ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Distributed Systems Seminar - Spring 2012

Eigenbehaviors: identifying structure in routine

Nathan Eagle & Alex Sandy Pentland (MIT Media Lab, 2009)

Presented by:

César Fuentes (ETH D-INFK)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Abstract

- From longitudinal data → identify structure inherent in daily behavior
- Represent structure: principal components, set of characteristics vectors → "eigenbehaviors"
- Approximations with the first few eigenbehaviors
- Used for:
 - Compact representation
 - Prediction
 - Infer community affiliations

Past challenges & Motivation

- Repeating & identifiable routines in people's lives
 - More apparent when behavior is contextualized → time, space, social circle
- Before: lack of contextualized behavioral data → NOW: smart phones data
- Traditional methods (e.g. Markov models) cannot manage temporal patterns across different timescales.
- New method: Principal Component Analysis

Applications

- Compact representation
 - 90% accuracy with 6 primary eigenbehaviors
- Prediction
 - If first 12h of a day's activities are known, the last 12h can be predicted with ~79% accuracy
- Characterization of groups
 - Groups of friends have collective "behavior space"
- Identification of affiliations and similarities
 - Using the Euclidean distance between individual behavior and a community's behavior subspace

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Related work

- CSCW: Techniques of rhythm modeling within the workspace (Begole et al.) → last week
- Electronic badges \rightarrow 80's, early 90's
 - location-based applications, detection of face-to-face interactions
- GPS \rightarrow location detection & classification (but not indoors)
- Correlating cell tower ID with a user's location
- Pattern recognition, computer vision
 - "Eigenfaces" → many analogies in characterization of individuals
 - Also: new technologies provide wealth of training data

Data Source: Reality Mining Dataset

•25 business school students

Tuesday, 24 April 2012

Department of Computer Science

~ 400 000 h of data

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Limitations and concerns

- Justifiable privacy concerns
 - Legitimate, but NOT addressed in this work
 - Dataset from social experiment, with consent of subjects
- Techniques not only applicable to humans → animal behavior studies
 - Prediction can be actually more accurate (animals less "inventive")
- Subjects in the RM study may not be a representative sample of society, but...
 - Regularity in routines is normal for everyone

Limitations and concerns

Illetifiable nrivaev concerne

Underlying assumptions

•Similarity of behaviors across time \rightarrow predictability

•Similarity of different individuals' behaviors within the same

social group \rightarrow homophily

Can be defeated with unexpected behavior (spontaneity)

•But good enough for most cases...

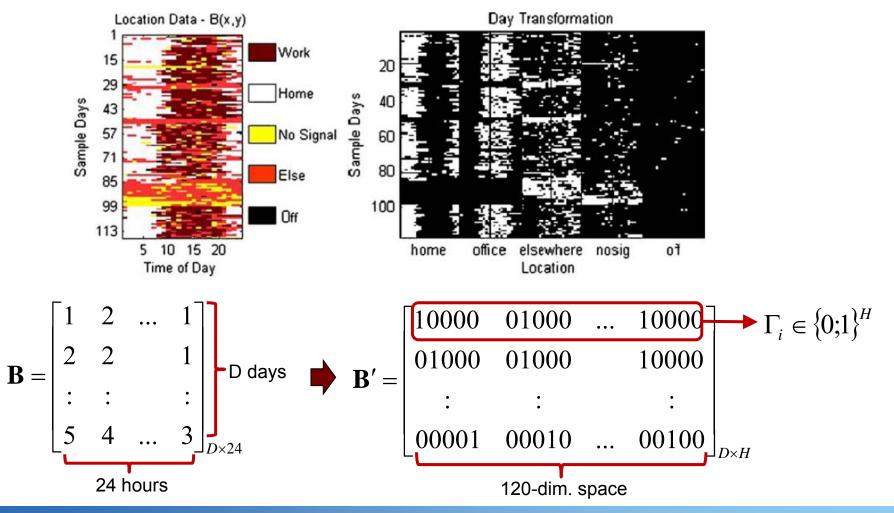
sample of society, but...

