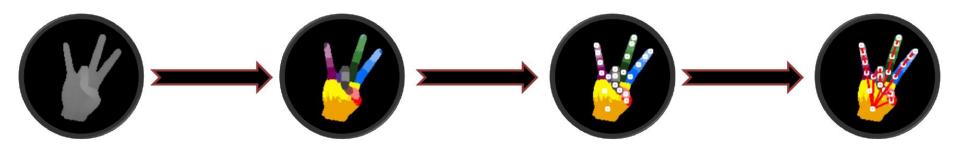
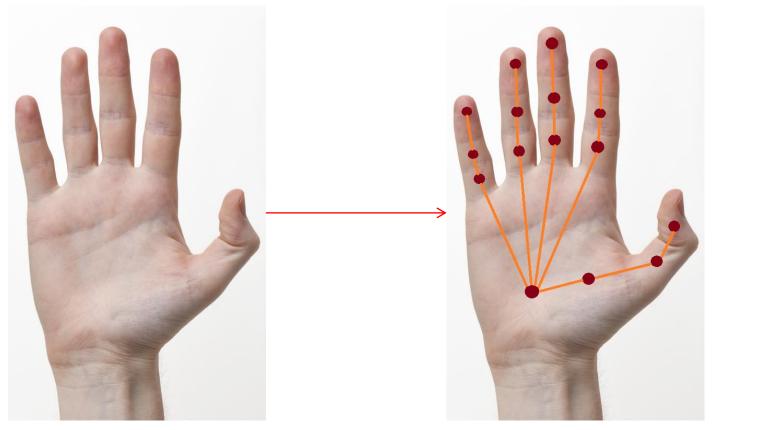
Gesture Recognition: Hand Pose Estimation



Adrian Spurr Ubiquitous Computing Seminar FS2014 27.05.2014

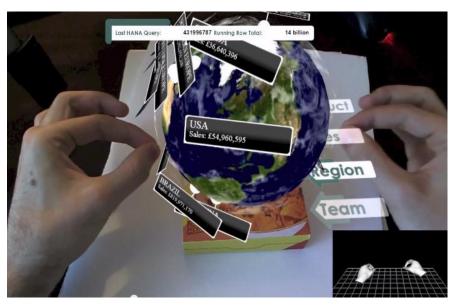
What is hand pose estimation?

Input



Computer-usable form

Augmented Reality



Robot Control

Gaming

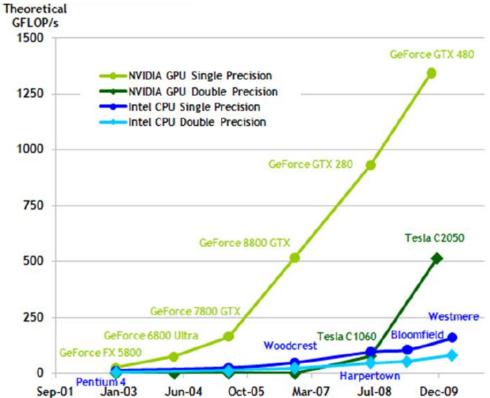
PC Control

Data glove

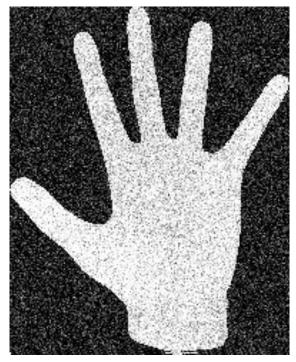
- Utilizes optical flex sensors to measure finger bending.
- Advantage: High accuracy, can provide haptic feedback.
- Disadvantages: invasive, long calibration time, unnatural feeling, heavily instrumented.

Thanks to cheap depth cameras...

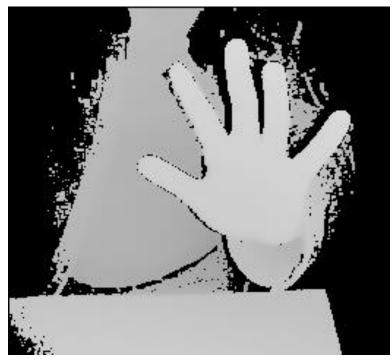
...and increase in GPU Power



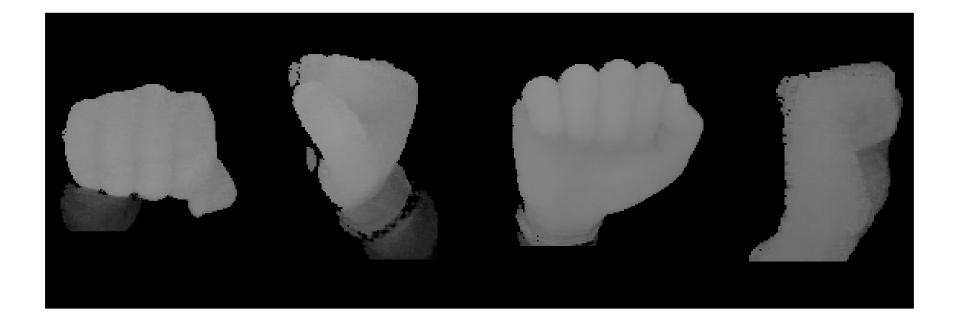
• Noisy data



• Segmentation



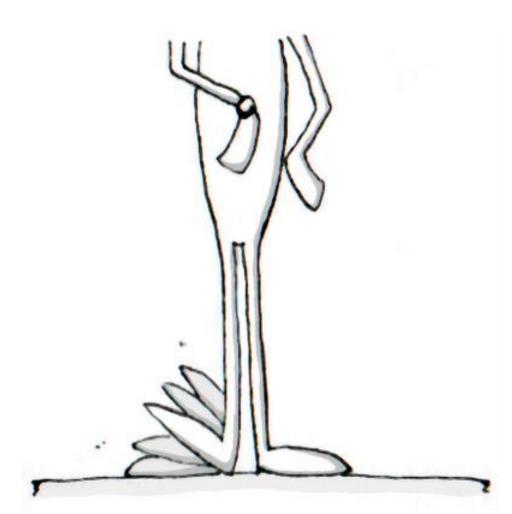
• Self-occlusion and viewpoint change:



