Domestic Robots

a case study on security in ubiquitous computing

Thomas Knell
Ubiquitous Computing Seminar
15.4.2014
Defining Robot

There exists no universally accepted definition of a robot

- Any automatically operated machine that replaces human effort, though it may not resemble human beings in appearance or perform functions in a humanlike manner.

 – Encyclopaedia Britannica

- A robot is a cyber-physical system with sensors, actuators and mobility.

- I can't define a robot, but I know one when I see one.

 – Joseph Engelberger (pioneer in industrial robotics)
Example 1: Cleaning Robots

Roomba

MyWindoro
Example 2: PR2

PR2 is a robotics research and development platform that lets you innovate right out of the box. No more building hardware and software from scratch.

http://www.willowgarage.com/pages/pr2/overview
Example 3: Atlas

Atlas is a high mobility, humanoid robot designed to operate outdoors, even on extremely rough terrain.

Perception of Robots

Are people positive or negative towards robots?

personal level

- Survey from 2007
- 240 Participants

What do people expect from robots?, C. Ray et al.
Stakeholder expectations

• New appliance: The household robot

• Users may have:
 - Incorrect preconceptions
 - No point of reference to understand the robot

• Designers will have to either:
 - Create very intuitive products, or
 - Integrate training course
What is Security?

- **Security:**
 - Systems behave as intended even in the presence of an adversary

- **Safety:**
 - Systems behave as intended even in the presence of accidental failures
Network Security Goals

- **Confidentiality**
 - Encryption

- **Integrity**
 - MAC, Digital Signature

- **Availability**
 - Redundancy, more Bandwidth

And More:

- Authentication
- Accountability
- Non-repudiation
- Privacy
Secure Communication Channel

• Confidential channel
 - No eavesdropping possible on information sent

• Authentic channel
 - Sender is the one he claims to be and
 - Content is original

• Secure channel
 - Authentic and confidential channel
Attack Classification

Passive attacks

Confidentiality
- Compromise of content
- Traffic analysis

Active attacks

Availability
- Denial of service

Integrity and Authenticity
- Modification
- Fabrication
- Replay

Classification due to Steve Kent, BBN Technologies
Timeline: Computers

1944 Colossus
1946 ENIAC
1951 UNIVAC
Timeline: Computers

1974
Altair 8800

1977
Apple II

1981
IBM PC

1982
Commodore 64

1984
Apple Macintosh

The Future of Household Robots, T. Denning
Timeline: Computers
Timeline: Computer Security Attacks

1960-1970 Phone Phreaking
Timeline: Computer Security Attacks

1980s
The 414s break into 60 Computer systems
Timeline: Computer Security Attacks

1986
“The Brain” Virus

The Future of Household Robots, T. Denning
Timeline: Computer Security Attacks

2000s
DDoS Attacks

The Future of Household Robots, T. Denning
Timeline: Computer Security Attacks

- Rootkits
- Trojan Horses
- Botnets
- Phishing
- Keyloggers
- Cross-Site Scripting
- etc.
Timeline: Computer Security Attacks

Observations:
- The attack rate increases
- The attacks lag behind the technology
Timeline: Robots

1979
Robotics Institute founded at Carnegie Mellon University
Timeline: Robots

1982
WABOT-2 accompanies people on a keyboard instrument
Honda founds Humanoid Robot Division

1986
Timeline: Robots

The Future of Household Robots, T. Denning
Timeline: Robots

2001
Paro therapeutic seal
Timeline: Robots

The Future of Household Robots, T. Denning
Timeline: Robots

Observations:
- No large-scale attacks on robot security yet

Recall (computer security):
- The attack rate increases
- The attacks lag behind the technology
A Spotlight on Security and Privacy Risks with Future Household Robots: Attacks and Lessons
Rovio

- For adults
- Telepresence
- Home surveillance
- Check up on relatives
- Follows pre-programmed IR beacons
- Controlled via web interface
Spykee

- Toy for children
- Assembled and configured by children
- Telepresence: Parent can tuck in kids when out of town
- “Spy” robot
- Controlled via program
Discovered Vulnerabilities
Remote Discovery
Eavesdropping

Neighbor or Hacker in a car

Intercepting Credentials (MITM)

Can intercept login credentials

www.spykeeworld.com
Physical Takeover

- With credentials: Drive the robot anywhere
- Access the AV stream at any time
Possible Attacks

- **Robot vandalism**
 - Damage fragile object
 - Knock object off of a table
 - Damaging the robot itself (robot suicide)

- **Manipulate Objects**
 - Use mobility to locate (physical) key
 - Take image of a key
 - Pick up and hide key

- **Eldercare**
 - Robot used to trip an elder
 - Play noises and speech to confuse elder
Mechatronic Security
and
Robot Authentication
Robot as Living Individuals

- Born at some point
 - Has non-clonable DNA
 - Gets a birth certificate
- Starts usual transactions with its environment
 - Learning, developing its knowledge and capabilities
- Gets old
 - Has to be repaired, or
 - dies
Bio-Inspired Robot Identity

- **Biological mutation**
 - Permanent irremovable change

- **Electronic mutation**
 - Simulated change

- **e-DNA**
 - Generate e-DNA chain from e-Mutation
Detecting Cloning Attack

- Cloning almost impossible
 - Crack mutated identity
 - Copy all robot transactions history

- Detect Cloning Attack
 - Two G units with same properties
 - Each unit G generates new trace
 - G' and G'' most likely different
 - Both systems claim to be G ≤
 - Identification process will fail
Mechatronic Security Goals

• Robot is provable witness of event
• Robot can prove having performed action
• Robot cannot falsely claim to have performed action
Risks of Tomorrow
Risks of Tomorrow

• Robots for elders
 − Exoskeleton for mobility
 − Lifting robot
Risks of Tomorrow

• Robots for elders
 - Exoskeleton for mobility
 - Lifting robot

• Robots for children
 - As companions or as therapy for unique emotional needs
Risks of Tomorrow

• Robots for elders
 - Exoskeleton for mobility
 - Lifting robot

• Robots for children
 - As companions or as therapy for unique emotional needs

• Robots that use tools
Risks of Tomorrow

• Robots for elders
 − Exoskeleton for mobility
 − Lifting robot

• Robots for children
 − As companions or as therapy for unique emotional needs

• Robots that use tools

• Robots with sophisticated A.I.
Are the Risks real?

Potential types of attackers

- Terrorists
- Competitor
- Acquaintance
- ID Thief
- Prankster
- Governments
Conclusion

• Spykee and Rovio robots are “only” toys
 - Security not first priority
 - Vulnerabilities not specific to robots
 ▶ Can be easily fixed

• Future robots more complex
 - Even developers don't understand reasons for behavior
 - Difficult to detect an enemy's attack
 - How to prevent the robot from leaking information?

• Young area of research
 - Lack of detailed studies
 - Difficult to predict technology
Questions?