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ABSTRACT
In this seminar report, we explore the field of assistive wear-
able technology. To that end, we examine three directions of
research, each represented by a research paper.
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INTRODUCTION
Assistive wearable technology is a subset of wearable tech-
nology. As such, devices in the area are usually designed to
be attached to the user’s body. This has a number of con-
sequences. For instance, the devices need to be physically
small so their bulk does not inconvenience the user. Also, en-
ergy use needs to be low because big, heavy batteries again
inconvenience the user. The sensor data are collected and
processed by the wearable devices without any deliberate ac-
tion by the user.
Of course, these devices need to be justified by some kind
of application. A common approach to making use of sensor
data is to give the application an indication of what the user
is doing and in what environment. The application can then
provide some kind of context sensitive help to the user.

Wearable EOG Goggles
As an example of the sensor technology that is emerging in
the field, we take a look at the work of Tessendorf et al. In the
paper “Wearable EOG goggles: eye-based interaction in ev-
eryday environments” [2], a novel device for eye tracking is
discussed. It functions on the well-known principle of Elec-
trooculography (measurement of the electric field around the
eyes) and brings this kind of sensor into a package suitable
for wearable technology applications.

Eye Movement
In order to understand the workings of an eye tracker, we
must first quickly introduce some background knowledge
about eye movement. The human eye moves in specific pat-
terns of fixations where both eyes stay fixed on a reference
point, and saccades where the eyes make a fast movement
from one reference point to the next. The exact pattern is
largely involuntary. Different visual environments and activ-
ities such as reading lead to different patterns of fixations and
saccades.
Eye movement can be electronically tracked in three ways:
a) The oldest and still most accurate method involves apply-
ing a special contact lens that contains a mirror or other fea-

ture that can be precisely tracked. b) A newer development
uses cameras and visual computing algorithms to reconstruct
the gaze direction. Often, camera setups will illuminate the
eye with infra red, so the camera can track both the dark iris
and the bright spot on the back of the eye where the infrared
light gets focused by the lens. Using these two points, the
axis of the eye can be determined. Obviously, cameras to
track the eyes must have a free line of sight to the eyes, which
poses some problems if the user is to carry them around on
his body. c) The third method of tracking eye movement is
electrooculography (EOG) which the Tessendorf paper fo-
cuses on. EOG is much less precise than the other two meth-
ods, so some potential applications like for example using the
eyes as a mouse pointer are not possible. Still, the method
provides enough information about eye movement patterns
to determine what the user is doing.

EOG
Electrooculography or EOG is the recording of the electrical
field around the eyes by means of electrodes. The resulting
waveforms are called an electrooculogram. Because the eyes
create an electrical field along the seeing axis when they are
exposed to light, suitably placed electrodes allow the recon-
struction of the approximate gaze direction. The strength of
the electrical field varies with the intensity of light entering
the eyes. A device that tries to deduce the gaze direction
therefore needs to record ambient light level and adjust the
signal processing. Blinks can be detected in the electroocu-
logram as well.
Previous EOG devices were meant for medicinal purposes,
to find irregularities in eye movement patterns and the adap-
tion of the electrical field strength to differing light levels.
These medical devices were not portable and could only be
mounted and operated with the help of a professional.

Figure 1: Wearable EOG Goggles

Making EOG Wearable
The device introduced in the paper integrates a set of dry
electrodes on a pair of standard lab safety goggles as can be



seen in Figure 1. This reduces setup time and comfort enor-
mously compared to wet electrodes which have to be covered
in gel and stuck to the skin with tape. Also, the entire data
processing happens in a credit-card sized embedded device
that can be carried on a belt. The goggles also contain a light
sensor for calibration purposes and an an IMU (inertial mea-
surement unit) to track head tilt. In the here presented paper,
the head tilt sensor is not used.

Eye Gesture Experiment
A case study was carried out to assess the possibility of us-
ing the device to track deliberate gestures performed with
the eyes. For this setup, the sensor data are translated into a
string of characters, with each character representing a fix-
ation in a certain orientation or a movement in a certain di-
rection. The user tries to perform the gestures by looking at
spots on the corner of a computer screen in a specified se-
quence, as seen in Figure 2. To recognize a gesture, a simple
string matching algorithm tries to match the predefined ges-
ture strings to the continuous stream from the device. The in
the experiment was sitting in front of a computer screen dis-
playing a mark on each corner. The user was then prompted
to look at the marks in a specific order which the system was
supposed to recognize as an eye gesture.
Test subjects reported that entering the gestures was easy to
learn but tiring. The authors remark that this is common with
all kinds of novel input devices. A potential application for
eye gestures would be for paralyzed patients who could use
the system to communicate.