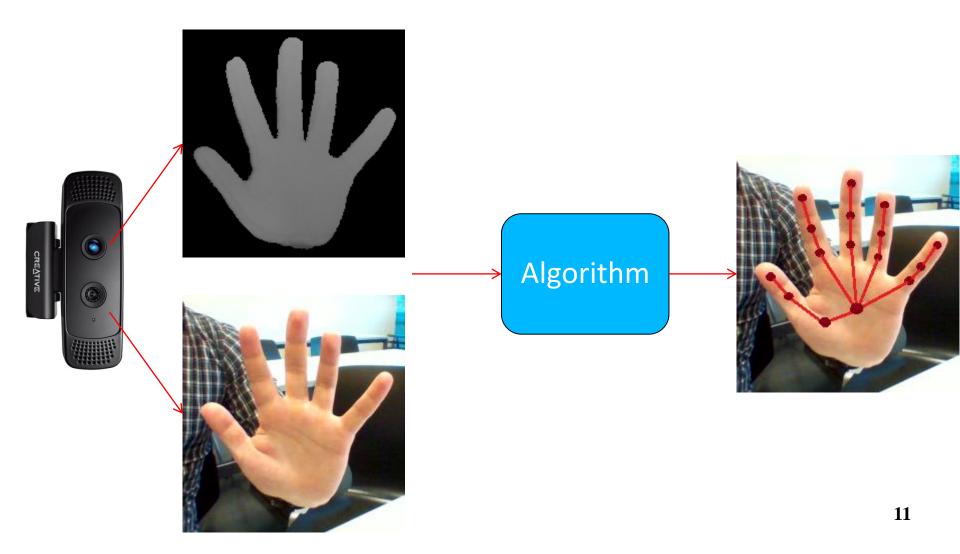
• 27 Degrees of freedom per hand -> 280 trillion hand poses:



• Performance: For practical use, must be real time.



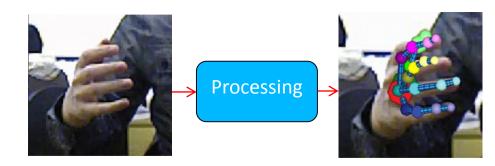
Principle of operation



Existing schools of thought

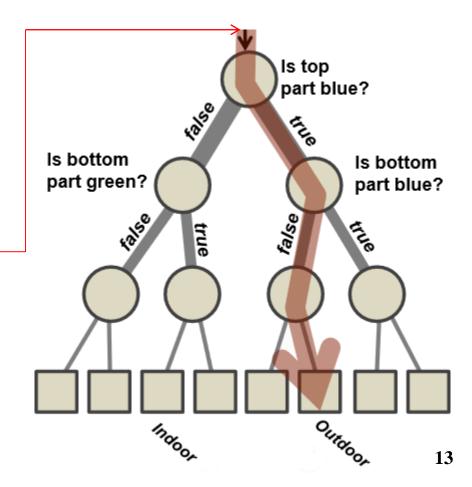
- Model-based:
 - Keeps internally track of current pose.
 - Updates pose according to current pose and observation.

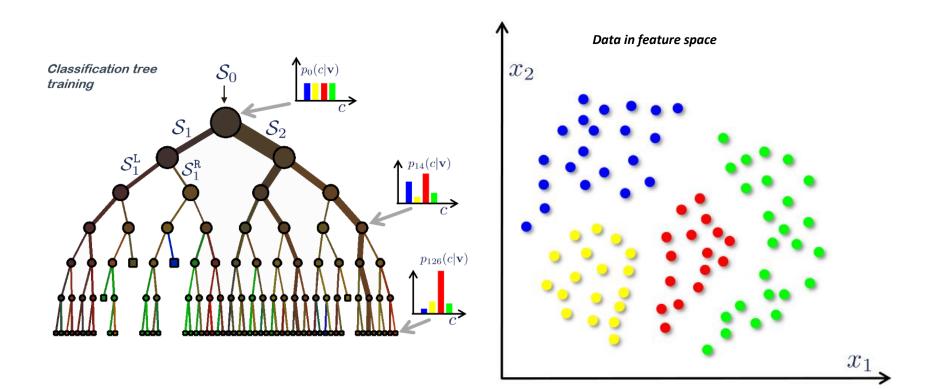
- Discriminative:
 - Maps directly from observation to pose.
 - "Learn" from training data and apply knowledge to unseen data.

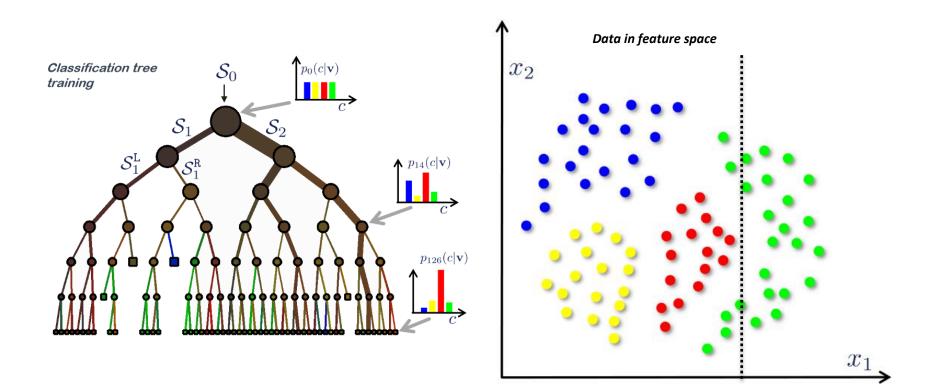


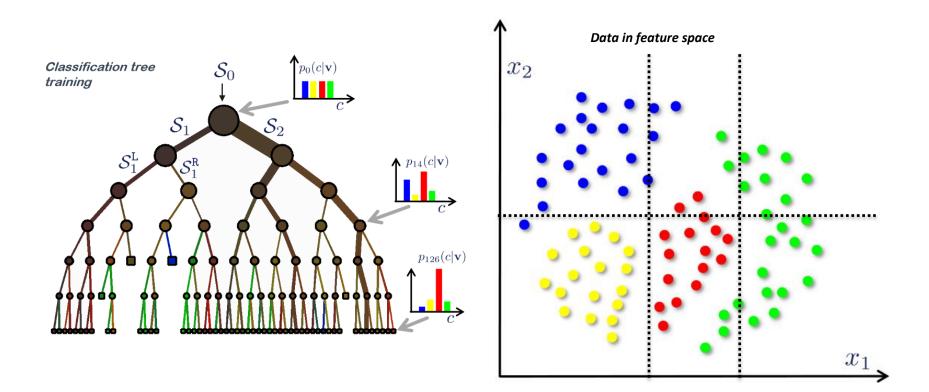
- Ensemble learning
- Classification and Regression
- Consists of decision trees