Regularity in routines is normal for everyone

Data Modeling: Temporal Location Data

- Characterize person I as matrix B of size D×24
 - $D \rightarrow #$ of days in study; columns for 24h
- B contains n "location" labels = {Home, Elsewhere, Work, No Signal, Off}
 - Labels obtained in previous work, here assumed as ground truth
- $B \rightarrow B'$: matrix of D×H (H=24×*n*) binary values
- Days are not scattered across the 120-dim. space → they live in a low dimensional "behavior space"
 - Space defined by a subset of vector of dimension H

Data Modeling: Temporal Location Data



19 March 2012

Eigenbehaviors for individuals

For each subject: set of behaviors

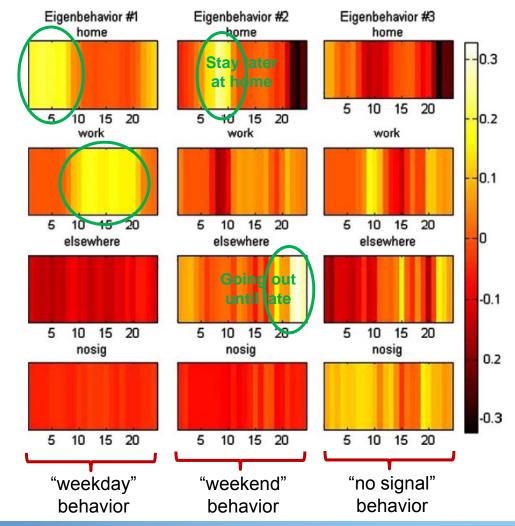
 $\Gamma_1, \Gamma_2, \dots, \Gamma_D \in \{0; 1\}^H$

Average behavior of the individual

$$\Psi = \frac{1}{D} \sum_{n=1}^{D} \Gamma_n \qquad \Phi_i = \Gamma_i - \Psi$$

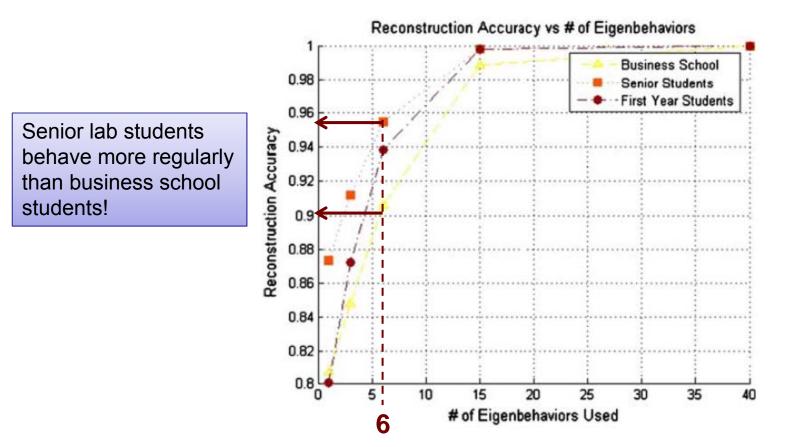
PCA on these vectors: eigenvectors of the covariance matrix

$$C = \frac{1}{H} \sum_{n=1}^{H} \Phi_n \Phi_n^T = AA^T$$
$$C = U\Lambda U^T$$
$$U = \begin{bmatrix} u_1 & u_2 & \dots & u_H \end{bmatrix}$$
Keep 6 largest eigenbehaviors