Figure 2: Eye Gesture Experiment

Context Awareness
In another paper, “What’s in te Eyes for Context Aware-
ness?” [1] the same device is used to determine the activity
a user was performing. Here, the sensor data stream is pro-
cessed into a feature set which is then presented to an SVM
classifier which tries to figure out what activity the user is
involved in. In a series of case studies, the group tries to find
out how well certain activities can be recognized by this sys-
tem. In one experiment, the ability of the system to recognize
the user reading text on a sheet of paper in a variety of envi-

ronments was tested. Figure 3 shows the achieved recall and
precision in this experiment. As the authors expected, the
system works best when the user is sitting and worst when
walking.
Other case studies showed that certain office tasks can be
distinguished from each other. Finally, the paper explores
the possibility to detect weather the user is remembering a
picture he is looking at or not.

Figure 3: Recognize Reading Activity: Reliability

Comments and Criticism
In these papers, the authors do not present a real applica-
tion that actually gives any benefit to a user. We hope that
applications of this technology emerge as its capabilities are
explored.
The way the eye gesture experiment was performed, many
important questions remain open, mainly how to deal with
the issue of distinguishing a deliberate eye gesture from nor-
mal eye movement (the so called Midas touch problem) if
eye gestures were used in an everyday context. This prob-
lem must somehow be addressed should the system be used
for controlling any kind of application in a less controlled
setting. Another downside is that users reported performing
the eye gestures was tiring. This may be acceptable for a
system that helps paralyzed patients communicate who will
hopefully adapt to the strain with practice. For an assistive
wearable computing application that is supposed to remain
in the background and take cognitive load off of the user, an
interface that physically tires the eyes is not acceptable.
The potential of a wearable EOG system to detect the user’s
activities seems to be much more promising, especially the
tantalizing prospect of gaining insight into cognitive pro-
cesses of the user. Still, consumers will only be interested
in such a device if there are applications whose benefit out-
weighs the drawbacks of wearing these electrodes on the
face.

Improving Hearing Aids
In the paper “Recognition of Hearing Needs from Body and
Eye Movements to Improve Hearing Instruments” [4], Tessendorf
et al describe a way of improving modern hearing aids with
the help of additional wearable sensors.



Modern Hearing Aids
Modern hearing aids feature a number of uni- and omni di-
rectional microphones as well as configurable digital signal
processing capabilities to tailor the hearing experience to the
needs of the user. To simplify the settings for the user, the
hearing aid usually provides a small number of predefined
hearing profiles. The industry standard seems to be a set of
four settings:

a) “Speech” is designed to make human speech sound as
natural as possible. It is also the standard setting in quiet
situations.

b) “Speech in noise” sacrifices natural sound for better un-
derstandability of a conversation partner in a noisy en-
vironment. This profile emphasizes directional micro-
phones (pointing forwards) and applies some audio fil-
ters.

c) “Noise” tries to reduce the distraction from a noisy envi-
ronment.

d) “Music” is optimized to faithfully reproduce sound sources
with a high dynamic range, like music.

Modern high-end hearing aids can autonomously switch be-
tween these hearing profiles based on analysis of the sounds
recorded by the microphones. Tessendorf et al note that this
purely sound based approach fails in situations where the
acoustic environment is similar, yet the need of the user is
different.

Figure 4: Sensors to Recognize Hearing Need

Data Capture
In order to resolve ambiguities and generally improve recog-
nition of hearing needs, the user is fitted with a variety of
sensors mounted on a jacket, see Figure 4. There are a total
of nine IMUs mounted to a harness to track movements and
orientation of body and limbs. Another IMU is mounted to
the back of a hat. Around one eye of the user, a simple EOG
is set up with four electrodes. Finally, there is a microphone
attached to the user’s throat. All sensors except the micro-
phone were compared against each other with regard to their
worth in distinguishing hearing needs.

Data Processing
Since this project focused more on evaluating different sen-
sors than on creating a realistic system, all data processing
happens off line. The raw sensor data, including audio from
the hearing aid, is continually stored to a laptop connected
by a bundle of cables. The classification algorithms can then
work on the stored data stream.