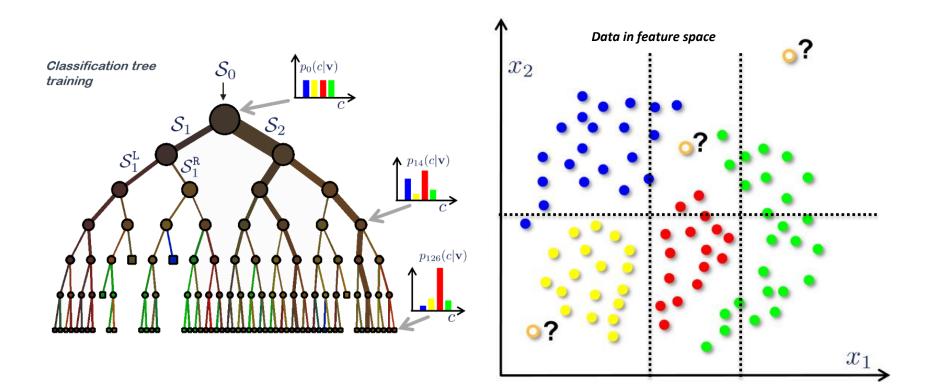
A decision tree:

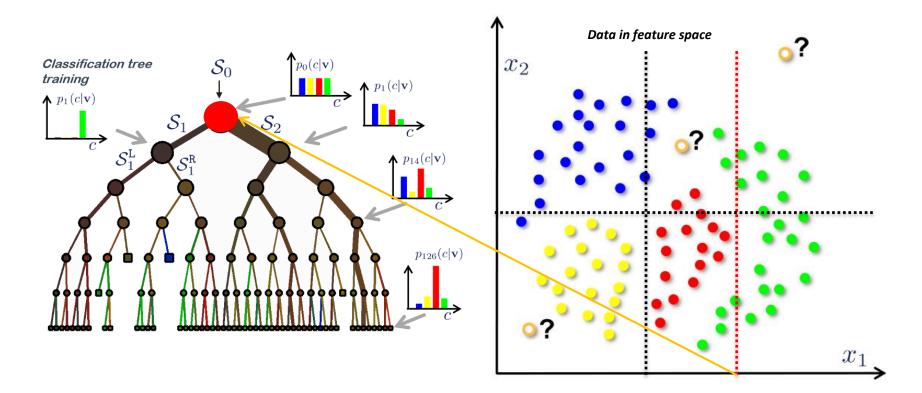




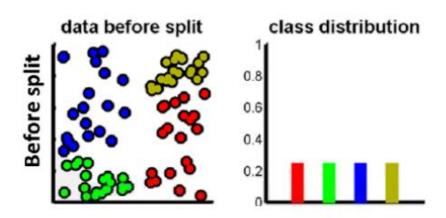


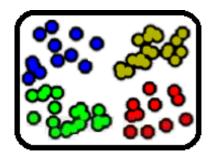






Building a classification tree

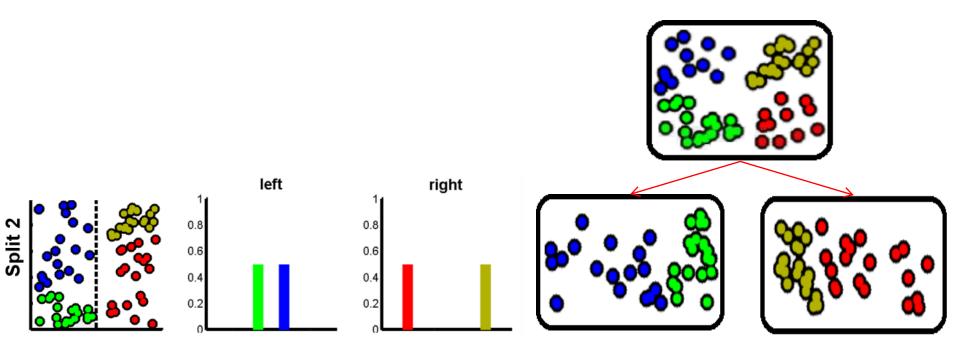




top bottom 0.8 0.8 Split 0.6 0.6 0.4 0.4 0.2 0.2

Building a classification tree

Building a classification tree



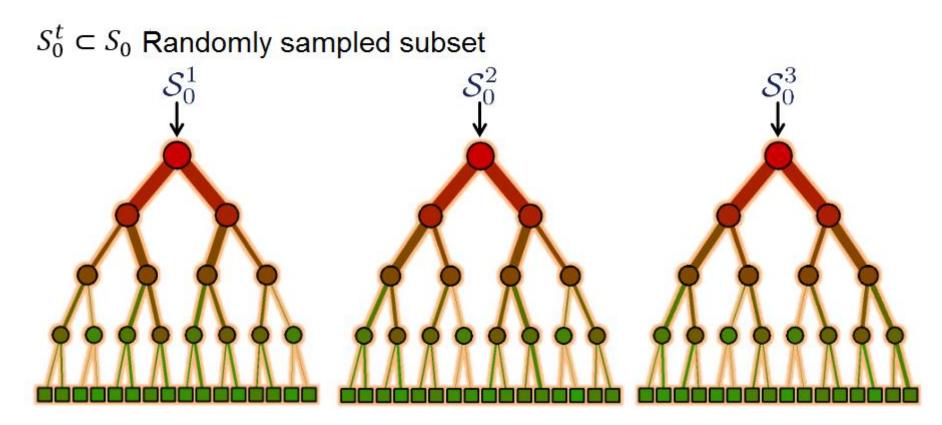
Random feature sampling

- \mathcal{T} The full set of all possible node test parameters
- $\mathcal{T}_j \subset \mathcal{T}$ For each node the set of randomly sampled features
- $\begin{array}{ll} \rho = |\mathcal{T}_j| & \text{Randomness control parameter.} \\ & \text{For } \rho = |\tau| & \text{no randomness and maximum tree correlation} \\ & \text{For } \rho = 1 & \text{max randomness and minimum tree correlation} \end{array}$