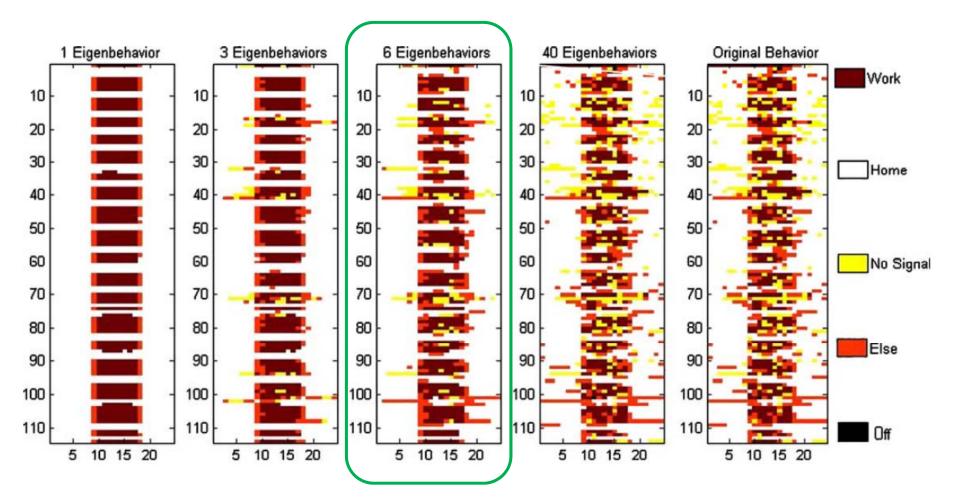


Eigenbehaviors for individuals

•How many eigenbehaviors to keep?



Eigenbehaviors for individuals



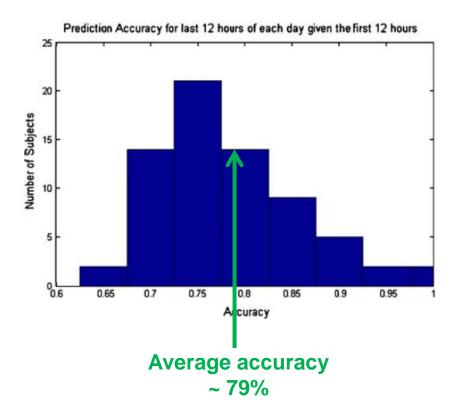
Prediction of an individual's behavior

 For each subject, calculate behavior space with:

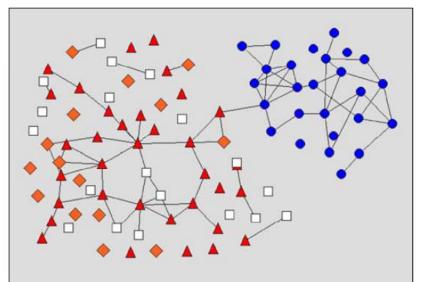
. . . .

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Individual's 6 primary eigenbehaviors
- Weights from first 12h of the day
- Linear combination of weights and primary eigenbehaviors → vector of predicted locations created
- (mechanism is similar to a recommender system)



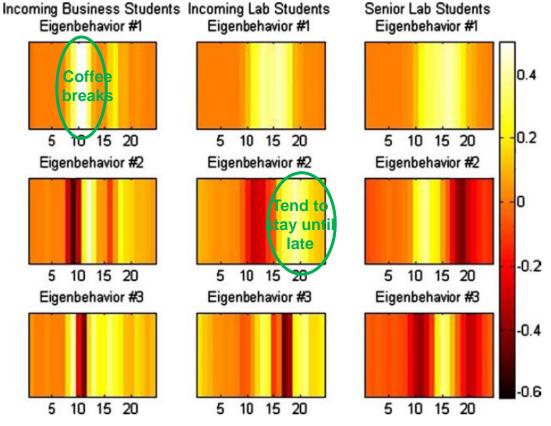
- Goal: infer relationships & affiliations from comparison of eigenbehaviors.
- RM social network: high amount of clustering
 - Reasonable to assume that each group has characteristic behaviors
 - Identify eigenbehaviors of communities;
 project individuals onto the behavior space
 - Affiliation inferred from Euclidean distance btw. individual behavior & principal comp.
 - Also: distance btw. pair of subjects within a community ~ probability of friendship



- Business school students
- Senior lab students
- Incoming lab students
- Lab staff and faculty

Eidgenössische Technische Hochschule Züricl <u>Swiss Feder</u>al Institute of Technology Zurich

