How Routine Learners can Support Family Coordination

Scott Davidoff, John Zimmerman + Anind K. Dey Carnegie Mellon Human-Computer Interaction Institute

by Gianluca Vinzens

Overview

- How Routine Learners can Support Family Coordination
- Learning Patterns of Pick-ups and Drop-offs to Support Busy Family Coordination
- Unremarkable Computing

How Routine Learners can Support Family Coordination

Intention

Discussion of conceptual feasibility

Roadmap

- I. Analyze what families would find valuable
 - 2. Come up with a solution

Data Collection (I)

• 6 dual-income families

6 months

Data Collection (2)

- Quantitative
 - Six month of field observation
 - Four families completed
 - 528 unique interview sessions
 - 2112 person days

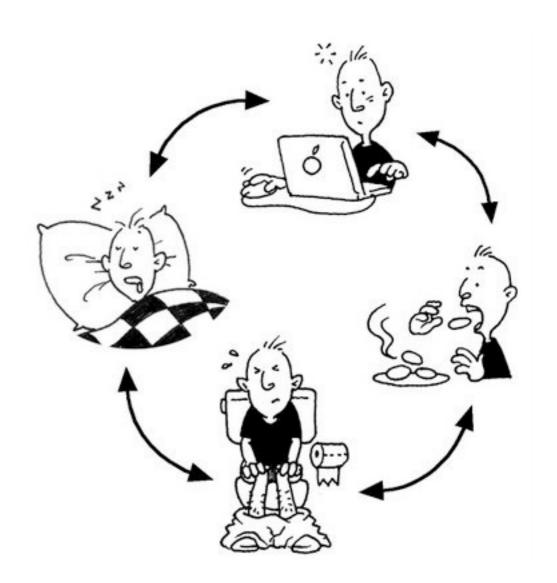
Data Collection (3)

- Qualitative
 - Evaluation of knowledge of others routines (Activity interviews)
 - Identification of routine or non-routine

Contributions (I)

Routines and family life

40 %



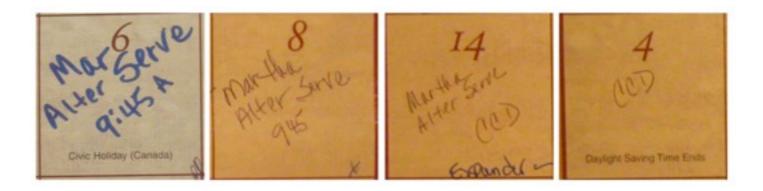
Contributions (2)

Routine knowledge of others is incomplete or inaccurate

Contributions (3)

Calendars hold deviations not routine

90 %



Contributions (4)

Small information gaps lead to stressful situations

Future Potential

- Access to routine
- Augmented calendars
- Augmented reminders
- Use of more sensors
- Better routine detection algorithms

Reviews (I)

- Rating: 2 (accept)
- Positive
 - Extensive data collection
 - Base for applications supporting family coordination
 - Interesting to read with many examples

Reviews (2)

- Negative
 - No technical aspects
 - Only GPS location
 - Children and mobile phones

Learning Patterns of Pick-ups and Drop-offs to Support Busy Family Coordination

Setup

- Dual-income families
- GPS location data (once per minute)
- Data from first paper

Intention

- Pick-ups and drop-offs
 - Detect pick-ups and drop-offs
 - Predict driver
 - Infer if child will be forgotten

Recognizing Rides (I)

States

$$States = \{L_n, T \mid CoT, else\}$$

People

$$People = \{P,C\}$$

Recognizing Rides (2)

Pick-up

$$(t_1,P,\neg CoT) \wedge (t_1,C,L_n) \wedge (t_2,P,L_n) \wedge (t_2,P,L_n) \wedge (t_2,C,L_n) \wedge (t_3,P,CoT) \wedge (t_3,C,CoT)$$

Drop-off

$$(t_1, P, CoT) \land (t_1, C, CoT) \land (t_2, P, L_n) \land (t_2, P, L_n) \land (t_3, P, \neg CoT) \land (t_3, C, L_n)$$

Recognizing Rides (3)

• Precision 90.1 %

• Recall 95.5 %

Predicting Drivers (I)

Feature Vector

Name	Meaning	Values	
L_n	Location of pick-up or drop-off	Place ID	
RType	Ride type	Pick-up, Drop-off	
DoW	Day of week	0,1,2,3,4,5,6	
ToD	Discretized time of day (15 min)	1,2,396	
$driver_{t-j}$	Driver for the last 5 rides to L_n	Mom, Dad	
φ	Driver distribution model	[0,1]	

- Labeling and weighting
- Weighted decision tree (LWDT)

Predicting Drivers (2)

- Accuracy
- Sliding window
 - I week: 72.1 %
 - 4 weeks: 87.7 %

Forgetting Children (I)