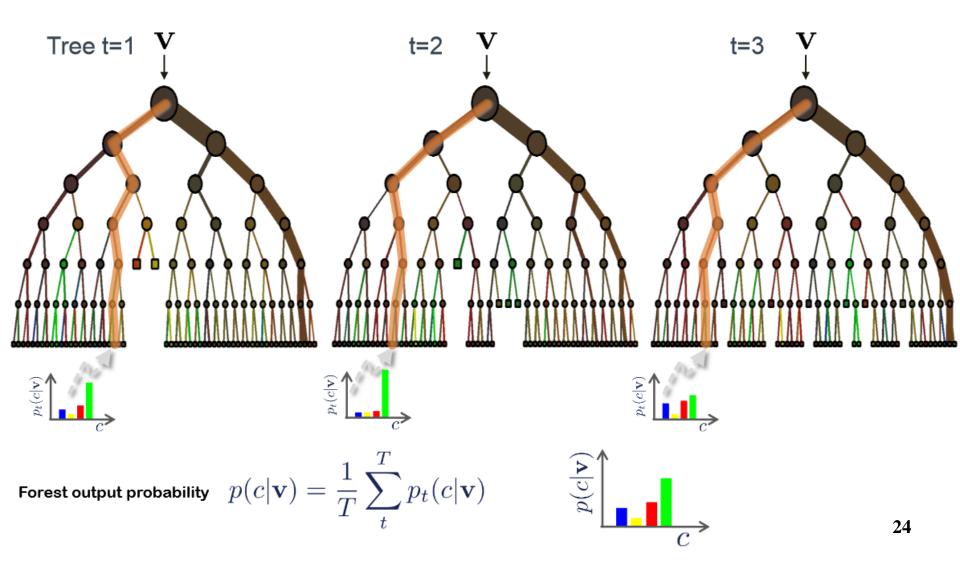
Choose T_j which splits the data with maximum information gain.

Bagging

S₀ Full training set



Prediction



RF for pose estimation

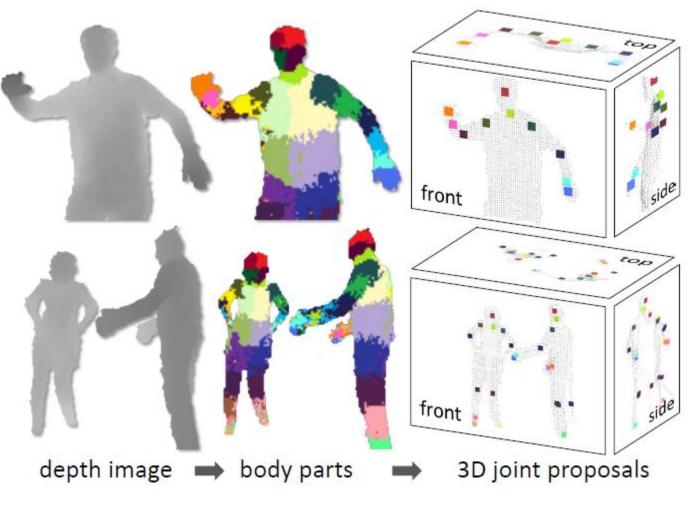
Why Random Forests?

- Robust
- Fast
- Thorougly studied

How should we use them?

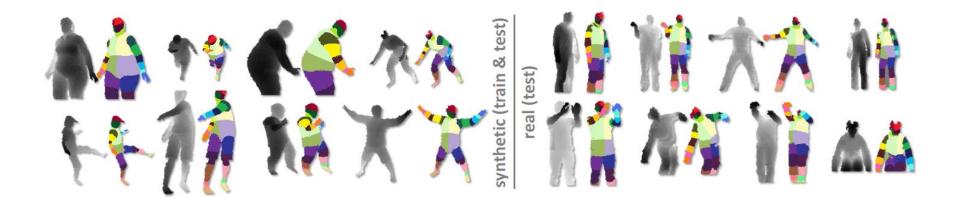
- Must choose what to split on.
- What should the labels be?

Advanced body pose recognition

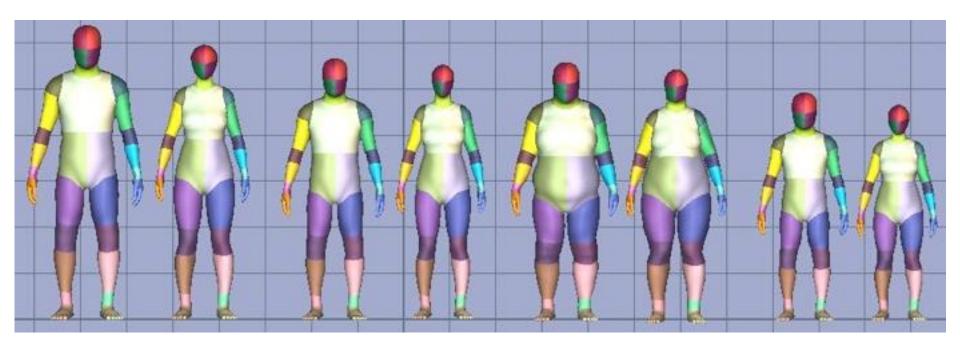


Advanced body pose recognition

- Discriminative approach.
- Used in the Kinect.
- First paper to use synthetic training data.
- Basis for many future papers.



