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Abstract

* From longitudinal data - identify structure
iInherent in daily behavior

= Represent structure: principal components, set
of characteristics vectors - “eigenbehaviors”

= Approximations with the first few eigenbehaviors

= Used for:
Compact representation
Prediction
Infer community affiliations
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Past challenges & Motivation

= Repeating & identifiable routines in people’s lives

More apparent when behavior is contextualized - time, space,
social circle

= Before: lack of contextualized behavioral data > NOW:

smart phones data

= Traditional methods (e.g. Markov models) cannot

manage temporal patterns across different timescales.

= New method: Principal Component Analysis
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Applications

= Compact representation
90% accuracy with 6 primary eigenbehaviors

= Prediction

If first 12h of a day’s activities are known, the last 12h can be
predicted with ~79% accuracy

= Characterization of groups

Groups of friends have collective “behavior space”

= |dentification of affiliations and similarities

Using the Euclidean distance between individual behavior and a
community’s behavior subspace
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Related work

= CSCW: Techniques of rhythm modeling within the
workspace (Begole et al.) - last week

= Electronic badges - 80’s, early 90’s

location-based applications, detection of face-to-face interactions
= GPS - location detection & classification (but not indoors)
= Correlating cell tower ID with a user’s location

= Pattern recognition, computer vision

“‘Eigenfaces” - many analogies in characterization of individuals

Also: new technologies provide wealth of training data
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Data Source: Reality Mining Dataset

Call logs

Bluetooth devices
in proximity

Cell tower IDs
(location)

100 subjects @ MIT during

2004-2005 academic year
75 lab students/faculty “Context” app.

'29 'ncor_nmg masters (http://www.cs.helsinki.fi/group
*5 incoming freshmen /context/)

*25 business school students \

Application usage

smartphones, with

Phone status

I
~ 400 000 h of data

Tuesday, 24 April 2012 Department of Computer Science



Limitations and concerns

= Justifiable privacy concerns

Legitimate, but NOT addressed in this work

Dataset from social experiment, with consent of subjects

= Techniques not only applicable to humans - animal
behavior studies

Prediction can be actually more accurate (animals less “inventive”)

= Subjects in the RM study may not be a representative
sample of society, but...
Regularity in routines is normal for everyone
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Limitations and concerns
m  hietifinhla nriviaryvi rAan~rarnce
Underlying assumptions
*Similarity of behaviors across time = predictability
Similarity of different individuals’ behaviors within the same
social group = homophily
*Can be defeated with unexpected behavior (spontaneity)

*But good enough for most cases...
sample of society, but...

Regularity in routines is normal for everyone
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Data Modeling: Temporal Location Data

= Characterize person | as matrix B of size Dx24
D - # of days in study; columns for 24h

= B contains n “location” labels = {Home, Elsewhere,
Work, No Signal, Off}

Labels obtained in previous work, here assumed as ground truth

= B > B’ : matrix of DxH (H=24x%n) binary values

= Days are not scattered across the 120-dim. space -
they live in a low dimensional “behavior space”

Space defined by a subset of vector of dimension H
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Eigenbehaviors for individuals

Eugenbehawor #

For each subject: set of behaviors

r,0,,..T, e{o;1}"

Average behavior of the individual

ZD:rn O, =T~ ¥

PCA on these vectors: eigenvectors

of the covariance matrix

icbncpz = AA'

C =UAU'
U=[u u, .. uy]

||
Keep 6 largest eigenbehaviors
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Eigenbehaviors for individuals

How many eigenbehaviors to keep?

'

0.98

096 |
Senior lab students

behave more regularly
than business school
students!

Reconstruction Accuracy
o
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082}
0.8l

19 March 2012 Department of Computer Science

UB"

092k

Reconstruction Accuracy vs # of Eigenbehaviors

I

""-—'.""'i-l" B i i e o St 8 Sl 8 o g

.j‘.