- Math similar to the previous case, but now...
 - Matrix B: (M×H) → each row is the average behavior of an individual in the community
 - Same transformation B→B'
 - For this example: only
 Bluetooth proximity data
 - # of devices discovered in each hour of scanning
 - Principal eigenbehaviors exhibit main characteristics



31

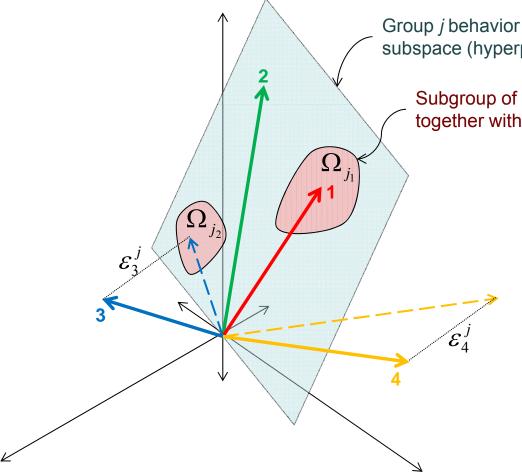
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- To determine similarity of members:
 - how accurately the behavior can be approx. by the community's primary eigenbehaviors
- A behavior can be projected onto the community *j* space $\omega_k^j = u_k^j (\Gamma - \Psi_j) \Longrightarrow \Omega_j = U_j^T (\Gamma - \Psi_j)$
- Vector Ω_j : optimal weights to get the behavior closest to the behavior space
 - Euclidean distance used to determine person *k* in *j* closest to the individual $\mathcal{E}_{ik}^2 = \left\|\Omega^j \Omega_k^j\right\|^2$

Eidgenössische Technische Hochschule Züric Swiss Federal Institute of Technology Zurich

- Method also used for determining most similar days
- Also: how much an individual "fits in" with a community → (classification)
 - Distance btw. original behavior (mean-adjusted) and its projection onto the community subspace
 - Projection: $\Phi_b^j = \sum_{i=1}^{M_j^j} \omega_i^j u_i^j = U_j \Omega_j$ Distance: $\varepsilon_j^2 = \left\| \Phi^j \Phi_b^j \right\|^2$
 - There are four possible outcomes of affiliation

Affiliations in the behavior space



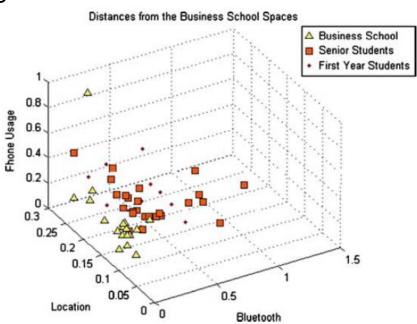
subspace (hyperplane)

Subgroup of individuals close together within the subspace

> •Ind.1: lives in the subspace, can be affiliated to subgroup of individuals 1. Ind. 2: lives in the subspace, but is not close to other individuals •Ind. 3: shares something with some individuals, but does not lie in the behavior space

•Ind. 4: disparate input neither near the behavior space nor any individual in the space.

- Until now: working with datasets independently → multimodal analysis also possible!
 - Generate set of eigenbehaviors for each type of data captured
 - Calculate an individual's Euclidean distance from each space
 - Points closest to the origin are more related to the community from where the spaces originate
 - Classification accuracy ~ 96%
- Distance btw. two points ~ probability of the pair being connected



Tuesday, 24 April 2012

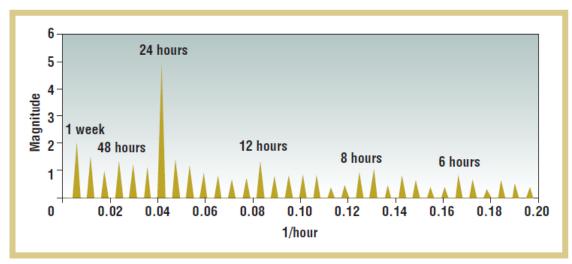
Eidgenössische Technische Hochschule Züric

