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ABSTRACT
Devices like musik players, phones, and other consumer elec-
tronics tend to get smaller and smaller. This imposes a chal-
leng to designers who have to create interfaces for an always
decreasing form factor. Recent examples like the iPod Shuf-
fle show that the user interface is sometimes already deter-
mining the size of the device.

This trend leads to designers looking for alternative approaches
to controlling a device. And Gesture Based interfaces could
provide a solution.

In this essay I will discuss 6 different papers that all take a
different approach on providing hand pose, hand model or
hand gesture recognition. Comparing them on different cat-
egories like mobility and instumentation requirements will
lead to an overview on the field of gesture recognition and
propose appropriate solutions for different scenarios.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General terms: Human Factors, Design

Keywords: Evaluation, Gesture Recognition.

INTRODUCTION
Gesture based interfaces described in literature predominantly
use one particular input device - the Data Glove. Data Gloves
are used to capture the hand pose of the user, the position of
the hand in the room, and sometimes even give feedback to
the user through vibration.

But the Data Glove is too obstrusive for daily use. It was
originally designed to be used in an instrumented environ-
ment were cameras tracked the gloves position by following
markers attached to the gloves. Inside the gloves are me-
chanics that try to infer the pose of the hand by looking at
the joint angles. But this mechanics have to be reconfigured
every time the user puts on the gloves to ensure accurate re-
construction of the pose.

This heavy instrumentation is not fit for the use in daily live
where the hand of the user is often occupied by other objects.
Furthermore does a user not want to put on a glove to controll
his smartphone or his MP3 player. Additionally the use of
cameras to track the users hand position is not feasible in a
mobile setting. Finally there is not always a need to know
the position of the hand because the interaction with a device
can be handled by simple in-air gestures.

HISTORY
Gesture based interfaces made their first appearance in the
Virtual Reality setting called Video Place[1]. VideaPlace was
a project by Myron Krueger from 1969. Multiple cameras
were used to record the user. The recorded movies where
then processed on a computer which then in turn projected a
2D shadow of the user onto a screen. On this screen the user
could interact with artificial objects like figures and sticks.
Yet this project was an art project and not a user interface
study.

Later came a paper called Charade[4]. It was published in
1993 by Baudel and Beaudouin-Lafon and was one of the
first papers to formally define a set of gestures to control ap-
plications like PowerPoint. The user had to put on a Data
Glove which was connected to a computer through a wire.
Their gestures all had a starting pose, then a direction of the
arm motion, and finally an end pose. This paper marked the
beginning of formal research in gesture controlled user inter-
faces.

More recently Steven Spielberg released a Hollywood movie
called Minority Report[2]. The movie is set in the USA in
the year 2054 where a team of police men fight crime us-
ing foreknowledge provided by three physics called precogs.
To make the scenes as realistic as possible Steven Spielberg
had a team of technical advisors that envisiond future tech-
nologies. One of these technologies was a gesture controlled
computer interfaces that the main actor would use to browse
through information. Spielberg wanted the interface to be
used as if the user was conducting an orchestra. This inter-
face was often picked up by the press as one of the possible
computer interfaces of the future. John Underkoffler was the
lead designer of the user interface developed for this movie
and also published a research paper where he described the
thoughts behind the design.

John Underkoffler later also founded a company called Ob-
long industries that has developed a commercially available
product called G-Speak[3]. It uses Data Gloves to implement



Figure 1: A picture showing the Muscle Computer In-
terface

the very interface that the actor in Minority Report uses and
is intended for Big Data analysis and navigation in a virtual
3D environment.

REPLACING THE DATA GLOVE
What most of the historic technologies have in common is a
Data Glove. But as mentioned in the introduction designers
can not require the user to put on a Data Glove to interact
with their devices. Thus the first four papers I am discussing
are intended as replacements for the Data Glove. Some of
them try to focus on the issue of occupied hands by making it
possible to interact with gestures even if the hads are already
holding an object. Others try new technical approaches to
reconstruct a full 3D model of the hand.

