronous middleware
platforms
current specifications of
SOAP, UDDI and WSDL

The architecture has a
remarkable client/server flavor
It reflects only what can be done
with

SOAP (Simple Object Access
Protocol)
UDDI (Universal Description
and Discovery Protocol)
WSDL (Web Services
Description Language)

©IKS, ETH Zürich. 197

The Service Bus
The service bus can be seen as a refactoring of the basic Web service
architecture, where a higher degree of loose coupling has been added.

Service Bus

©IKS, ETH Zürich. 198

Benefits of Web services
One important difference with conventional middleware is
related to the standardization efforts at the W3C that should
guarantee:

Platform independence
(Hardware, Operating System)
Reuse of existing networking infrastructure
(HTTP has become ubiquitous)
Programming language neutrality
(.NET talks with Java, and vice versa)
Portability across Middleware tools of different Vendors
Web services are “loosely coupled” components that foster
software reuse
WS technologies should be composable so that they can
be adopted incrementally

©IKS, ETH Zürich. 199

WS Standards and Specifications

WS-Transactions
WS-Business Activities

SDOOGSA-DAIData Access

WS-Resource FrameworkStateful Resources

WS-EventingWS-NotificationEvent Notification

WS-ReliableMessagingWS-ReliabilityReliable Messaging

WS-MetadataExchange

WS-Management

WS-Trust, WS-Privacy
WS-SecureConversation

WSCDL
WS-Coordination

WS-Policy, SSDL
WS-Addressing

WSDMManagement

WS-Security
SAML, XACMLSecurity

WS-CAFTransactions

BPMLWS-BPELBusiness Processes
WSCIWSCLChoreography

UDDIDiscovery
XML Schema, WSDLDescription

XML, SOAPMessaging
HTTP, IIOP, SMTP, JMSTransport

©IKS, ETH Zürich. 200

Web services
SOAP

©IKS, ETH Zürich. 201

What is SOAP?
The W3C started working on SOAP in 1999. SOAP 1.0 was entirely based on
HTTP. The current specification is SOAP 1.1 (May 2000) is more generic by
including other transport protocols. Version 1.2 is at the working draft
stage.
SOAP 1.1 covers the following four main areas:

A message format for one-way communication describing how a
message can be packed into an XML document
A description of how a SOAP message (or the XML document that
makes up a SOAP message) should be transported using HTTP (for
Web based interaction) or SMTP(for e-mail based interaction)
A set of rules that must be followed when processing a SOAP message
and a simple classification of the entities involved in processing a
SOAP message. It also specifies what parts of the messages should be
read by whom and how to react in case the content is not understood
A set of conventions on how to turn an RPC call into a SOAP message
and back as well as how to implement the RPC style of interaction
(how the client makes an RPC call, this is translated into a SOAP
message, forwarded, turned into an RPC call at the server, the reply of
the server converted into a SOAP message, sent to the client, and
passed on to the client as the return of the RPC call)

©IKS, ETH Zürich. 202

The background for SOAP
SOAP was originally conceived as the minimal possible infrastructure
necessary to perform RPC through the Internet:

use of XML as intermediate representation between systems
very simple message structure
mapping to HTTP for tunneling through firewalls and using the Web
infrastructure

The idea was to avoid the problems associated with CORBA’s IIOP/GIOP
(which fulfilled a similar role but using a non-standard intermediate
representation and had to be tunneled through HTTP any way)
The goal was to have an extension that could be easily plugged on top of
existing middleware platforms to allow them to interact through the
Internet rather than through a LAN as it is typically the case. Hence the
emphasis on RPC from the very beginning (essentially all forms of
middleware use RPC at one level or another)
Eventually SOAP started to be presented as a generic vehicle for computer
driven message exchanges through the Internet and then it was open to
support interactions other than RPC and protocols other then HTTP. This
process, however, is only in its very early stages.

©IKS, ETH Zürich. 203

SOAP messages
SOAP is based on message
exchanges
Messages are seen as envelops
where the application encloses
the data to be sent
A message has two main parts:

header: which can be divided
into blocks
body: which can be divided
into blocks

SOAP does not say what to do
with the header and the body, it
only states that the header is
optional and the body is
mandatory
Use of header and body, however,
is implicit. The body is for
application level data. The header
is for infrastructure level data

SOAP Envelope

SOAP header

Header Block

SOAP Body

Body Block

©IKS, ETH Zürich. 204

From TRPC to SOAP messages

SOAP Envelope

SOAP header

Transactional
context

SOAP Body

Input param 1

Input param 2

Name of Procedure

RPC Request

SOAP Envelope

SOAP header

SOAP Body

Return parameter

Transactional
context

RPC Response (one of the two)

SOAP Envelope

SOAP header

SOAP Body

Fault entry

Transactional
context

©IKS, ETH Zürich. 205

SOAP and HTTP
A binding of SOAP to a
transport protocol is a
description of how a
SOAP message is to be
sent using that
transport protocol
The typical binding for
SOAP is HTTP
SOAP can use GET or
POST. With GET, the
request is not a SOAP
message but the
response is a SOAP
message, with POST
both request and
response are SOAP
messages (in version 1.2,

