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Motivation

= Heating, Ventilation and Air Conditioning (HVAC) systems
consume lots of energy

= Residential HVAC systems account for 9% of total energy
consumption in U.S. *

= Cost can be reduced by optimization
= Minimal cost for maximum comfort

* Gupta et al, Adding GPS-Control to Traditional Thermostats...
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Thermostat - History

= 1620

= Cornelis Drebbel
= Mercury thermostat for egg incubator

= 1830

= Andrew Ure
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Thermostats Today

Honeywell

= Manual Thermostat
= Manually adjust setpoint to desired temperature

= Adjust everytime when leaving/coming home ‘ )

= Sacrifice comfort

= Programmable Thermostat s
= Define a schedule for heating/cooling
= Often complicated interfaces
= Schedule changes

—_—
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Thermostat Numbers

Table 1. Thermostat usage statistics in the U.S (summarized from [4]).

(Inm millions) Estimated no. of homes not

using setback when away
Manual Thermostat 5 5 40.46
Programmable Thermostat | 14.60

Total T —=w,

U.S. DOE Residential Energy Consumption Survey [cited 08/15/2008]
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Smart Heating

= Sense occupancy
= Predict occupancy
» Adjust heating and cooling devices accordingly

= Users don’t have to manually adjust thermostat or define
schedules
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Occupancy Sensing — Devices

= PIR (Passive infrared occupancy sensors)
= Ultrasonic occupancy sensors

= Microwave sensors

= Audible sound/passive acoustic sensors

= Light barriers

= Video cameras

= Dual technology
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Occupancy Sensing - Examples

= Active RFID tags

= Send signal when in
range

= One per resident

= $22 per tag and $30 for receiver* |

= Per house '
= GPS Location

= Phones

= GPS loggers

= Per house

*prices and picture from www.ananiahelectronics.com
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http://www.ananiahelectronics.com/

Occupancy Sensing — Smart Thermostat

= Combining PIR and a magnetic reed switch on entrance door
= $5 per sensor (select set 3-5 sensors <$25, full set 12-20 <$100)
= Currently house level

(a) Motion Sensor (b) Door Sensor

Figure 3. The smart thermostat uses motion sensors (left)
and contact switches on doors (right).

Lu et al, Smart Thermostat
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Occupancy Sensing — Smart Thermostat

= Hidden Markov Model Y , = Occupant Activities

= States (y,):
= Active
= Away
= Sleep

= Observable variables

I.  Time of day (4-hour
granularity)

ii. Total number of sensor X , = Sensor Features
firings in dT
lii.  Binary features indicating presence of specific sensor firings

Lu et al, Smart Thermostat
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Occupancy Sensing — Smart Thermostat

= Trained using data trace from home with known
occupancy states

= P(y]y.,) and P(x/]y,) represented in discrete conditional
probabllity table

= Calculated using frequency counting

= To accommodate for the bigger domain in ii (number of
sensor firings) use generative Gaussian model

Lu et al, Smart Thermostat
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Occupancy Sensing - Results
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Lu et al, Smart Thermostat
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Occupancy Prediction

= Analyze recorded occupancy data

= Derive probabilities for occupancy in future time slots or
make guesses for return time

= Lots of different models for calculations
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Occupancy Prediction — Neurothermostat

= Using neural network

" Inputs
= Time of the day
Day of the week

= Occupancy in next 10,20,30 minutes from past 3 days and 4 past
same day of the week

= Occupancy in past 60,180,360 minutes

Mozer et ,ql, The Neurothermostat
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Occupancy Prediction - Neurothermostat

= Trained by
backpropagation Hidden
= Number of hidden
weights determined by

cross validation over
several models

= Needs a long time to train x
= 150 days TN\

Mozer et ,ql, The Neurothermostat
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Occupancy Prediction - PreHeat

= Occupancy represented as a binary vector

= Current day (up to current time) is compared to previous
days

= Use K most similiar days to derive occupancy for future
timeslots

Scott et al, PreHeat: Controlling Home Heating...
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Occupancy Prediction - PreHeat

past days

time

AN N o

AN

1.0

1.0

|| o

f‘ve most similar partial days
= 0 {(unoccupied) =1 {(occupied)

u
|
u
H B
=]
H

Scott et al, PreHeat: Controlling Home Heating...
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Occupancy Prediction - PreHeat

= Minor adjustments to algorithm
= Padding at beginning and end of the day
= Differ between weekdays and weekends

= Set threshold to individual preference
= Lower threshold - more comfort
= Higher threshold - more savings

= Limitations
= Only daily patterns are compared
= Could we change the weights?

