ETH zürich

Hand Pose Estimation

Matthew Krenik Advisor: Fabrizio Pece

Agenda

- What is Hand Pose Estimation?
- Why does it matter?
- How does it work?
- What has been done?

What is Hand Pose Estimation?

 Estimate full Degree of Freedom (DOF) of a hand from depth images

- This is a tough problem, especially to perform in real time!
- Not to be confused with "hand shape estimation"

ETH zürich

Why Does it Matter?

- More than just gestures
- Ideal for continuous input applications
- Links your hand dexterity into a computer model
- Will it redefine how we interact with computers??

Gaming

Design / Engineering

Robot Hand Control– Surgery? Industry?

Communication – Sign Language

How Does it Work?

- Its going to take some time to explain
- Starting from the ground up!
 - Decision trees
 - Ensemble techniques
 - Random forests
 - Body Pose estimation
 - Hand Pose Estimation

 Assumption is that everyone has a very basic idea of what machine learning is and does

Machine Learning

- Goal:
 - Given training data T with entries (x, y)
 - Find a model that estimates y for unseen x
 - This is called prediction
- Quality Measurement:
 - Minimize the probability of model prediction errors on future data
- What are some models?
 - Linear Regression
 - Support Vector Machines
 - Decision Trees!

Decision Trees

- Very intuitive
- Each node asks a question about a feature of the data
- Propagates through the tree depending on the answer to each question
- When algorithm gets to the end, the decision tree makes a classification

How to grow a tree from data?

- In what order do we ask the questions (test features)?
 - Each possible tree has an amount of entropy
 - Test out all possible questions for a node, and choose the one that reduces the entropy the most (largest information gain)
- How do nodes make decisions based on the features?
 - Same way!
 - Choose a decision boundary that gives the largest information gain

How to grow a tree from data?

Decision Trees: A Pretty Good Model!

Ensemble Learning

- Two competing methodologies:
 - Traditional: Build one really good model
 - Ensemble: Build many models and average the results
- Build a ton of "pretty good" models
- Combine them into one "pretty awesome" prediction!
- Important for individual models to not be correlated, otherwise there is a strong tendency to overfit
- So we add randomness!

Ensemble Techniques

- Bootstrap Aggregation (Bagging)
 - Take a random subsample from the training set T, with replacement
 - Train each model on a different subsample
 - Classification is the majority vote; Regression is the average
- Random Forests: Multiple, randomized decision trees
 - 1. Bagging
 - 2. Randomized Node Optimization: choose random set of questions
 - Number of questions affects the correlation of the trees
 - 3. Decision boundary of the decision trees: conic, linear, etc.
 - 4. Depth of the component decision trees
 - More depth means there will be more overfitting

Example: Different Trees

Example: Different Trees

Training points x_1 x_1

Testing different trees in the forest

Example: Different Trees

Testing different trees in the forest

Example: Random Decision Forest

Example: Multi-class Decision Trees

Example: Comparison to SVM Model

A quick look at body pose estimation

- Body Pose Estimation Pipeline
- Technology found in consumer devices, like the Kinect
- Very similar to hand pose estimation

Hand Pose Estimation Pipeline

What makes Hand Pose tough?

- Hand is much smaller than the body, but still has 22 DOF
- Self occlusion is very common and severe
- Can be rotated in any direction (body is always upright)
- Real depth data can be difficult to label

Some ideas..

- Restrict the viewing area of the hand
- One Advantage: Hands are fairly invariant among humans
- Train with synthetic data, rendered from 3D models

Train based on Synthetic Data

- Use 3D hand models to generate data
- Train the Random Decision Forests using this data

Hand Pose Estimation Pipeline

Pixel Classification

One Tree

Two Trees

Three Trees

Mean shift local mode finding

- Algorithm used to determine where the joints are
- Each pixel is given a weighted Gaussian kernel
- Weight is determined by class probability times depth
- Gradient ascent from many points finds the local maxima
- Highest local maxima determines the joint
- Threshold the scores to filter out non-visible joints

Joint Determination

Hand Pose Estimation Algorithm

Strengths

- Very fast
- Robust to fast movements and noise
- No initialization needed
- Can run on a GPU for interface applications or games

Issues

- Training must be done offline
- Number of images ~1-10M, takes 25-250 GB of data
- Number of operations is huge even with simple algorithm

Limitations of Single Layer RDF

- Difficult to generate every possible hand pose
- Dataset size is huge!
- Hard to capture the variation in the data set
- More variation \rightarrow deeper trees \rightarrow more RAM/memory
- Solution: Divide into sub problems and solve with separate RDFs
- Lower variation \rightarrow lower complexity \rightarrow less RAM/memory

Multi-layered RDFs for Hand Pose

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Input Layer
ようして ようして ようして ようして して して して して して して して して して	Cluster Classification Layer
	Cluster Layer
	Pose Estimation Layer
🍝 🤌 🛃 🖕	Output Layer

#### **Two Structures of Multi-layer RDFs**

#### Local Expert Network

- Hand Shape Classification gives each pixel a label
- Train local expert forests for each pixel label
- Expert forest depends on pixel label; each pixel is classified

#### Global Expert Network

- Hand Shape Classification gives each pixel a label
- The hand shape is determined by pixel voting
- Train global expert forests for each pixel label
- Expert forest depends on hand shape label; each pixel is classified

#### **Local Expert Network**



#### **Global Expert Network**



#### **Training a Multi-layer RDF**

- Given the same data as before (hand shape not given)
- 1. Cluster the data
- 2. Train Hand Shape Classifier based on all clusters
- 3. Train each Pixel Classifier based on a specific cluster

#### Which is better? GEN or LEN

- Global Expert Networks average class distributions →
  More robust to noise
- Local Expert Networks use info from each pixel → Better at generalizing unseen data

#### **Test: American Sign Language**



#### Results

Huge improvement over single-layer RDFs

Method	Single–layered RDF	GEN	LEN
Per Pixel	68.0%	91.2%	90.9%



#### Results

Remaining errors are concentrated on very similar poses



# Summary

- What is Hand Pose Estimation?
  Determine the joint positions to fix all DOFs of the hand
- Why does it matter?
  Continuous Input Applications
- How does it work?

**Randomized Decision Forests** 

What has been done?

Add multiple layers for increased performance.

#### References

- [1] Keskin- Hand Pose Estimation and Hand Shape Classification Using Multi-layered Randomized Decision Forests
- [2] Thompson-Real Time Continuous Pose Recovery of Human Hands Using Convolutional Networks
- [3] Qian- Realtime and Robust Hand Tracking from Depth
- [4] Tang- Latent Regression Forest: Structured Estimation of 3D Articulated Hand Posture
- [5] Oikonomidis Evolutionary Quasi-random Search for Hand Articulations Tracking
- [6] Wang 6D Hands: Markerless Hand Tracking for Computer Aided Design
- [7] Hilliges Advanced topics in Gesture Recognition Part II

#### **Questions?**

#### **Appendix: Getting Hand Shape from Hand Pose**

- Hand shape is just shape information "fist", "flat", etc.
- Hand pose is specific joint angles for every DOF
- With hand pose, can use SVM to determine hand shape very robustly