SOAP EnvelopeSOAP Envelope
SOAP header

Transactional
context

SOAP Body

Input parameter 1

Input parameter 2

Name of Procedure

HTTP POST

©IKS, ETH Zürich. 206

SOAP EnvelopeSOAP Envelope
SOAP header

Transactional
context

SOAP Body

Input parameter 1

Input parameter 2

Name of Procedure

HTTP POST

SOAP EnvelopeSOAP Envelope
SOAP header

Transactional
context

SOAP Body

Return parameter

HTTP Acknowledgement

SERVICE REQUESTER SERVICE PROVIDER

RPC call

H
T
T
P

en
gi
ne

SOAP
engine

Procedure

H
T
T
P

en
gi
ne

SOAP
engine

All together

©IKS, ETH Zürich. 207

SOAP and the client server model
The close relation between SOAP, RPC and HTTP has two main
reasons:

SOAP has been initially designed for client server type of
interaction which is typically implemented as RPC or
variations thereof
RPC, SOAP and HTTP follow very similar models of
interaction that can be very easily mapped into each other
(and this is what SOAP has done)

The advantages of SOAP arise from its ability to provide a
universal vehicle for conveying information across
heterogeneous middleware platforms and applications. In
this regard, SOAP will play a crucial role in enterprise
application integration efforts in the future as it provides the
standard that has been missing all these years

©IKS, ETH Zürich. 208

A first use of SOAP
Some of the first systems to
incorporate SOAP as an access
method have been databases.
The process is extremely simple:

a stored procedure is
essentially an RPC interface
Web service = stored
procedure
IDL for stored procedure =
translated into WSDL
call to Web service = use
SOAP engine to map to call to
stored procedure

This use demonstrates how well
SOAP fits with conventional
middleware architectures and
interfaces. It is just a natural
extension to them

stored procedure API

Stored procedure interfaces

database

resource manager

external
application

client

da
ta

ba
se

 m
an

ag
em

en
t s

ys
te

m

XML
mapping

HTTP
wrapping

HTTP
engine

SOAP engine

Web services
interfaces

D
at

ab
as

e
st

or
ed

 p
ro

ce
du

re
en

gi
ne

©IKS, ETH Zürich. 209

Automatic conversion RPC - SOAP

stubs,
runtime
adapters

SOAP system

Serialized
XML doc

Wrap doc
in HTTP
POST /
M-POST

SOAP system

Serialized
XML doc

Retrieve
doc from

HTTP
packet

N
ET

W
O

RK

HTTP
support

RPC based middleware

RPC based middleware

HTTP
support

client
call

stubs,
runtime
service
location

server
procedure

©IKS, ETH Zürich. 210

Web services
WSDL

©IKS, ETH Zürich. 211

What is WSDL?
The Web Services Description Language specification
is in version 1.1 (March 2001) and currently under
revision (v1.2 is in the working draft stage)
WSDL 1.1 discusses how to describe the different
parts that comprise a Web service:

the type system used to describe the interfaces
(based on XML)
the messages involved in invoking the service
the individual operations that make up the service
the sets of operations that constitute a service
the mapping to a transport protocol for the
messages
the location where the service resides
groups of locations that can be used to access the
same service

 l l d f d h b d

©IKS, ETH Zürich. 212

WSDL vs IDL
WSDL can be best understood when we approach it
as an XML version of an IDL that also covers the
aspects related to integration through the Internet
and the added complexity of Web services
An IDL in conventional middleware and enterprise
application integration platforms has several
purposes:

description of the interfaces of the services
provided (e.g., RPC)
serve as an intermediate representation for
bridging heterogeneity by providing a mapping of
the native data types to the intermediate
representation associated to the IDL in question
serve as the basis for development through an IDL
compiler that produces stubs and libraries that
can be use to develop the application

 l d l d f

©IKS, ETH Zürich. 213

Elements of WSDL
WSDL document

Types (type information for the document, e.g., XML Schema)

Message 1 Message 4Message 3Message 2

Operation 1 Operation 3Operation 2

Message 6Message 5

Port Type (abstract service)

Interface
binding 1

port 1

Interface
binding 2

port 2

Interface
binding 3

port 3

Interface
binding 4

port 4

Service (the actual service in all
its available implementations)

A
bs

tr
ac

t d
es

cr
ip

tio
n

of
 th

e
se

rv
ic

e
C

on
cr

et
e

de
sc

ri
pt

io
n

of
 th

e
se

rv
ic

e

©IKS, ETH Zürich. 214

Web services
UDDI

©IKS, ETH Zürich. 215

What is UDDI?
The UDDI specification is probably the one that has
evolved the most from all specifications we have
seen so far. The latest version is version 3 (July 2002):

version 1 defined the basis for a business service
registry
version 2 adapted the working of the registry to
SOAP and WSDL
version 3 redefines the role and purpose of UDDI
registries, emphasizes the role of private
implementations, and deals with the problem of
interaction across private and public UDDI
registries