Experiment
An experiment was performed to quantify the benefits of us-
ing multiple kinds of sensors to distinguish hearing environ-
ments which the classical solution (based on sound only) has
trouble keeping apart. The specific challenge to be tested is
determining weather “speech in noise” or “noise” should be
used.
To create a realistic and reproducible environment, the sce-
narios are all played out in a quiet office but the audio chan-
nels get overlayed with constant office noise. This makes
sure that different runs do not have disparaging results just
because the background noise level was different. The two
scenarios played out are a) Subject tries to work on a task
while a coworker at the same table has a conversation with a
“disturber”. The system is supposed to select the noise pro-
file. See Figure 5 b) Subject talks with the coworker or the
disturber. The system should select the speech in noise pro-
file. See Figure 6 The way the experiment was set up, the
system only has to distinguish between two hearing needs.
Figure 7 shows the success rates when different sets of sen-
sors were used to distinguish the two situations. When multi-
ple sets of sensors are used, there is actually a separate SVM
classifier working on each sensor and the final result comes
from a majority vote between the SVMs. When the vote is
tied, the system keeps the judgment of the last round of clas-
sification. This voting system explains why the result some-
times gets worse when more sensors are included. If all data
were fed to a single SVM, the result should in theory never
deteriorate with the addition of more data.
The way the system was set up for this experiment, using all
IMUs on body and head yielded the best results, followed by
eye motion only and the single IMU on the head. This is in-
teresting, because adding a single IMU to the user’s head is
by far the most convenient way of gathering data presented
here, yet still yields a significant improvement on the the
state of the art.

Figure 5: Scenario 1: Trying to work

Outlook and Criticism
This paper shows the potential for additional sensors to im-
prove the automatic selection of hearing needs in modern
hearing aids. Results show that even a single IMU attached to
the head can significantly improve the performance of exist-



Figure 6: Scenario 2: Conversation

Figure 7: Accuracies of Different Sensors

ing systems in specific situations. With further miniaturiza-
tion of sensor technology, it is easily conceivable that such
sensors might be included directly in the hearing aids.
We would like to see a prototype of the system that performs
the data processing and classification on line with the hear-
ing aid actually active, so a user study with hearing impaired
participants could be performed. This could clear doubts
about weather the the reported improvements in distinguish-
ing some hearing needs translate into a truly improved hear-
ing experience.

Activity Tracking in Car Manufacturing
In the paper“Wearable Activity Tracking in Car Manufac-
turing’ [3]’ by Stiefmeier et al, new applications for wear-
able sensors in car manufacturing are discussed. Specifically,
they introduce two tasks that could be improved, the so called
“Learning Island” where trainees get prepared for the assem-
bly line and the final step of the assembly line, the quality
control. These tasks were identified as potential target for
improvement in cooperation with a real Skoda car manufac-
turing plant. Some settings from the factory were recreated
in a laboratory so the experimental systems could be tested
without interruption of the facility.

Learning Island
The learning island is a part of the examined factory where
new workers are trained and tested until they are ready to
start work on the actual assembly line. The most impor-
tant part of this learning island is a specially prepared car on
which different parts can be installed and removed over and
over again. Trainees get introduced to new assembly steps in
theory lessons before they can practice on the training island
under supervision. Once the trainees are judged to have mas-
tered all required assembly steps, they can start work on the
assembly line.

Sensors on Learning Island
In order to model a task, a finite state automaton (FSM)
was used. Figure 8 shows the FSM for installing the head
lamps, a task representative for many other manufacturing
steps. Edges in the graph correspond to assembly actions de-
tected by the sensors, nodes to the changing configuration of
the car. Because this model is has zero fault tolerance, it will
report the task as failed as soon as the trainee makes a single

Figure 8: FSM Task Model: Installing Head Lamps

deviation from the model or the sensors fail to pick up a step.
It is therefore important that each assembly step is picked up
with near 100% reliability to avoid false negatives. The sen-
sors used reflect that requirement.
Figure 9 shows the wearable sensors that were used. A single
IMU on the back of the hand detects when a power tool hits
its torque limiter, causing the hand to shake. The bracelet
on the forearm contains force sensitive resistors, so it detects
when it is deformed. This effect is used to recognize a firm
grip on a tool. In the glove itself, between thumb and index
finger, there is a small RFID reader. All tools needed for the
task have had an RFID tag added, so the reader can recognize
which tool is currently being held in the hand.
These sensors alone are not sufficient to determine for ex-
ample which screw hole was used and some (particularly
the bracelet) are not reliable enough to drive the FSM task
model. These shortcomings are addressed by a variety of
sensors installed on the training car. Magnetic switches in the
car frame detect the presence of parts that need to be added
with excellent reliability. Near screw holes, force sensitive
resistors are glued to the metal. When a screw is tightened,
the metal around the screw hole is deformed slightly which
the sensitive force sensitive resistors detect. The magnetic
switches work out of the box, while the force sensitive resis-
tors at the screw holes need calibration. The paper notes that
installing and calibrating all these sensors on the training car
takes at least half a day of work by an expert and is therefore
expensive.