Creating synthetic data



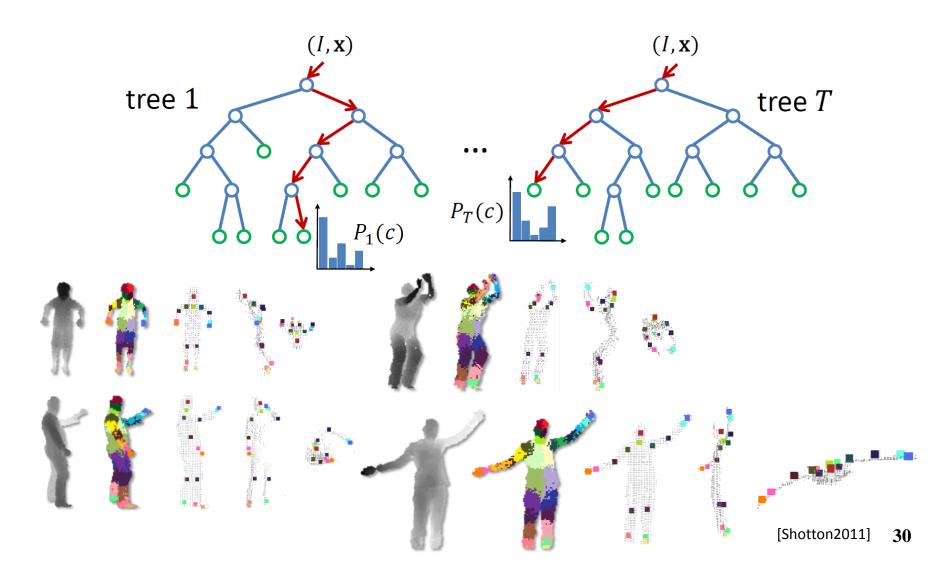
Split funtion

$$f_{\theta}(I, \mathbf{x}) = d_I \left(\mathbf{x} + \frac{\mathbf{u}}{d_I(\mathbf{x})} \right) - d_I \left(\mathbf{x} + \frac{\mathbf{v}}{d_I(\mathbf{x})} \right)$$
$$d_I(\mathbf{x}) : \text{Depth at position } \mathbf{x}$$

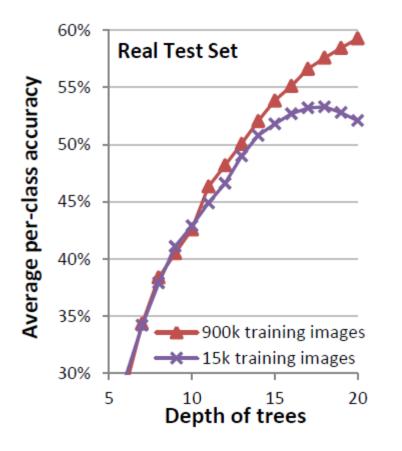
 $\theta = (\mathbf{u}, \mathbf{v})$

[Shotton2011]

Joint prediction



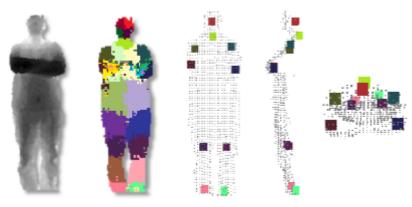
Per-class accuracy vs. tree depth



- Accuracy increases as depth of tree increases.
- Overfitting occurs for 15k training images.
- More training images leads to higher accuracy and less overfitting.

Negative Results

• Failure due to self-occlusion:



• Failure due to unseen pose:

Unresolved issues

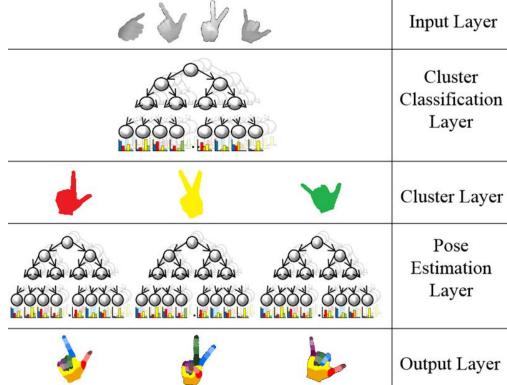
- To capture all possible poses, need to generate huge amount of training data.
- Training RF on big training set means more trees and deeper trees.
- Big amount of memory needed.

Unresolved issues

- To capture all possible poses, need to generate huge amount of training data.
- Training RF on big training set means more trees and deeper trees.
- Big amount of memory needed.
- Solution: Divide training data into sub-sets and solve classification for each set separately.

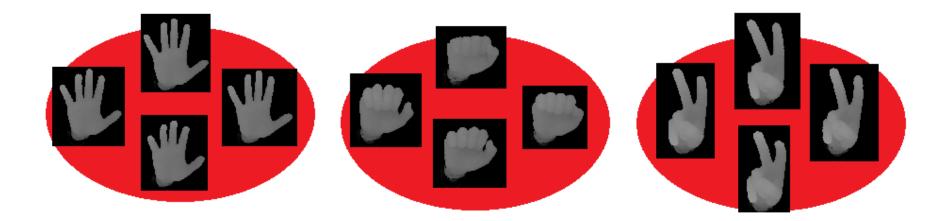
Multi-layered Random Forest

- Cluster training data based on similarity.
- Train RF on and for each cluster.
- First layer assigns input to proper cluster.
- Second layer gives the final hand part label distribution.



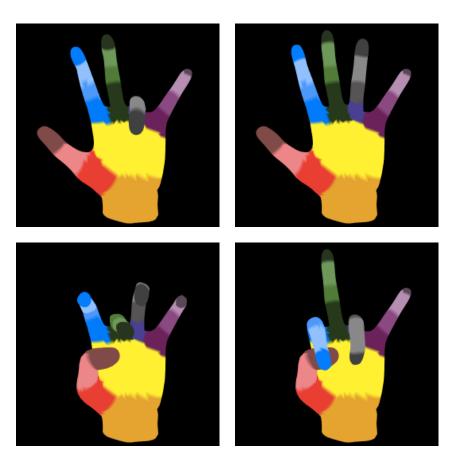
Clustering training data

- Cluster based on weighted differences.
- Penalize differences of viewpoint, finger positions.
- Label each cluster, labels refer to hand shape.
- Train Random Forest on clusters.