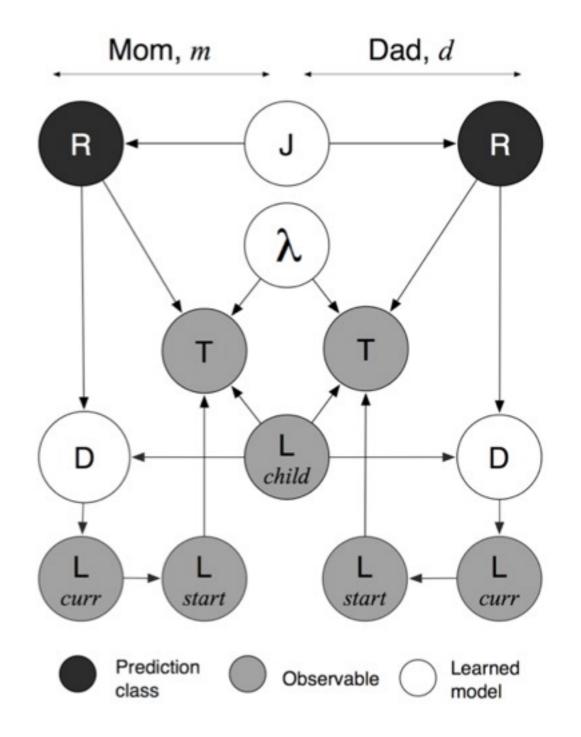
I0 minutes late

Features

Name	Meaning	Values
R	Whether the parent remembers	True, False
J	Driver prediction model	Mom, Dad
T	If the parent is traveling	True, False
λ	Empirical cumulative distribution (ecdf) of on-time arrivals to L_{child} at time $T_{now}T_{ideal}$	[0,1]
L_{child}	Location of the child	Place ID
L_{start}	Starting location of a parent	Place ID
L_{curr}	Ending location of a parent	Place ID
D	Destination of a parent	Place ID

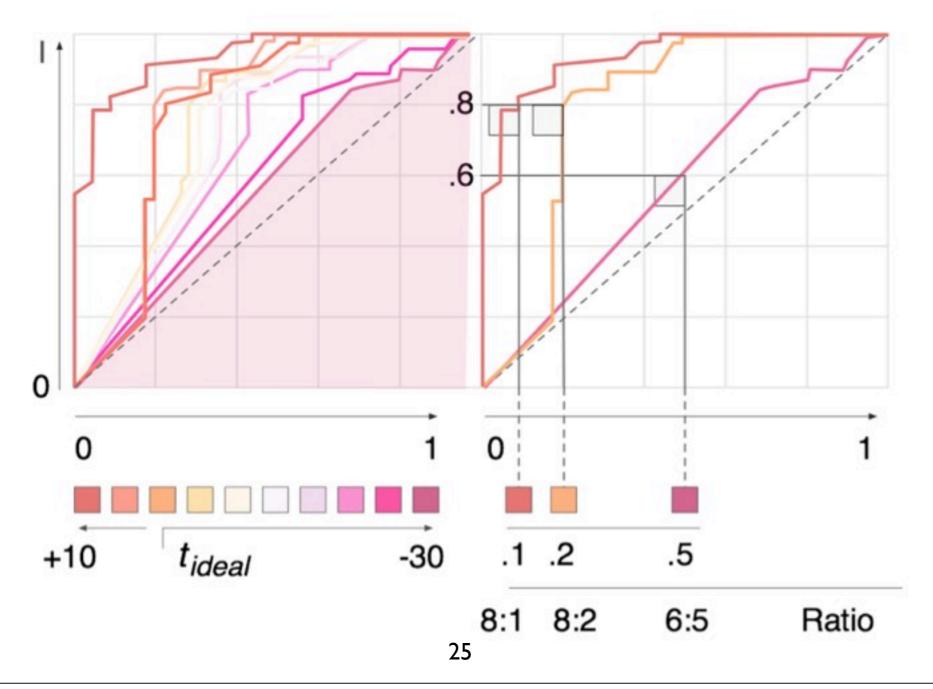
Forgetting Children (2)

Bayesian Network



Forgetting Children (3)

ROC (Receiver Operating Characteristic)



Optimizations

- Increase GPS rates
- Other modes of transport
 - other than one parent, one child, one car
- Better driver prediction model
 - "only" 70 85 %

Future Potential

- Awareness Systems
- Calendars
- Reminder Systems

Unremarkable Computing

Intention

- Analyze home / domestic life routines
- Make technology "invisible in use"

Scenarios

- Door as a means of communication
 - Knocking, opening, context dependent
- Alarm clock becomes routine
 - Failure would be noted
- Routines are unknown to yourself
 - Can be noted by others

Conclusions (I)

Invisibility in use

#

perceptual invisibility

Conclusions (2)

Augment the action not artifacts per se

Conclusions (3)

Support the doing without description of activities

Thanks for your attention

Questions / Discussion

- Use of more sensors?
- Potential of routine detection algorithms?
 - T-Patterns
 - Eigenbehaviors
 - Topic Models
- Data collection and children?