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What is hand pose estimation?

Input Computer-usable form




Augmented Reality




Data glove

Utilizes optical flex sensors
to measure finger bending.

Advantage: High accuracy,
can provide haptic feedback.

Disadvantages: invasive,
long calibration time,
unnatural feeling, heavily
instrumented.



Thanks to cheap depth cameras...

Depth Camera || RGB Camera




...and increase in GPU Power
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Problems occuring

* Noisy data  Segmentation




Problems occuring

e Self-occlusion and viewpoint change:




Problems occuring

e 27 Degrees of freedom per hand -> 280 trillion hand poses:



Problems occuring

 Performance: For practical use, must be real time.
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Principle of operation




Existing schools of thought

* Model-based: * Discriminative:
—- Keeps internally track of — Maps directly from
current pose. observation to pose.
— Updates pose according — “Learn” from training data
to current pose and and apply knowledge to
observation. unseen data.

Processing




Short intro to Random Forests

Ensemble learning
Classification and Regression

Consists of decision trees

A decision tree:

Is top
part blue?

Is bottom
part green?

Is bottom
part blue?
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Short intro to Random Forests
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Features = «Properties» of data
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Short intro to Random Forests

Classification tree
training

Features = «Properties» of data

Data in feature space
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Short intro to Random Forests

Data in feature space

Classification tree 3 0 polelv) 4 3
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Features = «Properties» of data
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Short intro to Random Forests

Data in feature space

Classification tree 3 0 polelv) 4 3
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Features = «Properties» of data
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Short intro to Random Forests
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Data in feature space
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Building a classification tree

data before split class distribution
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Building a classification tree
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Building a classification tree
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Random feature sampling

T The full set of all possible node test parameters
T, CT For each node the set of randomly sampled features
p=|T;| Randomness control parameter.

For p = |t] no randomness and maximum tree correlation
Forp =1 max randomness and minimum tree correlation

Choose T; which splits the data with maximum information gain.
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Bagging

So Full training set

S§ © Sy Randomly sampled subset
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Prediction
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RF for pose estimation

Why Random Forests?
* Robust

* Fast
* Thorougly studied

How should we use them?
* Must choose what to split on.

e What should the labels be?
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Advanced body pose recognition
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depth image = bodyparts = 3D joint proposals
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Advanced body pose recognition

o Discriminative approach.
o Used in the Kinect.
o First paper to use synthetic training data.

o Basis for many future papers.
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Creating synthetic data
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Split funtion

foI,x) = d; (X | dIl(IX)) — (X I dI‘(fX))
di

X) : Depth at position x

0= (u,v)

[Shotton2011]
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Joint prediction
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Per-class accuracy vs. tree depth

Average per-class accuracy

60%

55%

50%

45%

40%

35%

30%

Real Test Set

== 900k training images
== 15k training images

5

10 15 20
Depth of trees

Accuracy increases as depth
of tree increases.

Overfitting occurs for 15k
training images.

More training images leads
to higher accuracy and less
overfitting.
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Negative Results

* Failure due to self-occlusion:

* Failure due to unseen pose:
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Unresolved issues

 To capture all possible poses, need to generate huge amount
of training data.

* Training RF on big training set means more trees and deeper
trees.

* Big amount of memory needed.
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Unresolved issues

 To capture all possible poses, need to generate huge amount
of training data.

* Training RF on big training set means more trees and deeper
trees.

* Big amount of memory needed.

e Solution: Divide training data into sub-sets and solve
classification for each set separately.
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Multi-layered Random Forest

o Cluster training data based / ~ \/ b ) Input Layer
on similarity. —
Cluster
o Train RF on and for each &gzk Clasilﬁcatlon
e ayer
cluster. QE%E fééé
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Clustering training data

o Cluster based on weighted differences.
o Penalize differences of viewpoint, finger positions.
« Label each cluster, labels refer to hand shape.

e Train Random Forest on clusters.
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Experts

o Use hand part labels.

o Train for each cluster a
separate Random Forest.

o Each forest is called Expert.
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Two prediction methods

o Global Expert Network:

— Feed input to first layer of Random Forest, average input, get
hand shape label.

—~ Feed input to corresponding expert, get hand part distribution.
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Two prediction methods

o Local Expert Network

— Feed input to first layer of Random Forest, get hand shape label
for each pixel.

— Feed each pixel to its corresponding expert, get hand part
distribution.
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Parts distribution to pose

 RDF returns the hand part distribution.

* Get centre of each distribution by utilizing mean shift.

