MetroTrack

Predictive Tracking of Mobile Events using Mobile Phones

13.03.2012

Tobias Weber

Contributions

- Proof-of-concept implementation and evaluation of the first mobile(!) sensing system
- Use of off-the-shelf mobile phones
 - Already in use by possible participants
 - Cheaper to manufacture than specialized systems
- Predictive recovery protocol
- Improved tracking under varying sensor density

Goals of MetroTrack

- Many people now carry smartphones that can be used to build an opportunistic sensing network
 - When to start sensing?
- Disadvantages of static sensor networks
 - Area predetermined and limited
 - Wrong positioning very costly
- Temporally and spatially varying sensor density

Understanding human behavior and routines

- Understanding human behavior is basis for sensor availability in MetroTrack application
 - Predict sensor density
- Investigating the impact of environmental events on our behavior
 - Pollution
 - Noise
- Especially in regard to mobility

MetroTrack architecture

Tasking: Initiation

Message forwarding

Tasking region

Recovery

Target lost

Recovery messages

Kalman filter

- Takes a vector containing last known speed and position
- Calculates new position assuming speed stays constant
- Adds a random deviation to speed and position
- Next step:
 - Starts with the deviated speed and position vector
 - Calculates new position and again adds deviation
- Random deviations have a Gaussian distribution
 - Confidence area for 95% has radius 2 times the deviation

Recovery area

Recovery end

- Target has been detected
 - Tasking messages broadcasted by detector
- Tasking message has been received
- Sensor moves outside the recovery area
- Recovery timer expires
 - Tracking stops!

Experiment

- Two prediction mechanisms
 - Distributed Kalman filter (DKF)
 - Broadcast of the estimates and consensus on an "average" value
 - Local Kalman filter (LKF)
 - Every node calculates it's own prediction

Experiment

Experiment

Evaluation

Simulation

- Duration: 300 s = 5 min
- Area: 1 km²
- Sensing range: 50 and 100 m
- Localization error of event detection
 - Standard deviation: 20 m
- Constant velocity model
- Recovery: w/o, local Kalman filter, and distributed Kalman filter

Tracking duration – 100m sensing range

Tracking duration – 50m sensing range

Simulation outcome

- DKF no advantage over LKF regarding tracking duration
- Limitations:
- 200 400 sensors / km²
 - Zürich: 4239 pop. per km² => ~ 9.5 %
 - Sensing range in the real-life test: 20 m
- Equally distributed sensors
- Constant velocity model
 - Authors claim no difference to Manhattan and Random Way-point model

Future Work

- Stated by the authors
 - Incentive for people to opt in
 - Privacy, trust, and security issues
 - GPS calibration
- Further ideas
 - Quantification of energy consumption
 - And optimization
 - Large scale evaluation in real-life environment
 - Improving sensing range and/or needed sensor density

Questions?

Sources

Picture N95:

http://static.trustedreviews.com/94%7cda81b4%7c8cc2_ 4497-Nokian95lowmenu.jpg

- Population density Zürich: http://de.wikipedia.org/wiki/Z%C3%BCrich
- MetroTrack protocol, experiment, and simulation including diagrams and pictures: MetroTrack: Predictive Tracking of Mobile Events using Mobile Phones [Ahn 2010]