Muscle Computer Interface
The Muscle Computer Interface[10] uses a technology called
electromyography to sense muscle activity. Electromyogra-
phy is used in the field of medicine to assess muscle function
and control prosthetics.

It works by measuring the Action Potential generated by the
brain to contract a muscle. This Action Potential is an electri-
cal potential. It travels down the nerve to the muscles where
it can be measured either invasively or none invasively. The
invasive method inserts needles into the muscle, the none in-
vasive method attaches electrodes onto the skin.

The Muscle Computer Interface uses the none invasive method
by attaching electrodes in a ring like manner around the back
of the forearm.

The data collected by the six electrodes is then further pro-
cessed to extract a set of features. This features are used by
a Support Vector Machine (SVM) which in turn outputs the
hand pose it recognized.

The features extracted can be divided into three categories:

• Root Mean square (RMS) of the amplitude per channel
and ratio between pairs of RMSs between two channels.
A channel represents the output of one electrode.

• Frequency energy of each channel calculated by taking the
Fourier Transformation on the output data of a electrode
and then summing up the amplitude of all frequencies.

Figure 2: A picture showing the Gesture Wrist device

• Phase Coherence between pairs of channels which intu-
itively can be seen as how strong the data of the electrodes
correlates. The Phase Coherence is stronger the more two
waves overlap.

The system recognizes fingers touching the thumb or indi-
vidual fingers being bent more strongly if a hand is occupied
holding an object. It is required that the user contracts his
muscle by pushing his fingers together hard or by squeez-
ing the object stronly. Otherwise the system does not rec-
ognize the interaction event because no muscle activity has
been recorded.

Mean accuracy for recognizing free hand gestures ranges
from 57% to 79%. While executing free hand gestures the
hand is not occupied by an object. The big difference be-
tween the lower and the upper bound can be explained by the
fact that rotating the arm imposes a big problem to classifi-
cation. Thus 79% accuracy was achieved when the system
was trained in the same arm posture as the test was executed
later. The worst recognition rate happened when the arm was
rotate very much to the left while training and the very much
to the right when testing.

Mean accuracy for recognizing hands busy gestures while
holing a coffee mug ranges from 65% to 85%. 65% accuracy
was achieved when no feedback about the recognized gesture
was provided to the user and the system tried to recognize the
activity of four fingers. 85% accuracy was achieved when
feedback was given to the user and he/she had to accept the
recognized gesture.

Gesture Wrist
The next paper in this discussion is GestureWrist and Ges-
turePad: Unobtrusive Wearable Interaction Devices[9]. The
presented Gesture Wrist device uses a technology called ca-
pacitance sensing at the wrist to infer the shape of the hand.

Capacitance sensing is done by putting a transmitter at the
top of the wrist and multiple electrodes at the bottom. The
transmitter then sends out a wave like electrical signal through
the wrist. The receiver electrodes capture this signal and cal-
culate the signal strength. To minimize noise coming from



Figure 3: A picture showing the prototype of the hand
pose reconstruction device using photoreflectors

the environment the transmitter and the receivers synchro-
nize. This means that the bottom electrodes only sense a
signal when the transmitter is sending.

Three sources of resistance can influence the strength of the
signal at the bottom. First the resistance between the trans-
mitter electrode and the skin at the wrist top. Second the
resistance that the wrist itself imposes on the signal. Last the
distance and resistance of the skin at the bottom touching the
receiver electrodes.

The first two sources can be considered constant or only
changing slightly over time. This slight change can be com-
pensated without much effort. This leaves us with only the
distance and resistance between the bottom of the wrist and
the receivers.

Gesture Wrist now uses four receiver electrodes to distin-
guish two hand poses. One is Point and one is Fist. The
paper gives no exact numbers on recognition rate but the pic-
tures included in the paper imply that the recognition rate is
close to 100%.