Another approach: Eigenplaces

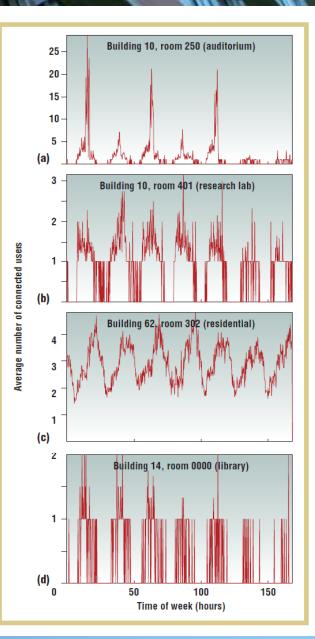
- Use of eigen-decomposition to leverage MIT's Wi-Fi network activity data and analyze its correlation to the physical environment.
- MIT campus covered with unified Wi-Fi network (APs)
 - 20 000 users, 250 000+ sessions/day
 - 73% students bring laptop to campus → network activity reasonable proxy of students activities
- **Experiment**: 2006 spring semester
 - Polled 3053 APs at 15-min intervals \rightarrow determine # of connected users
 - No access to content → only spatiotemporal access profiles, preserving anonymity

Dataset preparation

- Holidays removed, average data \rightarrow view of typical week
- Fourier transform shows daily & weekly access cycles
- Use of MIT's spaces database: 10 broad spatial types (e.g. classroom, administrative, residential, library, public space, etc.)
- Average # of connected user per week for each space type: graphs show distinctive characteristics

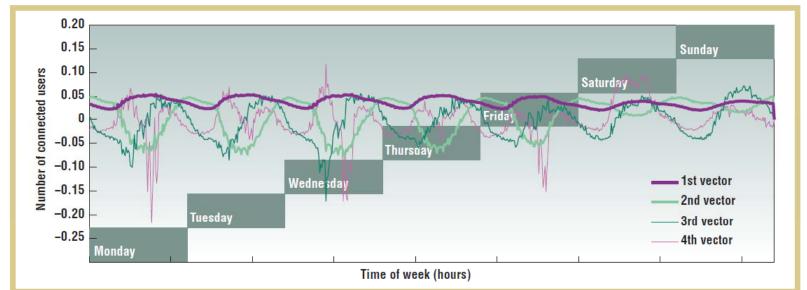


Fourier transform of the average week usage



Eigenplaces: Application of PCA

- # connections to an AP over a week \rightarrow vector of 24×7=168 elem.
- All APs observations assembled into a single covariance matrix
- First 4 eigenvectors enough for keeping relative error < 0.1</p>
 - V1: daily cycle, V2: evening activity, V3: not clear interpretation, V4: usage pattern of largest auditorium



19 March 2012

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Eigenplaces: Application of PCA

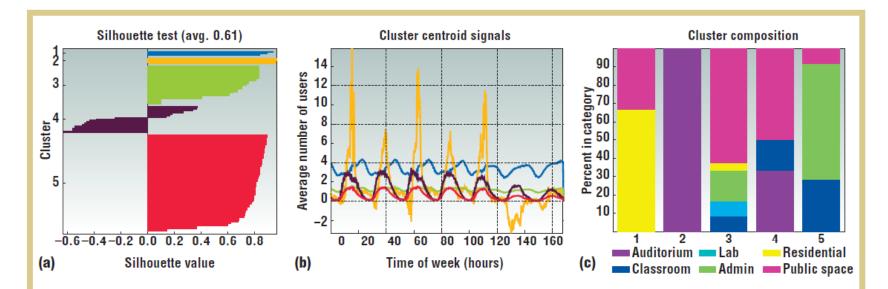
- Key benefit: compression
 - Difference between APs captured entirely in coefficients
- Vector of coefficients describing each AP → Eigenplace
 - Comparable to any other place described with same vector set
 - Possible to cluster APs based on their distance in the space (similarity)
- Clustering: unsupervised k-means
 - Requires number of clusters \rightarrow unknown!! Previous work used 3
 - BUT: use silhouette plot for finding optimal # of clusters!
 - Each AP silhouette value ~ how suited it is to its cluster and how far it is from other clusters. s-value in interval [-1, +1]
 - Tests showed that 3 clusters is NOT an optimal number

. . . .