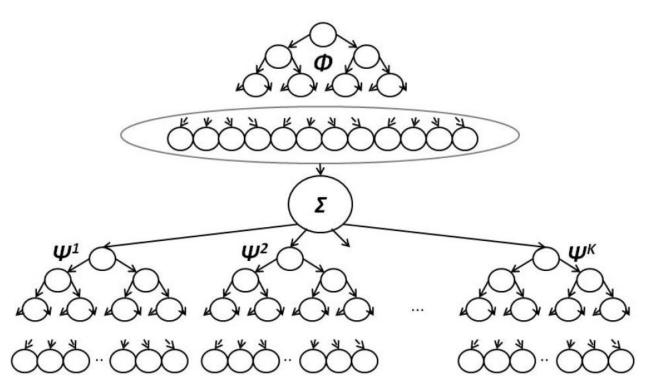
Experts

- Use hand part labels.
- Train for each cluster a separate Random Forest.
- Each forest is called Expert.



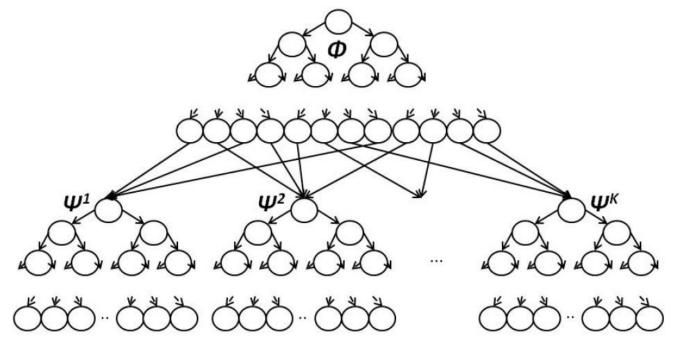
Two prediction methods

- Global Expert Network:
 - Feed input to first layer of Random Forest, average input, get hand shape label.
 - Feed input to corresponding expert, get hand part distribution.



Two prediction methods

- Local Expert Network
 - Feed input to first layer of Random Forest, get hand shape label for each pixel.
 - Feed each pixel to its corresponding expert, get hand part distribution.



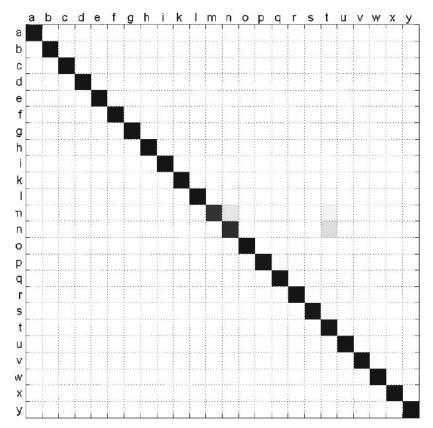
Parts distribution to pose

- RDF returns the hand part distribution.
- Get centre of each distribution by utilizing mean shift.

American Sign Language

First layer accuracy on ASL

• 2-fold cross-validation: 97.8%

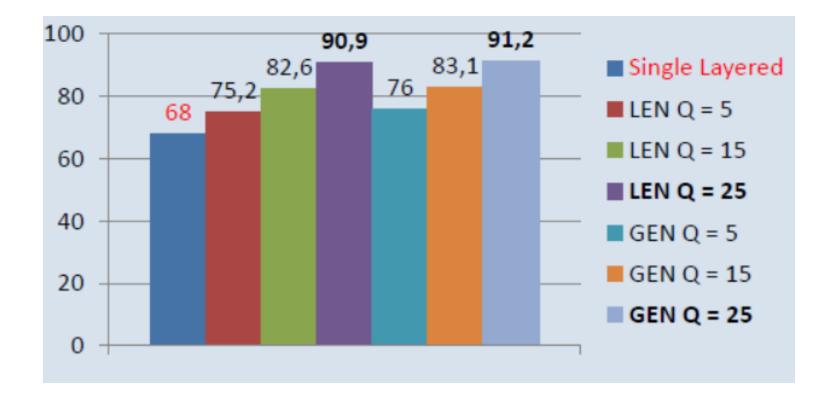


• Confusion occurs for (m,n), (m,t) and (n,t)

Confusions

• Confusion occurs for (m,n), (m,t) and (n,t)

Second layer accuracy



Q = Number of clusters

Problems

- Not feasible to capture all possible variations of hand with synthetic data.
- Methods using only synthetic data suffer from syntheticrealistic discrepancies.
- But: Using realistic training data expensive, due to manually labelling them.

Synthetic

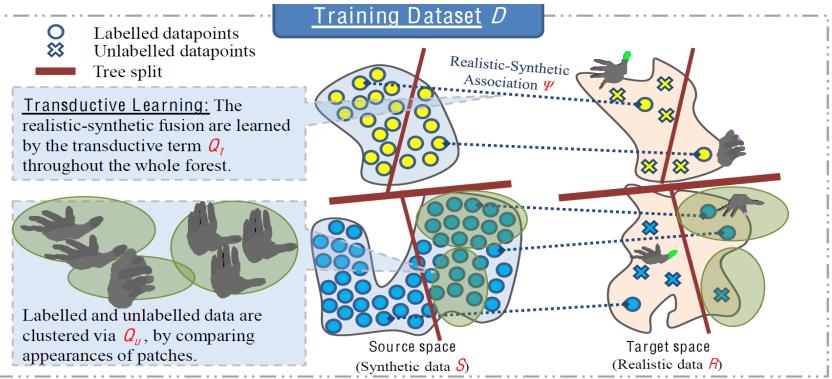
Real

Problems

- Not feasible to capture all possible variations of hand with synthetic data.
- Methods using only synthetic data suffer from syntheticrealistic discrepancies.
- But: Using realistic training data expensive, due to manually labelling them.
- Solution: Transductive Learning.

Transductive Random Forest

- Transductive learning: learn from labelled data, apply knowledge transform to related unlabelled data
- Estimate pose based on knowledge gained from both labelled and unlabelled data.