The hand pose is then combined with the data of an ac-
celerometer to create a set of gestures like making a pointing
pose and then moving the arm to the right. Additionally the
user can rotate its arm to give input. This allows him to first
select a virtual slider or knob using the gesture set and the
adjust the value of the slider by rotating its arm.

Wrist Contour
The next paper called Hand Shape Classification with a Wrist
Contour Sensor: Development of a Prototype Device[5] uses
photoreflectors to reconstruct the hand pose.

Photoreflectors are small sensors (around 1mm3) that con-
sist of an infrared emitting LED and an infrared proximity
sensor. The light emitted by the LED is sent of away from
the photoreflector and reflected by a surface in front. The
reflected infrared light is the sensed by the sensor and used
to measure the distance between the photoreflector and the
surface in front of it.

The prototype device described in the paper put 150 photore-
flectors in two stripes inside a wrist band. A simple machine

Figure 4: The confusion matrix that shows the test
results of hand pose reconstruction using photoreflec-
tors

Figure 5: A picture showing the Digits device

learning algorithm is then used to differentiate between eight
hand poses. This analysis was performed offline.

Unfortunately the results from the testing phase shows us that
the relatively weak Machine Learning algorithms combined
with very similar looking hand poses do not yield a satisfying
result. As shown in the confusion matrix4 the different hand
poses are often confused with each other which leads to a
mean recognition rate of only 48%.

Digits
The last paper in the series of papers related to the Data
Glove is called Digits[7].

The device contains an infrared camera, an infrared laser line
generator and four diffuse infrared LEDs. The laser line gen-
erator is placed below the camera shifted a bit towards the
hand. It projects an infrared line onto the segment of the fin-
ger that is nearest to the palm.

The algorithm to triangulate the 3D position of the laser line
relative to the camera works in multiple steps. First it illumi-
nates the hand using the diffuse LEDs. Then it subtracts the
unilluminated picture from the illuminated one to eliminate
the background. In the next step it segments the fingers in the
image. After that it triangulates the 3D position of the laser
line on the finger by knowing the base line distance between
the camera and the laser line generator and the fact that the
line moves towards the palm if the fingers a bent and away



Figure 6: A picture showing the Gesture Watch device

Figure 7: A set of example gestures for the Gesture
Watch device

from the palm if the fingers are straightened.

This data is then fed into a forward kinematics model that
fits a model of the hand as closely as possible to the calcu-
lated position data. To further improve accuracy of the 3D
hand model the system can also use the 2D position of the
fingertips in the image to feed a inverse kinematics model.

To get the position of the fingertips the algorithm again takes
the image with a subtracted background and then searches
for the brightest spots in the image which are then assumed
to be the fingertips.

Digits is the only device in all analyzed papers that has an
accuracy comparable to a Data Glove. In some test instances
the authors even reported a higher accuracy.

IN-AIR GESTURES
Until now I have discussed devices that were trying to re-
construct the pose of the hand. One of them, Digits, even
reconstruct a full 3D hand model and thus is comparable in
resolution to a Data Glove.

But sometimes one does not need information about the hand
pose but a simple set of motion gestures. The next two papers
are hence focused on recognizing simple motion gestures that
are carried out in front of the device.

Gesture Watch
Gesture Watch is a wrist watch like device that senses ges-
tures executed above it. To recognize motion it embeds four
infrared proximity sensors that are arranged in a cross shape
and a fifth one oriented towards the hand.

These five sensors have a simple binary output - 1 for no oc-
clusion, 0 for occlusion. Their data is then sent via Bluetooth
to an external device that processes it. To recognize gestures
the authors make use of Hidden Markov Models (HMM).
HMMs are a type of machine learning algorithms that are
well suited for time depended analysis.