Applications on Learning Island
The goal of the system on the learning island is to improve
the training process. An obvious improvement is that trainees
can now practice some assembly steps without supervision
and still get a feedback on their performance. This frees the
time of the (expensive) instructors.



Figure 9: Sensors for Learning Island

Stiefmeier et al also note that an evolution of their system
could eliminate theory sessions and instead lead the trainees
through the assembly process step by step the first time and
immediately report errors and give guidance. This would
lead to a similar learning experience as current flight sim-
ulators.

Quality Check
Another area where wearable sensors could be used is the
final step of car assembly, the quality check. In the qual-
ity check station, workers go through a checklist and ver-
ify the end product confirms to specifications. This involves
checking the function of doors, hood and trunk as well as
measuring the proper alignment of assembled parts with spe-
cial checking tools. The research team identified 46 distinct
checking tasks in the process.
The proposed sensor and data processing system is supposed
to recognize and distinguish these tasks without deliberate
input by the worker.

Sensors in Quality Check

Figure 10: Sensor Vest for Quality Check

Because the quality check happens on production vehicles,
the approach to instrumentation used on the learning island
is not feasible in this scenario. Instead, workers wear a jacket
with integrated sensors as displayed in figure 10. This jacket
includes a total of seven IMUs placed on body and arms. The
sleeves of the jacket are lined with a special fabric containing
multiple force sensitive resistors. These sleeves can measure
the bending of the elbows. The jacket also contains two tags
in the shoulder area which can be located in relation to four
base stations in the work area by a commercial system, a so
called “ultra wide band system”.
With all these sensors combined, the system is powerful
enough to create a rough model of the worker wearing it in-
cluding his absolute position in the working area as can be
seen in figures 11 and 12. The authors note that the precision
of the ultra wide band location system is decreased markedly
on the real assembly line because the four base stations have

to be placed farther apart so as not to obstruct work. In a test,
the system correctly identified 74% of distinct checking ac-
tivities, but with the restriction that the system only checked
for 6 out of 46 distinct activities.

Figure 11: Checking Door Function

Figure 12: Checking Filler Cap

User Acceptance Study
To find out if the sensor jacket is a device that could be used
in a commercial application, a user study was performed in
which workers wore the jacket on the real assembly line.
Workers reported that the sensors were not stopping them
from doing their tasks, yet were still clearly noticeable at all
times and needed some getting used to.

Applications in Quality Check
The paper mentions two main ideas on how an activity recog-
nition system could improve the work flow at the quality con-
trol station. First, the system should raise a warning when
any checking steps were missed. Second, the current pen
and paper checklists could be replaced with some kind of
portable electronic system into which faults can be entered.
The activity recognition system comes into play by present-
ing the correct page of the checklist to the worker. A fu-
ture system could maybe even recognize when the worker
has found a fault and offer the worker the option of confirm-
ing with a single button push or gesture. This would permit
the system to correct false categorization and continually im-
prove the classifiers.



Summary
Assistive wearable technology is an area of active research.
Research groups continue to introduce new sensor modalities
and potential applications. Data collected by the sensors is
commonly used to deduce the user’s activity or environment.
This information is then used to enable context sensitive ap-
plications.
We have looked at a novel device for sensing eye movement
by Bulling et al [1] [2]. They focus on the sensor more than
on the potential applications.
We have then discussed the paper by Tessendorf et al [4] who
found an interesting application for context information in
selecting settings for a hearing aid. A number of sensors
are used to improve the existing selection algorithms which
chooses a hearing profile solely on acoustic input.
Finally, we have discussed the paper by Stiefmeier et al. [3]
In that paper, applications for wearable computing in an in-
dustrial setting, namely car manufacturing, are discussed.
They show how a wearable system could improve training
and quality assurance.
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