Domestic Robots

a case study on security in ubiquitous computing

Thomas Knell Ubiquitous Computing Seminar 15.4.2014

Defining Robot

There exists no universally accepted definition of a robot

 Any automatically operated machine that replaces human effort, though it may not resemble human beings in appearance or perform functions in a humanlike manner.

– Encyclopaedia Britannica

 A robot is a cyber-physical system with sensors, actuators and mobility.

 A Spotlight on Security and Privacy Risks with Future Household Robots: Attacks and Lessons, T. Denning et al.

• I can't define a robot, but I know one when I see one.

– Joseph Engelberger (pioneer in industrial robotics)

Example 1: Cleaning Robots

Roomba

MyWindoro

Example 2: PR2

PR2 is a robotics research and development platform that lets you innovate right out of the box. No more building hardware and software from scratch.

http://www.willowgarage.com/pages/pr2/overview

Example 3: Atlas

Atlas is a high mobility, humanoid robot designed to operate outdoors, even on extremely rough terrain.

http://www.bostondynamics.com/robot_Atlas.html

Perception of Robots

Are people positive or negative towards robots?

personal level

- Survey from 2007
- 240 Participants

What do people expect from robots?, C. Ray et al.

Stakeholder expectations

- New appliance: The household robot
- Users may have:
 - Incorrect preconceptions
 - No point of reference to understand the robot
- Designers will have to either:
 - Create very intuitive products, or
 - Integrate training course

What is Security?

- Security:
 - Systems behave as intended even in the presence of an adversary
- Safety:
 - Systems behave as intended even in the presence of accidental failures

Network Security Goals

- Confidentiality
 - Encryption
- Integrity
 - MAC, Digital Signature
- Availability
 - Redundancy, more Bandwidth

And More:

- Authentication
- Accountability
- Non-repudiation
- Privacy

Secure Communication Channel

- Confidential channel
 - No eavesdropping possible on information sent
- Authentic channel
 - Sender is the one he claims to be and
 - Content is original
- Secure channel
 - Authentic and confidential channel

Attack Classification

Classification due to Steve Kent, BBN Technologies

Timeline: Computers

Timeline: Computers

Timeline: Computers

A Spotlight on Security and Privacy Risks with Future Household Robots: Attacks and Lessons

Rovio

- For adults
- Telepresence
- Home surveillance
- Check up on relatives
- Follows pre-programmed IR beacons
- Controlled via web interface

Spykee

- Toy for children
- Assembled and configured by children
- Telepresence: Parent can tuck in kids when out of town
- "Spy" robot
- Controlled via program

Discovered Vulnerabilities

Remote Discovery

Eavesdropping

Intercepting Credentials (MITM)

Physical Takeover

- With credentials: Drive the robot anywhere
- Access the AV stream at any time

Possible Attacks

- Robot vandalism
 - Damage fragile object
 - Knock object off of a table
 - Damaging the robot itself (robot suicide)
- Manipulate Objects
 - Use mobility to locate (physical) key
 - Take image of a key
 - Pick up and hide key
- Eldercare
 - Robot used to trip an elder
 - Play noises and speech to confuse elder

Mechatronic Security and Robot Authentication

Robot as Living Individuals

- Born at some point
 - Has non-clonable DNA
 - Gets a birth certificate
- Starts usual transactions with its environment
 - Learning, developing its knowledge and capabilities
- Gets old
 - Has to be repaired, or
 - dies

Bio-Inspired Robot Identity

- Biological mutation
 - Permanent irremovable change
- Electronic mutation
 - Simulated change
- e-DNA
 - Generate e-DNA chain from e-Mutation

Detecting Cloning Attack

- Cloning almost impossible
 - Crack mutated identity
 - Copy all robot transactions history
- Detect Cloning Attack
 - Two G units with same properties
 - Each unit G generates new trace
 - G' and G" most likely different
 - Both systems claim to be G \ddagger
 - Identification process will fail

Mechatronic Security Goals

- Robot is provable witness of event
- Robot can prove having performed action
- Robot cannot falsly claim to have performed action

- Robots for elders
 - Exoskeleton for mobility
 - Lifting robot

- Robots for elders
 - Exoskeleton for mobility
 - Lifting robot
- Robots for children
 - As companions or as therapy for unique emotional needs

- Robots for elders
 - Exoskeleton for mobility
 - Lifting robot
- Robots for children
 - As companions or as therapy for unique emotional needs
- Robots that use tools

- Robots for elders
 - Exoskeleton for mobility
 - Lifting robot
- Robots for children
 - As companions or as therapy for unique emotional needs
- Robots that use tools
- Robots with sophisticated A.I.

Are the Risks real?

Potential types of attackers

- Terrorists
- Competitor
- Acquaintance
- ID Thief
- Prankster
- Governments

Conclusion

- Spykee and Rovio robots are "only" toys
 - Security not first priority
 - Vulnerabilities not specific to robots
 - Can be easily fixed
- Future robots more complex
 - Even developers don't understand reasons for behavior
 - Difficult to detect an enemy's attack
 - How to prevent the robot from leaking information?
- Young area of research
 - Lack of detailed studies
 - Difficult to predict technology

Questions?