
Privacy on 
Smartphones
Presentation by Claude Barthels



Roadmap

■ TaintDroid: An Information-Flow Tracking System for 
Realtime Privacy Monitoring on Smartphones

 

■ MockDroid: Trading Privacy for Application Functionality 
on Smartphones

 

■ Paranoid Android: Versatile Protection for Smartphones



TaintDroid
An Information-Flow Tracking System for 
Realtime Privacy Monitoring on 
Smartphones

Paper by W. Enck, P. Gilbert, B.-G. Chun,
L. P. Cox, J. Jung, P. McDaniel, A. N. Sheth



Problem Setting

?



What is TaintDroid?

Extension of the Android platform
 
Tracks flow of information through an 
application
 
Realtime analysis & feedback
 
Tracks data between processes (file, IPC, ...)



General idea

Mark (taint) sensitive information
 
Taint sources and sinks
 
 

Taint Source Taint Sink

Application
Sensitive Information Tainted Information

ALERT!
if (taint == true)



Design Challenges

Limited resources & performance
 
Identifying private information
 
Multiple types and sources of sensitive data
 
Data sharing between applications



User notification



How it works - Variable level

Multiple taint markings stored in a taint tag
 
Taint tag is a 32bit vector
 
Stored adjacent to the variables
 
Only one taint tag per array



How it works - Stack layout



How it works - Message & file level

Only one tag per message or file
 
Union over all taint tags of the variables 
contained in the message or file
 
Potential for false positives
 
Less overhead than a finer granularity



How it works - Propagation logic



Where to place taint sources & sinks?

Low-bandwidth sensors (location, accelerometer, ...)
 
High-bandwidth sensors (camera, microphone, ...)
 
Information databases (calendar, address book, ...)
 
Device identifiers (SIM number, IMEI number, ...)
 
 
 
Network Taint Sink



Limitations

Data flow tracking only / No control flow tracking
 
Native code is unmonitored

○ Conservative heuristic: Assign union of 
argument taint markings to return type

 
Sometimes too coarse grained

○ One taint tag per message or file
○ One taint tag per array



Performance



Experiment - Setup

30 popular applications
 
~ 100 minutes of recording
 
Network access + additional permissions
 
Nexus One with Android 2.1



Experiment - Applications



Experiment - Results



Reviews

6 Reviews - Average Score 2.16 (accept)
+ Privacy is an issue (Data scandal is a matter of time)
+ Low overhead / Good performance - accuracy tradeoff
+/- Study with open source software as ground truth
+/- A lot of implementation details
- No native code tracking or static code analysis
- A lot of Android knowledge required
- Too sophisticated for 'normal' user
- May force developers to create new malicious ways to

get the data
- Only notifications / No control
 



MockDroid
Trading Privacy for Application 
Functionality on Smartphones

Paper by A. R. Beresford, A. Rice, N. Skehin, 
R. Sohan



Problem setting

Similar problem setting as TaintDroid
 
Applications often require sensitive data to 
work correctly
 
Access to resources is granted
once at install time and cannot
be changed afterwards



What is MockDroid?

Extension of the Android platform
 
MockDroid allows to fake (mock) sensitive data
 
Decision of faking data can be done/changed at 
runtime



What is MockDroid?



How it works

Granted permissions are stored by Android in an in-
memory data structure and on disk
 
API calls check the in-memory data structure
 
MockDroid extends the data structure with a 'real' and a 
'mocked' version of the permission
 
Internet permissions requires inet group. MockDroid 
therefore adds a mocked_inet group



What can be faked?

Location - no location fix
 
Internet - connection timeout
 
Calendar & contacts - empty database - zero rows affected
 
Device id - Fake constant value
 
Broadcast intents - Intents never sent/received



Limitations

Limited in what can be faked
 

○ Instead of no location, just an 
approximate indication (e.g. next big city)

○ Instead of empty contact or calendar 
database, MockDroid could return a 
subset (like public events)



Evaluation

Local
○ location used for

location based
advertisements

○ No reduced
functionality

 
Internet:

○ Limited functionality
when mocking internet access

○ Continue to run even without internet access



Paranoid Android
Versatile Protection for Smartphones

Paper by G. Portokalidis, P. Homburg,
K. Anagostakis, H. Bos



Problem setting

Smartphones hold privacy sensitive information
 
Become highly valuable targets for attacks
 
Security solutions from PCs are not always 
applicable to smartphones



What is Paranoid Android?

Security as a service
 
Security checks are performed by security 
servers
 
Security servers hold an exact replica of the 
phone in a virtual environment
 
Record & replay model



Overall architecture



Security Model

Buffer overflows & Code injection
(implemented in prototype)
 
Open source AntiVirus scanner (for file scans) 
(implemented in prototype)
 
Memory scanner for patterns of malicious code
 
Abnormal system call detection
 
... flexible model which can be extended
 



Notification & Recovery

Notifications, Emails or SMS may be blocked
 
Hardware support
 
Restore to clean state using the replica
 
Minimizing data loss



Evaluation

Amount of trace data
 
Overhead of the tracer
 
Performance and scalability of the server



Evaluation - Amount of trace data



Evaluation - Overhead



Evaluation - Server scalability



Thank you very much for your attention!

Questions & Discussion
 

■ Which approach do you like most? Or other ways to 

protect privacy?

■ Will it become a necessity to run AV software on a 

phone?

■ Has anyone installed an AV already?

■ What is a better approach: restricted platforms like iOS or 

more open platforms like Android?

 