Mean Shift

CIaSS|f|cat|on
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American Sig

n Language
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First layer accuracy on ASL

e 2-fold cross-validation: 97.8%
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e Confusion occurs for (m,n), (m,t) and (n,t)
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Confusions

e Confusion occurs for (m,n), (m,t) and (n,t)
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Second layer accuracy

Q = Number of clusters

MW Single Layered
MLENQ=5
WLENQ=15
BMLENQ=25
MGENQ=5
WGENQ=15

~ GENQ=25
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Problems

o Not feasible to capture all possible variations of hand with
synthetic data.

o Methods using only synthetic data suffer from synthetic-
realistic discrepancies.

o But: Using realistic training data expensive, due to manually
labelling them.

Synthetic Real

45



Problems

o Not feasible to capture all possible variations of hand with
synthetic data.

o Methods using only synthetic data suffer from synthetic-
realistic discrepancies.

o But: Using realistic training data expensive, due to manually
labelling them.

o Solution: Transductive Learning.
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Transductive Random Forest

o Transductive learning: learn from labelled data, apply
knowledge transform to related unlabelled data

« Estimate pose based on knowledge gained from both labelled
and unlabelled data.

Training Dataset 0
O  Labelled datapoints

€3 Unlabelled datapoints —
mmmm Tree split eahsnc"s}’nthetic

Transductive Learning: The

realistic-synthetic fusion are learned
by the transductive term 0{ o RREELEEEEET PP PP NI S
throughout the whole forest.

[Labelled and unlabelled data are

clustered via (,, by comparing

47
appearances of patches. Source space Target space

(Synthetic data S) (Realistic data A)



Overview

Viewpoint Classification: Viewpoint
classification 1s first perfromed at he

__top levels, controlled by the viewpont
term 0/, .

Joint Classification: At mud levels,
Qp determines classification of

joints, when most viewpoints are
classified.

Regression: To describe the
distribution of realistic data,

nodes are optimised for data
compactness via (/,and 0,
towards the bottom levels.
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Training data

o Training data consists of

labelled real data and
synthetic data, and
unlabelled real data

Labelled elements are image
patches, not pixels

Label consists of tuple (a,p,v):

—~ a=Viewpoint
— p = Label of the closest joint

— v =Vector containing all
positions of joint

a = «Front»

p = «Thumb»
v = (3x16)
coordinates
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Quality Function

« Randomly choose between the two:
Qapy =0Qa+(1-a)5Qp+(1-)(1-5)Q,
Qtss :Q%’Qu

| |

Transductive Term Classification-Regression Term
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Quality Function

Qa,pv :@Qa‘l_(1_05)/8@1)_'_(1_&)(1_/8)@’0

* @, : Measures quality of split with respect to viewpoint a
(p : Measures quality of split with respect to joint label p

° Qv : Measures compactness of vote vector v

o1



Quality Function Parameter

Measures the “purity” of the node with respect to
either the viewpoint a, or the joint label p

/ \
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0 otherwise 0 otherwise
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Quality Function

Qtss — Q%} Qu

* (@Q;: Measures image similarity between real data patches

* (@, : Measures purity based on the association between the
labelled and unlabelled data
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Kinematic Refinement

Hands are biomechanically constrained on the poses it can do.
Use this for our advantage.

Utilize kinematic refinement to enforce these constraints.
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Some results

RGB
Depth

FORTH

Classfication
(Ours)

Regression
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Error (mm)

Joint prediction accuracy

Quantitative results of the multi-view experiment
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Estimating pose of two hands?

« Just apply single hand pose estimator twice?
. What if both hands are strongly interacting?
« Additional occlusion must be accounted for.
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Dual hand pose estimation

4
!

« Model-based approach.

« Set up parameter space
representing all degrees of
freedom for both hands.

« Employ PSO to find best
parameters suiting
observation and current
configuration with respect
to a cost function.
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Sample parameter space
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X - Roll
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Cost function over param. space

A
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Initialization

Random sample of n particles
with random velocities.
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Iterating over parameter space

Update particle position
according to velocity

A

Update particle velocities
with regards to:

— Current velocity

— Local best position

— Global best position
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Tracking

« Use RGB image to create skin map.

. Segment depth image according to skin map.
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Tracking

« Cost function to optimize:
E(O,h,C) = P(h) + \, - D(O, h,C)

P(h): Penalizes invalid finger positions.

D(O,h,C): Penalizes discrepancies between hypothesis
h and observation O.
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Applying PSO

« Change particle velocity according to:
Vk+1,0 — w(Uk,i‘f—ClTl(Pk,i_xk,i)‘f—CQTQ(Gk_ﬂfk,le))

P..; = Best known position of particle i in generation k.
(=1 = Best known position of all particles in generation k.

« Apply PSO for each observation O. Exploit temporal
Information by sampling particles around previous
hypothesis.
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Some results
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Accuracy
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Future of Hand Pose estimation

 Academically solved

* Further research in areas of recovering more than pose, such
as hand model or 3D skin models.

o Including RGB image for prediction increases accuracy.

o Use of real data reduces synthetic-realistic discrepancies.
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