Using HMMs the recognition algorithm is now able to dis-
tinguish between several different gestures. Some of them
are shown in figure 7. The mean accuracy achieved is also
quiet good. Rangeing from 90% while walking outside to
98% while standing inside.

This shows that the technology used is already quiet mature
and could be used in a real live application. One drawback
is that the user has to accept every gesture by triggering the
fifth proximity sensor.

Sound Wave
The last paper discussed in this series of papers is called
Sound Wave[6]. It uses the speakers and microphone em-
bedded in most modern laptops to detect motion in front of it
exploiting a physical effect called The Doppler Effect.

The Doppler Effect describes what happens if a wave emit-
ting source is moving towards or away from a receiver. A
concrete example would be a car making a constant fre-
quency sound through honking. While the car drives towards
a person the person hears a higher honk tone than the car is
actually emitting. But as soon as the car has passed the pitch
of the tone will drop for the person and it will receive it at a
lower height than the car is actually emitting.

This effect is now used by the algorithm inside Sound Wave.
It emits a constant pitch base tone from the laptops speakers.
The tone has a frequency of about 18kHz which is normally
not hearable by humans. If an object is then moving towards
the microphone the recorded frequency shifts higher in the
spectrum. On the other hand if an object moves away from
the microphone the recorded frequency shifts down in the
spectrum.

Additional to recognizing the speed of an object moving to-
wards or away from the microphone, the algorithm is also
able to approximate the distance or size of the object in front
of it. This is because bigger or nearer objects reflect more
sound waves which then in turn yields a higher amplitude of
the shifted tone. Also the algorithm can detect an object that
passes the speakers and can tell its direction and velocity.

This approach yields a minimal recognition rate of 86%
for the double tap gesture in a quiet environment. The
best recognition rate of 100% was accomplished for the two
handed gesture where the user moved both hands in opposite
direction. Extraordinarily this rate was achieved in a noisy
environment at a cafe.



Figure 8: A picture showing the frequency shift that occures when the Doppler Effect is happening

Figure 9: Table comparing the different technologies

COMPARISON
To compare this six technologies and propose some of them
for specific use cases I focus on three different aspects: Mo-
bility, Accuracy, and Instrumentation. Figure 9 shows the
comparison as a table.

Mobility
All of the evaluated technologies except Sound Wave are de-
signed for a complete mobile setting. This means that they
are all embedded inside a accessory like a wrist watch or an
arm band. It is to note that the Digits device is rather large
and clumsy and thus is obtrusive compared to the other de-
vices.

For a completely portable gesture interface, for example to
control a music player while jogging the Muscle Computer
Interface, Gesture Wrist, and Gesture Watch devices could

be considered. They all offer a similar amount of gestures
that are all recognized quiet accurately.

If in addition the user is holding an object like a coffee mug
or a heavy bag then only the Muscle Computer Interface can
be considered a solution.

Accuracy
Comparing the accuracy of the different technologies turns
out to be rather hard because they offer different levels of
hand pose resolution. Thus we will now discuss every tech-
nology separate except if two different approaches were taken
to achieve the same type of reconstruction.

The Muscle Computer Interface has a high accuracy of over
90% if it is only required to recognize a small number of
gestures and allows the user to accept a recognized gesture.



Gesture Wrist and hand pose reconstruction using photore-
flectors use the same approach - inferring hand pose by wrist
shape - but they have a different number of poses. Gesture
Wrist only distinguishes between two poses, point and fist
but then enhance this information with the data of an ac-
celerometer to create a set of richer gestures. This seems
to be the right approach because trying to infer more poses,
like the other paper tries to do, has shown to be inaccurate.

Digits on the other hand does an amazing job recreating
the full 3D hand model using only an infrared camera. It
achieves very high accuracy and can be seen as a good re-
placement technology for Data Gloves. Of course also Dig-
its has limitations. One major is self occlusion of the fingers
where one finger hides the other one.