47

Overview

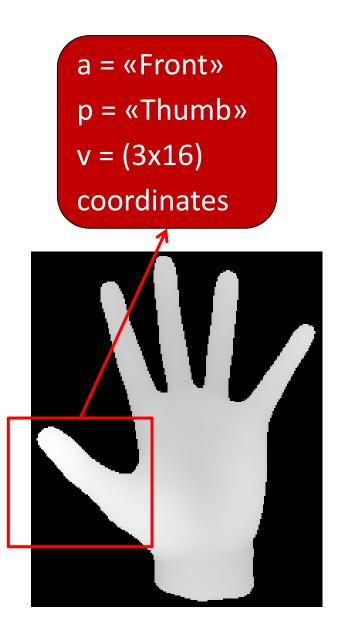
<u>Viewpoint Classification</u>: Viewpoint classification is first perfromed at he top levels, controlled by the viewpoint term Q_a .

<u>Joint Classification:</u> At mid levels, Q_p determines classification of joints, when most viewpoints are classified.

<u>Regression:</u> To describe the distribution of realistic data, nodes are optimised for data - compactness via Q_v and Q_u towards the bottom levels.

Training data

- Training data consists of labelled real data and synthetic data, and unlabelled real data
- Labelled elements are image patches, not pixels
- Label consists of tuple (a,p,v):
 - a = Viewpoint
 - p = Label of the closest joint
 - v = Vector containing all positions of joint



Quality Function

• Randomly choose between the two:

$$\begin{cases} Q_{apv} = \alpha Q_a + (1 - \alpha)\beta Q_p + (1 - \alpha)(1 - \beta)Q_v \\ Q_{tss} = Q_t^{\omega} Q_u \\ \downarrow \\ \end{pmatrix}$$

Transductive Term

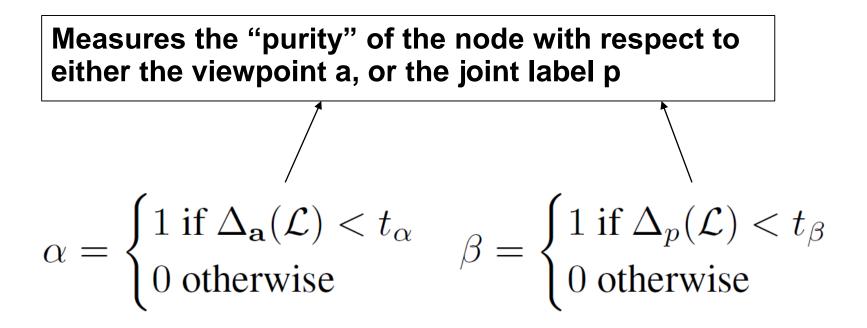
Classification-Regression Term

Quality Function

$$Q_{apv} = \alpha Q_a + (1 - \alpha)\beta Q_p + (1 - \alpha)(1 - \beta)Q_v$$

- Q_a : Measures quality of split with respect to viewpoint a
- Q_p : Measures quality of split with respect to joint label p
- Q_v : Measures compactness of vote vector v

Quality Function Parameter



Quality Function

 $Q_{tss} \!=\! Q_t^\omega Q_u$

- Q_t : Measures image similarity between real data patches
- Q_u : Measures purity based on the association between the labelled and unlabelled data

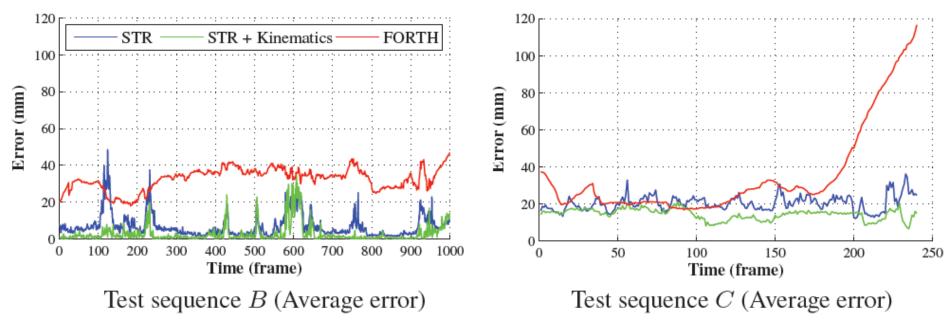
Kinematic Refinement

- Hands are biomechanically constrained on the poses it can do.
- Use this for our advantage.
- Utilize kinematic refinement to enforce these constraints.

Some results

Joint prediction accuracy

Quantitative results of the multi-view experiment

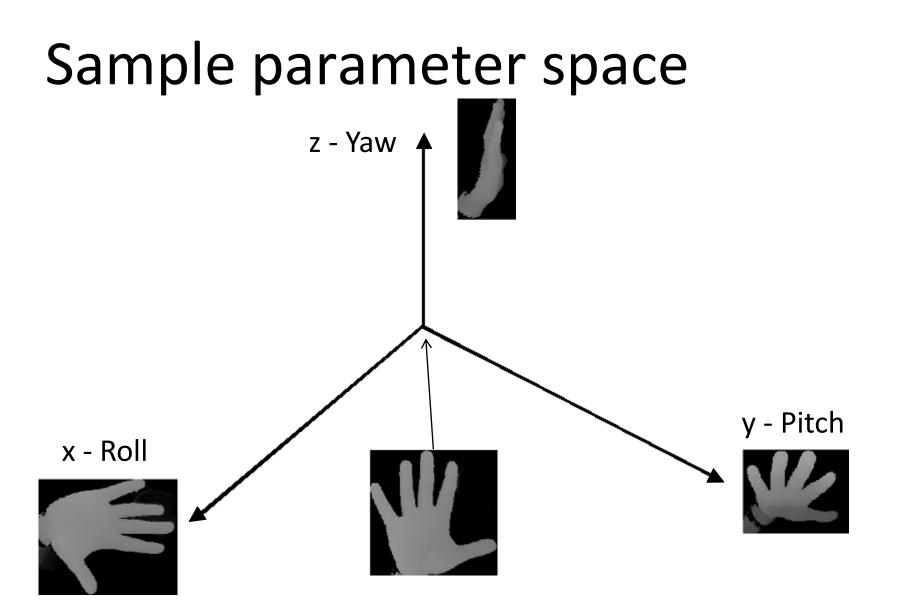


Estimating pose of two hands?

