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Introduction

» Detect routines based on body movement
* Complex due to large variations in activities
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Contributions

 New method to recognize daily routines
* Reusing an established method from text processing
* Applicable without user annotation
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Topic Models

» Used for text processing for classification
* Collection of words (“Bag-of-words”)
e Unsupervised



Topic Models
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Daily Routine Modeling
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Data collection

e 1 person
* 16 days
e 2 wearable sensors

e Accelerometer
e Realtime clock
* 4 hours of memory




Annotation

* Online annotation
e Periodic set of questions on cell phone
* Time diary
* Occasional snapshots

* Offline annotation
* User could correct / complement data

* Used as ground truth



Discovering activities

» 34 distinct activities

* Mean, variance, frequency from acceleration sensors
* Combined with time-of-day

* SVMs, HMMs, Naive Bayes evaluated as classifiers

e 72.7% accuracy

* Great variations

* Problems with short and similar tasks
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Discovering topics

 Latent Dirichlet Allocation on activity data
* Sliding window of 30 min. over activity stream
e 10 topics



Discovering topics

Routine: commuting: == == = = office: lunch: ssssssss dinner: ——p— unlabeled:

18:00

RS Topic Activiations &

Topic # | 2 w—3: amnannan 4 5! w6 7: —— 8 9. —— 10:

sitting / desk activities (1.0)

— Sitting / desk activities (0.99)

==nnuunns having lunch (0.5), walking freely (0.26), picking up cafeteria food (0.06), queuing in line (0.06), unlabeled (0.04), walking & carrying sth (0.02), brushing teeth (0.02)
standing / using toilet (0.69), walking freely (0.18), queuing in line (0.06), walking (0.02), desk activities (0.02)

== wm wm driving car (0.33), walking & carrying sth. (0.21), sitting / desk activities (0.2), walking (0.14), unlabeled (0.08)
using the toilet (0.69), walking freely (0.17), discussing at whiteboard (0.06), sitting / desk activities (0.03), brushing teeth (0.02)

7 —3——having dinner (0.77), desk activities (0.1), washing dishes (0.08), unlabeled (0.04)

8 lying / using computer (1.0)

9 —w—— unlabeled (0.87), driving bike (0.04), washing dishes (0.02), stand/ use toilet (0.02), washing hands (0.02), standing / using the phone (0.02,

10 watching a movie (1.0)
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Results on Discovering topics

* Precision and recall calculated for 6 of 7 day to cross-
validate results

 Supervised classifier using HMMs to calculate baseline

Routine Correlation Precision Recall

Dinner 0.7 75.5 40.2
Commuting 0.6 83.5 51.8
Lunch 0.8 87.0 83.3
Office Work 0.8 96.4 93.7

Mean 0.7 86.1 67.2
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Unsupervised learning

Routine Correlation Precision Recall

e Get rid of user annotations Dinner 0.6 56.9  40.2
Commuting 0.5 83.5 71.1
 Labels from data clustering Lunch 0.8 738 70.2
Office Work 0.6 93.4 81.8
Mean 0.6 76.9 65.8
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Future work

e Semi-supervision
Noise modeling
Include location information

« More users with more diverse lives
 Build applications
» Use better sensors (more memory)
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Including location

» “Discovering Daily Routines from Google Latitude with Topic Models”
by Laura Ferrari and Marco Mamei

» “Discovering Human Routines from Cell Phone Data with Topic Models”
by Katayoun Farrahi and Daniel Gatica-Perez



s

Including location

sliding window
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“Discovering Daily Routines from Google Latitude with Topic Models” - Laura Ferrari and Marco Mamei



EEEEEEEE—————————————————y
Including location
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“Discovering Daily Routines from Google Latitude with Topic Models” - Laura Ferrari and Marco Mamei
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Including location
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Topic 22
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“Discovering Human Routines from Cell Phone Data with Topic Models” - Katayoun Farrahi and Daniel Gatica-Perez
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Reviews

» Average score: 1.75 (accept)

 Solid ground truth

 Privacy not addressed

 Spelling errors, graphs badly placed

* No automation, data needs to be manually copied