Business School
Senior Students

i 1

H
15 20 25

— @ -First Year Students | :

o ------

10

# of Eigenbehaviors Used

b
E Y
InfoTrmatie W W

)
LA Compliter Science



= -

100}
110}

Eigenbehaviors for individuals
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Prediction of an individual’s behavior

= For each subject, calculate
behavior space with:
Individiial’e 6 nrimarv
HiMviual o Y opinnialy
eigenbehaviors
Weights from first 12h of the day

= Linear combination of weights and
primary eigenbehaviors - vector
of predicted locations created

= (mechanism is similar to a
recommender system)
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Eigenbehaviors for social networks

= Goal: infer relationships & affiliations

from comparison of eigenbehaviors.
= RM social network: high amount of
clustering

Reasonable to assume that each group
has characteristic behaviors

|dentify eigenbehaviors of communities;
project individuals onto the behavior space

Affiliation inferred from Euclidean distance .
e Business school students

btw. individual behavior & principal comp. A Senior lab students

Also: distance btw. pair of subjects within Incoming lab students

a community ~ probability of friendship 0 Lab staff and faculty
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Eigenbehaviors for social networks

. Math Slmllar tO the preVIOUS Incoming Business Students Incoming Lab Students Senior Lab Students
Eigenbehavior #1 Eigenbehavior #1 Eigenbehavior #1
case, but now... —~c

- Matrix B: (MxH) > each row DA
is the average behavior of an _
individual in the community 5 18715 20 5 10 15 20 5 10 1520 [102
Eigenbehavior #2 Eigenbehavior #2 Eigenbehavior #2

- Same transformation B>B’

= For this example: only

Bluetooth prOXimity data 5 10 15 20 5 10 15 5 10 15 20
Eigenbehavior #3 Eigenbehavior #3 Eigenbehavior #3

0.2

- # of devices discovered in
each hour of scanning

= Principal eigenbehaviors
exhibit main characteristics

5 10 15 20 5 10 15 20 5 10 15 20
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Eigenbehaviors for social networks

= To determine similarity of members:

how accurately the behavior can be approx. by the community’s

hl‘;mﬂf\l r\inr\nh
piitlialy ciyciiv

= A behavior can be projected onto the community j space
ol =ui(r-¥ )=, =UT(r-v)

= Vector Q; : optimal weights to get the behavior closest to
the behavior space

Euclidean distance used to determine person k in j closest to the
individual &2 = Q-0 ?
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Eigenbehaviors for social networks

= Method also used for determining most similar days
= Aiso: how much an individual “fits in” with a community -
(classification)

- Distance btw. original behavior (mean-adjusted) and its projection
onto the community subspace

Projection: LI
i=1
. 2 i i’
- Distance: gy =0 -0,
- There are four possible outcomes of affiliation
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Affiliations in the behavior space

Group j behavior
/ subspace (hyperplane)

Subgroup of individuals close
together within the subspace

*Ind.1: lives in the subspace, can be
affiliated to subgroup of individuals 1.

Ind. 2: lives in the subspace, but is not
close to other individuals

Ind. 3: shares something with some
individuals, but does not lie in the behavior
space
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Eigenbehaviors for social networks

= Until now: working with datasets
independently - multimodal analysis

Distances from the Business School Spaces

A A AP AR T a R al

- Generate set of eigenbehaviors for each £ & '
type of data captured T
Calculate an individual’s Euclidean z: :
distance from each space = o).
Points closest to the origin are more 03

related to the community from where the
spaces originate

- Classification accuracy ~ 96%

= Distance btw. two points ~ probability
of the pair being connected
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Another approach: Eigenplaces

= Use of eigen-decomposition to leverage MIT’s Wi-Fi network activity
data and analyze its correlation to the physical environment.

= MIT campus covered with unified Wi-Fi network (APSs)
20 000 users, 250 000+ sessions/day
73% students bring laptop to campus - network activity reasonable
proxy of students activities
= Experiment: 2006 spring semester
Polled 3053 APs at 15-min intervals - determine # of connected users

No access to content = only spatiotemporal access profiles, preserving
anonymity
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= Dataset preparation
Holidays removed, average data - view of typical week
Fourier transform shows daily & weekly access cycles

Use of MIT’s spaces database: 10 broad spatial types
(e.g. classroom, administrative, residential, library, public
space, etc.)