Finally both Gesture Watch and Sound Wave have shown
to have high accuracy even in bright or noisy environments.
Their development seems to be mature and their technology
could very much be implemented in a commercial product.

Instrumentation
Hand pose reconstruction using photoreflectors, Gesture Wrist,
and Gesture Watch all fit inside an accessory like a wrist
watch. The Muscle Computer Interface fits inside an arm
band. Digits on the other hand is quit obtrusive as the cam-
era has some size and also has to have some distance from
the laser line generator. Sound Wave reuses existing hard-
ware and thus does not require any instrumentation.

CONCLUSION
In conclusion we can say that there exist quiet some differ-
ent approaches and technologies for hand pose/model recon-
struction. Furthermore can we use simple algorithms to en-
hance existing laptops to also recognize a set of simple ges-
tures. The overall recognition rate ranks from unusable to al-
most perfect but depends heavily of the environmental con-
straints and the number of the recognized gestures. To de-
velop a commercial product one would definitly need to com-
bine hand pose reconstruction with additional input for ex-
ample from an inertial measurement unit. On the other hand
in-air gestures through Sound Wave or the Gesture Watch
could be used as a stand alone solution to implement a sim-
ple set of gestures.

Further work will mainly be invested into reducing the size
of the sensors and embedding the technology into day to day
objects and accessories. This will finally lead to devices that
dont need an artificial user input interface but can be con-
trolled through natual motion and gestures.

REFERENCES
1. A history of Videoplace by Myron Krueger.

http://jtnimoy.net/itp/newmediahistory/videoplace/.

2. Minority Report, directed by Steven Spielberg, pub-
lished in 2002. http://www.imdb.com/title/tt0181689/.

3. Overview about the G-Speak system.
http://www.oblong.com/g-speak/.

4. Thomas Baudel and Michel Beaudouin-Lafon. Cha-
rade: remote control of objects using free-hand ges-
tures. Commun. ACM, 36(7):28–35, July 1993.

5. Rui Fukui, Masahiko Watanabe, Tomoaki Gyota,
Masamichi Shimosaka, and Tomomasa Sato. Hand
shape classification with a wrist contour sensor: de-
velopment of a prototype device. In Proceedings of
the 13th international conference on Ubiquitous com-
puting, UbiComp ’11, pages 311–314, New York, NY,
USA, 2011. ACM.

6. Sidhant Gupta, Daniel Morris, Shwetak Patel, and
Desney Tan. Soundwave: using the doppler effect to
sense gestures. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, CHI
’12, pages 1911–1914, New York, NY, USA, 2012.
ACM.

7. David Kim, Otmar Hilliges, Shahram Izadi, Alex D.
Butler, Jiawen Chen, Iason Oikonomidis, and Patrick
Olivier. Digits: freehand 3d interactions anywhere us-
ing a wrist-worn gloveless sensor. In Proceedings of the
25th annual ACM symposium on User interface soft-
ware and technology, UIST ’12, pages 167–176, New
York, NY, USA, 2012. ACM.

8. Jungsoo Kim, Jiasheng He, Kent Lyons, and Thad
Starner. The gesture watch: A wireless contact-free
gesture based wrist interface. In Wearable Computers,
2007 11th IEEE International Symposium on, pages
15–22. IEEE, 2007.

9. Jun Rekimoto. Gesturewrist and gesturepad: Unobtru-
sive wearable interaction devices. In Wearable Comput-
ers, 2001. Proceedings. Fifth International Symposium
on, pages 21–27. IEEE, 2001.

10. T. Scott Saponas, Desney S. Tan, Dan Morris, Ravin
Balakrishnan, Jim Turner, and James A. Landay. En-
abling always-available input with muscle-computer in-
terfaces. In Proceedings of the 22nd annual ACM
symposium on User interface software and technology,
UIST ’09, pages 167–176, New York, NY, USA, 2009.
ACM.