Eidgenössische Technische Hochschule Züricl Swiss Federal Institute of Technology Zurich

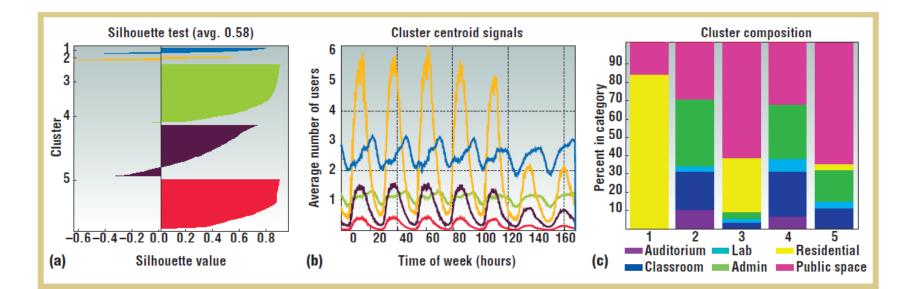
Cluster Training on partial data set

- Selected APs from 3 representative buildings
- 5 clusters maximized the average silhouette value (s-value = 0.61)
- Centroid signals → average of clusters in the eigenplace space, then taken back to the 168-dim. usage time space
- Comparison with "true" usage type classification shows consistency



Cluster Analysis on full data set

- Previous step reduced risk of non-optimal solutions
- Full data fit is slightly weaker, but still quite coherent (s-value = 0.58)
- Clusters exhibit distinctive characteristics: 1 public APs with very high traffic levels, 2 – small number of high-traffic public spaces, 3 – public APs from residential blocks, 4 – core buildings, 5 – most accessible ground

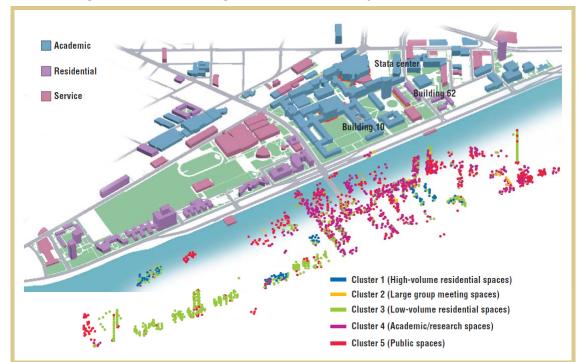


Successful approach

. . .

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Te<u>chnology Zurich</u>

- Results of clustering all APs in campus show very distinctive features
- More than 3000 APs classified without personal inspections; possible to have continuous results at minimal cost.
- Applications: understand resource usage across a large-scale network; large advertising-supported systems



Critique

- **Overall rating:** average **4.0** (accept)
- Technical strength: average 3.8 (agree)
 - Greatly reduce the complexity of behaviors
 - Authors used large & solid data set
 - Efficient classification and prediction; good accuracy
 - BUT: revealed patterns are somewhat trivial, lacks proofs of correlation with ground truths, calculation of friendship probability not very clear
- Originality: average 4.0 (agree)
 - Known methods, but innovation is in the **application** to behavioral models
 - **Prediction** using eigenbehavior spaces is also very innovative
 - Reduction to a clustering problem for determining group affiliations

Critique

Presentation: average 3.9 (good)

- PROS: nicely written, easy to follow, good use of colored graphs, length
- CONS: some typos, graphical representation of vectors needed
- Contribution: average 4.0 (strongly) \rightarrow introduction of eigenbehaviors
 - Model to represent structure in routines
 - Insights for understanding behavioral data using dimensionality reduction
 - Understand what is important for characterization of ind./comm. behaviors

Future work:

- Building concrete applications for the proposed methodology
- Make use of the prediction capabilities; use different/larger data sets
- Compare/correlate affinity results with other social networks' data (e.g. FB)

Thanks for your attention.

Questions?