ETHzürich

ICT for Green: High Frequency Sensing and Analysis of Residential Power Consumption

Ubiquitous Computing Seminar Presentation by Tino Burri Supervisor: Christian Beckel 10.03.2015

Importance of context information in households

- Reduce the power consumption
 - Residential sector accounts for 30% of electricity
 - Sensing & analysis of residential power consumption
- Collecting data
 - Location & activity of people
- Home automation

Load Monitoring

- Intrusive Load Monitoring ILM
 - Distributed sensors
 - Very costly
 - Privacy issues
- Non-Intrusive Load Monitoring NILM
 - Single point sensing

Agenda

- Motivation
- NILM Approaches
 - NILM by Hart [1]
 - Patel et al. [2]
 - ElectriSense [3]
- Summary & Outlook

Pioneer Work: NILM by Hart (1992)

Goal: Identify appliances by inspecting the overall load profile

- 1. Identify changes in power draw level
 - Low frequency sampling (e.g. 1Hz)

Pioneer Work: NILM by Hart (1992)

- 1. Identify changes in power draw level
- 2. Locate these changes in signature space
- 3. Combine ON/OFF Events

NILM by Hart (1992) – Analysis

Advantages

+ Easy to detect and track some On-Off appliances

- Can not separate:
 - Similar appliances
 - Synchronous appliances
 - Variable-load appliances

High Frequency Sensing

Electrical Noise

- Electrical noise on power line
 - Transient noise (Patel *et al.*)
 - Continuous noise (ElectriSense)
- Created by fast switching of high currents
 - High in energy
- Devices have unique noise signatures
 - Stable over time

Noise Sources

- Resistive loads
 - No noise in operation
 - Transient noise in mechanical switch

- Loads with solid state switching
 - Synchronous to internal oscillator

R

Patel et al. (2007) – Sensing Infrastructure

Patel et al. (2007) – Hardware

Patel et al. (2007) - Software

- Sliding window acquires 1us sample
 - Store 2048 frequency components in vector
 - $||V_{t_i} V_{t_{i-1}}||_2 \ge \text{threshold}$
 - Detect 'start' and 'end' of pulse
 - Average over n vectors
 - Store feature vector
 - Support Vector Machine SVM
 - N-dimensional hyperplane
 - Labeled training data
 - Separates data in classes

0

50k

Hz

When can an event be recognized?

- Strong and reproducible signatures
- Loads drawing less than 30mW are undetectable
 - Solution: more than 10 bits resolution
- 0.5s delay between subsequent toggles
 - Due to sampling & processing latency

Type of events recognized by Patel et al.

Device Class/Type	Devices Observed	On to Off Transition Noise?	Off to On Transition Noise?	Continuously On Noise?
Resistive	Incandescent lights via a wall switch	Y	Y	Ν
	Microwave door light	Y	Y	N
	Oven light/door	Y	Y	N
	Electric stove	Y	Y	N
	Refrigerator door	Y	Y	N
	Electric Oven	Y	Y	N
Inductive (Mechanically Switched)	Bathroom exhaust fan	Y	Y	Ν
	Ceiling fan	Y	Y	N
	Garage door opener	Y	Y	N
	Dryer	Y	Y	N
	Dishwasher	Y	Y	N
	Refrigerator compressor	Y	Y	N
	HVAC/Heat Pump	Y	Y	N
	Garbage disposal	Y	Y	N
Inductive (Solid State Switched)	Lights via a dimmer wall switch	Y	Y	Y
	Fluorescent lights via a wall switch	Y	Y	Ν
	Laptop power adapter	Y	N	N
	Microwave Oven	Y	Y	Y
	Television (CRT, plasma, or LCD)	Y	Y	Ν

Patel et al. (2007) – Evaluation

- Deployment in six homes
 - Home 1 with a six-week period
 - Homes 2-6 in one-week study
- Manually label each on-to-off event
- Overall accuracy of 88%

Home	Distinct events	Training set (events)	Test set (events)	Accuracy (%)
2	82	328	100	87
3	48	192	96	88
4	76	304	103	92
5	64	256	94	84
6	38	152	80	90

Training Phase

Results

| 17

Patel et al. (2007) – Analysis

EMI & SMPS

- SMPS switch mode power supplies
 - Creates continuous EMI
- EMI electromagnetic interference
 - Stable and unique for each device
 - EMI signatures independent of the electrical wiring
- ElectriSense analyzes EMI

ElectriSense – Hardware

- Motor voltage noise
 - Continuous breaking/connecting of motor brushes
 - Synchronous to AC frequency and its harmonics
- SMPS voltage noise
 - Synchronous to internal oscillator (e.g. 10kHz)
- Filter out AC frequency (60Hz)
- Bandpass 36.7kHz to 30MHz
- Analog-Digital-Converter

Digitized signal streamed to software

ElectriSense – Software

ElectriSense – Software (2)

ElectriSense – Evaluation

- Actuate each appliance on/off
 - Isolate signature
- Label and store signatures in XML database
 - Goal: reuse database
- 2576 electrical events
- 91.75% accuracy

Results

Training Phase

ElectriSense – Analysis

- + Detect overlapping events
- + Distinguish two devices of same model
- + Independent of plug-in location
- + EMI signal is independent of the home
- Expensive training phase
- Resistive loads
- Load and state of appliance

Advantages

Drawbacks

Gupta *et al.*: ElectriSense [2]

- Combine all approaches
- Extract temporal features
- Build a Finite State Machine
- Crowdsourcing

References

- G. W. Hart, Original NILM by MIT
 Nonintrusive Appliance Load Monitoring
 Proceedings of IEEE 1992
- (2) S. N. Patel, School of Interactive Computing, Georgia Institute of Technology At the Flick of a Switch: Detecting and Classifying Unique Electrical Events on the Residential Power Line UbiComp 2007
- (3) S. Gupta, Electrical Engineering UbiComp Lab, University of Washington ElectriSense: Single-Point Sensing Using EMI for Electrical Event Detection and Classification in the Home UbiComp 2010
- M. Zeifman, Center for Sustainable Energy Systems, Cambridge Nonintrusive Appliance Load Monitoring: Review and Outlook IEEE Transactions on Consumer Electronics 2011
- (5) J. Liang, CLP Research Institute, Hongkong Load Signature Study—Part I: Basic Concept, Structure, and Methodology IEEE Transactions on Power Delivery 2010