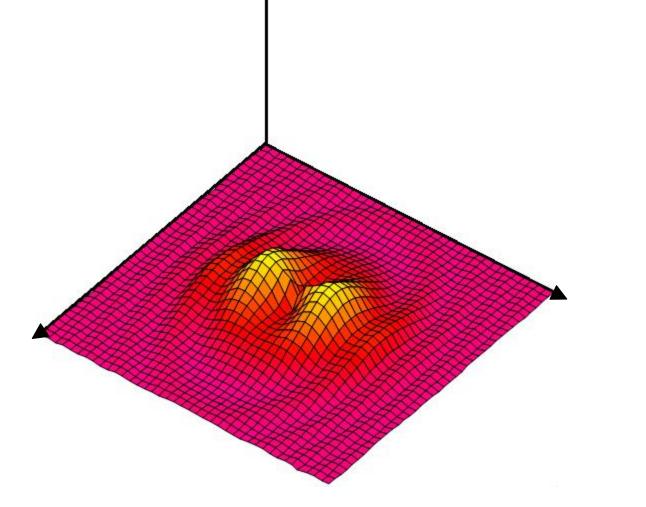
- Just apply single hand pose estimator twice?
- What if both hands are strongly interacting?
- Additional occlusion must be accounted for.

Dual hand pose estimation

- Model-based approach.
- Set up parameter space representing all degrees of freedom for both hands.
- Employ PSO to find best parameters suiting observation and current configuration with respect to a cost function.



Cost function over param. space



Initialization

Random sample of n particles with random velocities.

Iterating over parameter space

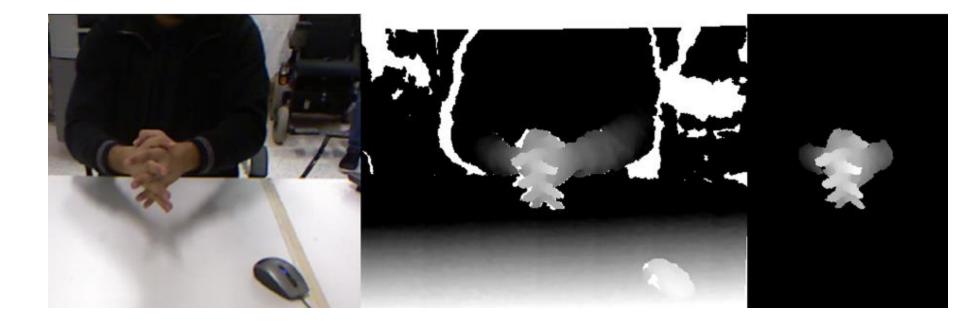
Update particle position according to velocity

Update particle velocities with regards to:

- Current velocity
- Local best position
- Global best position

Tracking

- Use RGB image to create skin map.
- Segment depth image according to skin map.



Tracking

• Cost function to optimize:

$$E(O, h, C) = P(h) + \lambda_k \cdot D(O, h, C)$$

P(h): Penalizes invalid finger positions. D(O,h,C): Penalizes discrepancies between hypothesis h and observation O.

Applying PSO

• Change particle velocity according to:

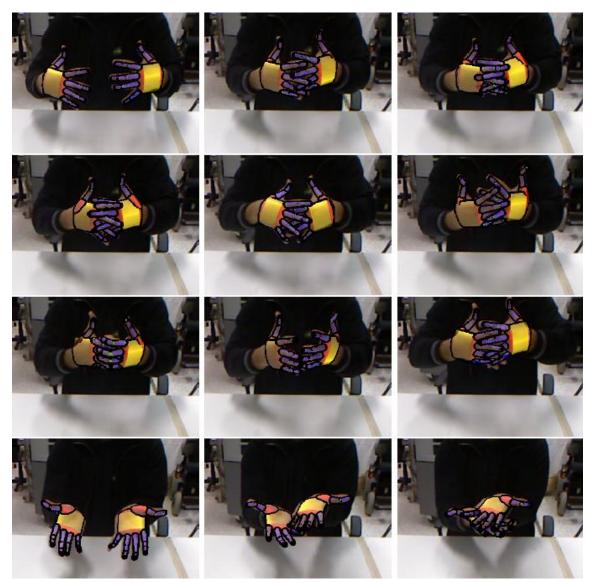
 $v_{k+1,i} = w(v_{k,i} + c_1 r_1 (P_{k,i} - x_{k,i}) + c_2 r_2 (G_k - x_{k,i}))$

 $P_{k,i}$ = Best known position of particle i in generation k.

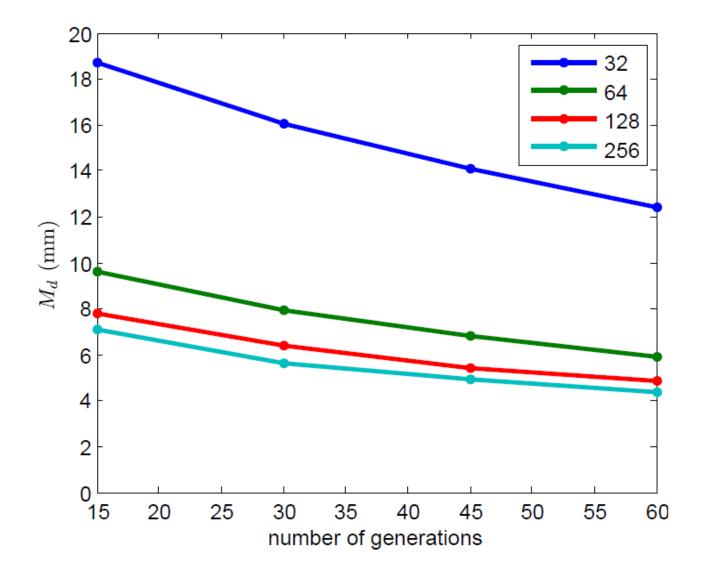
 G_k = Best known position of all particles in generation k.

 Apply PSO for each observation O. Exploit temporal information by sampling particles around previous hypothesis.

Some results



Accuracy



67

Future of Hand Pose estimation

- Academically solved
- Further research in areas of recovering more than pose, such as hand model or 3D skin models.
- Including RGB image for prediction increases accuracy.
- Use of real data reduces synthetic-realistic discrepancies.

Thank you for your attention!