Average # of connected user per week for each space
type: graphs show distinctive characteristics

b
24 hours
5_
@ 4_
=
Z 31
= 1 week
= 27 48 hours 12 hours
8 hours 6 hours
1-
0 0.02 0.04 0.06 008 010 012 0.14 0.16 0.18 0.20

1/hour

Fourier transform of the average week usage

Tuesday, 24 April 2012 Department of Computer Science

Average number of connected users

(c)

Info

Computer S(\em%h,

)Mk .JH J.m .“’“'m J L

Building 10, room 250 (auditorium)

Building 10, room 4D1 (research lah)

\ Mw

27|

i

“M

Building 62, ,room 302 (residential)

() 1} W\Jﬂ

= | =

100 150
Tlme of week (hours)




Eigenplaces: Application of PCA

# connections to an AP over a week = vector of 24x7=168 elem.

All APs observations assembled into a single covariance matrix

First 4 eigenvectors enough for keeping relative error < 0.1
- V1: daily cycle, V2: evening activity, V3: not clear interpretation, V4. usage

pattern of largest auditorium

0.20
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0.05}-
0
-0.05
-0.10
-0.15
-0.20
-0.25

=15t vEctor

Number of connected users

2nd vector

—— 3rd vector
— 4th vector

| | |
Time of week (hours)
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Eigenplaces: Application of PCA

= Key benefit: compression

Difference between APs captured entirely in coefficients

Vector of coefficients ibing each AP - Eigenplace
Comparable to any other place described with same vector set

Possible to cluster APs based on their distance in the space (similarity)

= Clustering: unsupervised k-means
Requires number of clusters - unknown!! Previous work used 3
BUT: use silhouette plot for finding optimal # of clusters!

Each AP silhouette value ~ how suited it is to its cluster and how far it is
from other clusters. s-value in interval [-1, +1]

Tests showed that 3 clusters is NOT an optimal number
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= Cluster Training on partial data set
- Selected APs from 3 representative buildings
- 5 clusters maximized the average silhouette value (s-value = 0.61)
- Centroid signals - average of clusters in the eigenplace space, then

taken back to the 168-dim. usaqe time space
[N s LN L | L] LB B vv Sl I

Urluvv

- Comparison with “true” usage type classification shows consistency

Silhouette test (avg. 0.61) Cluster centroid signals Cluster composition
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= Cluster Analysis on full data set

= Previous step reduced risk of non-optimal solutions
= Full data fit is slightly weaker, but still quite coherent (s-value = 0.58)

- Clusters exhibit distinctive characteristics: 1 — public APs with very high
traffic levels, 2 — small number of high-traffic public spaces, 3 — public APs from

residential blocks, 4 — core buildings, 5 — most accessible ground

Silhouette test (avg. 0.58) Cluster centroid signals Cluster composition
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= Successful approach

Results of clustering all APs in campus show very distinctive features

More than 3000 APs classified without personal inspections; possible
to have continuous results at minimal cost.

Applications: understand resource usage across a large-scale
network; large advertising-supported systems

[ Academic 4 i > - I e m— S
[T Residential . oy J | I a .,»
Senvi N { e ildi ”‘
[ Service ’ > b N A B o
‘.7' e ;
o e > s l
F) -
: By e e
, - g O
: T, W
Ly Sk,
R N
o N, ; ,
o . J-‘ qt‘
LD

mmm (luster 1 (High-volume residential spaces)

@ '“ib === (Cluster 2 (Large group meeting spaces)

» * ) m== Cluster 3 (Low-volume residential spaces)
. lt h:‘l‘!ﬂ mmm Cluster 4 (Academic/research spaces)

e

mmm Cluster 5 (Public spaces)

Tuesday, 24 April 2012 Department of Computer Science

Inf Infofmatik e,
Comptiter Sci c'e-_



Critique

= Qverall rating: average 4.0 (accept)

= Technical strength: average 3.8 (agree)
Greatly reduce the complexity of behaviors
Authors used large & solid data set
Efficient classification and prediction; good accuracy
BUT: revealed patterns are somewhat trivial, lacks proofs of correlation
with ground truths, calculation of friendship probability not very clear
= QOriginality: average 4.0 (agree)
Known methods, but innovation is in the application to behavioral models
Prediction using eigenbehavior spaces is also very innovative

Reduction to a clustering problem for determining group affiliations

19 March 2012 Department of Computer Science




Critique

= Presentation: average 3.9 (good)

PROS: nicely written, easy to follow, good use of colored graphs, length

= Contribution: average 4.0 (strongly) = introduction of eigenbehaviors

Model to represent structure in routines
Insights for understanding behavioral data using dimensionality reduction

Understand what is important for characterization of ind./comm. behaviors

= Future work:

Building concrete applications for the proposed methodology

Make use of the prediction capabilities; use different/larger data sets
Compare/correlate affinity results with other social networks’ data (e.g. FB)
T oNahz02
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Thanks for your attention.

Questions?
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