Scott et al, PreHeat: Controlling Home Heating...
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Occupancy Prediction Results

90-Minute Prediction Accuracy vs. Humans
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Scott et al, PreHeat: Controlling Home Heating...
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Occupancy Prediction - GPS — Travel-to-home-
time

= Use GPS sensors to keep track of current location of
residents

= Evaluate minimal time to get home using MapQuest

= House is guaranteed to be at desired temperature upon
return

= Benefit increases for residents having longer commute
times

Gupta et al, Adding GPS-Control to Traditional Thermostats..
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Occupancy Prediction - Krumm and Brush

= GPS data from logger carried by residents for occupancy
sensing

= Linear matrix problem

A( Pweek ) —p

pgeneric weekday

Naway

(00..1..00|00...1..00)p =
naway-l'nhome

Krumm & Brush, Learning Time-Based...
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Occupancy Prediction - Krumm and Brush
Improvement

= Adding travel-to-home-time information

= Rule out return times deemed impossible by travel-to-
home-time

= Efflency gain by creating drive
time zones

90 minutes

Krumm & Brush, Learning Time-Based...
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Occupancy Prediction — Krumm and Brush
Results

Accuracy of Algorithms

1

= True positive rate over
confusion matrix
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Krumm & Brush, Learning Time-Based..
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Occupancy Prediction — Future Work

= Training of the models

= Warm up time?

= Pre-trained systems?

= Complete schedule changes (new jobs)?
= House based to room/zone based?

= How much can we apply directly?

= What needs adjustment/new approaches?
= Combination of systems

= Where does which algorithm work best?
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Apply gained information to Heating

= General Idea
= Go to setback temperature when occupants leave
= Have house at desired setpoint when occupancy expected

= Can we do more?
= Deep setbacks
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Results and Evaluation

= Measuring heating-cost depends on a lot of factors
= |solation
= Heating method
= Qutside temperature
= Price of oil, gas etc.

= \What about comfort?
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Comfort Model — Ashrae 55

= Comfort factors
= Air temperature
= Mean radiant temperature
= Air speed
= Humidity
= Metabolic rate
= Clothing level

= CBE Thermal Comfort Tool

www.wikipedia.org
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Comfort Model - MissTime

= Amount of minutes an occupied home is not at desired
temperature

= Evaluated over a day

= Allow for values within a difference of 1°C to account for
sensor discrepancies

= Does not take size of difference into account

= How about degree-hours? (How many degrees off for
how long)

Lu et al, Smart Thermostat
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Comfort Model - Neurothermostat

= Misery Cost
= EXpress misery in dollars
= Always 0 when not occupied
= Enables direct comparison to energy/oil cost

= New optimization problem:
= Minimize Total Cost = Misery Cost + Heating Cost

Mozer et al, The Neurothermostat
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Comfort Model - Neurothermostat

5 max(0,|A\—h|—¢)?
2460 25

m(o, h) = oa

= Variables
= 0 = occupancy (0/1)
h = temperature
= a = conversion from misery units to dollars
O = time interval
A = setpoint

Mozer et ,gl, The Neurothermostat
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Comfort Model - Neurothermostat

~ . s max(0,|\—h|—¢)?

m(o, h) = ooz ( 25 )
= p =loss in productivity in 24 hours (in paper 1 or 3)
= v = hourly salary
= a=yYp

= |n CH: 1 hour home at 15°C (instead of 20°C)
= Hourly salary ~ 35CHF - Misery Cost of 1.50CHF

Mozer et al, The Neurothermostat, www.admin.ch
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Results - SmartThermostat
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Lu et al, Smart Thermostat
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Results - SmartThermostat

= More sophisicated occupancy prediction can improve
miss time

= How does it work with other heating systems

Lu et al, Smart Thermostat
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Results - PreHeat
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Scott et al, PreHeat: Controlling Home Heating...
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Potential Savings for the US

= Dividing the US in to 5 climate zones

Climate Zones Locations
Zone 1 Minneapolis / St. Paul, MN
Zone 2 Pittsburgh, PA
Zone 3 Washington, D.C. / Stirling, VA
Zone 4 San Francisco, CA
Zone 5 Houston, TX

Table 3. Weather conditions used in our analysis

= Total Savings
= 113,9 billion kWh (=22 billion CHF)

= 38.22% of elelctricity used for heating and cooling
Lu et al, Smart Thermostat
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Summary

Great potential in energy saving

= Eliminates problem of people not using setbacks
Algorithms better in prediction than humans

Low cost high reward
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Future Work

= Which demographic is most suited for these approaches?
= Combination of different algorithms and implementations?

= What else can be done to make heating smarter and
more efficient?
= Comfort Models (Ashrae 55)
= Weather Data
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Thank you for your attention
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