Originally, UDDI was conceived as an “Universal
Business Registry” similar to search engines (e.g.,
Google) which will be used as the main mechanism
to find electronic services provided by companies
worldwide This triggered a significant amount of

©IKS, ETH Zürich. 216

Role of UDDI
Services offered
through the Internet to
other companies
require much more
information that a
typical middleware
service
In many middleware
and EAI efforts, the
same people develop
the service and the
application using the
service
This is obviously no
longer the case and,
therefore, using a
service requires much

©IKS, ETH Zürich. 217

UDDI data
An entry in an UDDI registry is an XML document composed of different
elements (labeled as such in XML), the most important ones being:

businessEntity : is a description of the organization that provides the
service.
businessService: a list of all the Web services offered by the business
entity.
bindingTemplate: describes the technical aspects of the service being
offered.
tModel: (“technical model”)is a generic element that can be used to
store addotional information about the service, typically additional
technical information on how to use the service, conditions for use,
guarantees, etc.

Together, these elements are used to provide:
white pages information: data about the service provider (name,
address, contact person, etc.)
yellow pages information: what type of services are offered and a list
of the different services offered
green pages information: technical information on how to use each
one of the services offered, including pointers to WSDL descriptions of
the services (which do not reside in the UDDI registry)

©IKS, ETH Zürich. 218

Summary of the data in UDDI

©IKS, ETH Zürich. 219

UDDI and WSDL

©IKS, ETH Zürich. 220

Summary UDDI
The UDDI specification is rather complete and encompasses many aspects
of an UDDI registry from its use to its distribution across several nodes and
the consistency of the data in a distributed registry
Most UDDI registries are private and typically serve as the source of
documentation for integration efforts based on Web services
UDDI registries are not necessarily intended as the final repository of the
information pertaining Web services. Even in the “universal” version of
the repository, the idea is to standardize basic functions and then built
proprietary tools that exploit the basic repository. That way it is possible
to both tailor the design and maintain the necessary compatibility across
repositories
While being the most visible part of the efforts around Web services, UDDI
is perhaps the least critical due to the complexities of B2B interactions
(establishing trust, contracts, legal constrains and procedures, etc.) . The
ultimate goal is, of course, full automation, but until that happens a long
list of problems need to be resolved and much more standardization is
necessary.

©IKS, ETH Zürich. 221

Web services
Service Oriented Architectures

©IKS, ETH Zürich. 222

What is SOA

SOA = Services Oriented Architecture
Services = another name for large scale components wrapped
behind a standard interface (Web services although not only)
Architecture = SOA is intended as a way to build applications and
follows on previous ideas such as software bus, IT backbone, or
enterprise bus

The part that it is not in the name
Loosely-coupled = the services are independent of each other,
heterogeneous, distributed
Message based = interaction is through message exchanges rather
than through direct calls (unlike Web services, CORBA, RPC, etc.)

©IKS, ETH Zürich. 223

The novelty behind SOA
The concept of SOA is not new:

Message oriented middleware
Message brokers
Event based architectures

The current context is different
Emergence of standard interfaces (Web services)
Emphasis on simplifying development (automatic)
Use of complex underlying infrastructure (containers, middleware
stacks, etc.)

Interest in SOA arises from a number of reasons:
Basic technology in place
More clear understanding of distributed applications
The key problem is integration not programming

©IKS, ETH Zürich. 224

The need for SOA
Most companies today have a large, heterogeneous IT infrastructure that:

Keeps changing
Needs to evolve to adopt new technology
Needs to be connected of that of commercial partners
Needs to support an increasing amount of purposes and goals

This was the field of Enterprise Application Integration using systems like
CORBA or DCOM. However, solutions until now suffered from:

Tightly integrated systems
Vendor lock-in (e.g., vendor stacks)
Technology lock-in (e.g., CORBA)
Lack of flexibility and limitations when new technology arises (e.g.,
Internet)

SOA is an attempt to build on standards (web services) to reduce the cost
of integration
It introduces very interesting possibilities:

Development by composition
Large scale reuse
Frees developers from “lock-in” effects of various kinds

©IKS, ETH Zürich. 225

SOA vs. Web services
Web services are about

Interoperability
Standardization
Integration across heterogeneous, distributed systems

Service Oriented Architectures are about:
Large scale software design
Software Engineering
Architecture of distributed systems

SOA is possible but more difficult without Web services
SOA introduces some radical changes to software:

Language independence (what matters is the interface)
Event based interaction (no longer synchronous models)
Message based exchanges (no RPC)
Composition and orchestration

©IKS, ETH Zürich. 226

An integration backbone

©IKS, ETH Zürich. 227

Enterprise architecture at Credit Suisse
Multiple backends, multiple frontends, flexible composition

Graphic courtesy of Claus Hagen, Stephen Murer and Hanspeter Uebelbacher
of Credit Suisse

