

Distributed Systems Seminar 2012

Using T-Patterns to Derive Stress Factors of Routine Tasks

Brdiczka et al. CHI 2009

Presentation by Andreas Tschofen

The Papers

 Using T-Patterns to Derive Stress Factors of Routine Tasks (Brdiczka et al.)

CHI 2009, Work in progress

 The Routineness of Routines: Measuring Rhythms of Media Interaction

Human Computer Interaction (journal)

Overview

Study

- Shadowed 10 knowledge workers for 3 days each
- Recorded computer activity,...

Approach

- Use T-pattern analysis to find temporal patterns (fine granularity routines) in a participant's work
- Investigate correlation between features of the discovered patterns and perception of workload, autonomy and productivity

How does this fit into our seminar?

- Detect routines
- Understand routine work
 - → Find ways to support routine work with computer systems
- Quantify routineness of tasks
- Understand routineness and psychology

T-patterns (Magnusson)

- Patterns of events occurring approximately within a certain temporal configuration
- Traditional techniques...
 - focus on sequential patterns (eg., "it is a pattern that event
 B occurs right after event A")
 - do not incorporate time (eg., "it is a pattern that event B occurs within roughly 10 minutes after event A, although there might be different events in between")

T-patterns Algorithm

- Given: A sequence of events with start- and endtimes
- Initialize: Each event is one pattern
- While not found all patterns with length <= I, do for each pair of patterns:
 - CI test: check whether the temporal distances between the pairs of instances of the patterns are random
 - If not: Add composite pattern with critical interval CI, instances are the pairs within CI

Example

Data

- Logging software
 - Application, window type and position, active document,
 e-mail (sender and recipient)
- Observer
 - Activities' start/end times, artifcats used, interactions, goals, relevant quotes
 - Video and audio

Media Interactions (Journal paper)

- Units of activity, e.g.
 - Word
 - Browser
 - Stationery
 - Face-to-face
 - Phone
 - Self
- Media interactions are the events for the T-pattern algorithm

Working Spheres (Journal paper)

- A working sphere is a project/task modeled as a network of humans and artifacts
 - E.g. report status of project, close company revenues, gather and summarize IT metrics
 - May be paused and resumed

 Journal paper: Data was analyzed per working sphere

Perception Surveys

- Task Load Index (NASATLX)
 - Measure stress as a composite of workload, time pressure,
 effort and frustration
- Questions from Job Diagnostic Survey (JDS)
 - Job autonomy
- Healt and Work Questionnaire (HWQ)
 - Productivity

Analysis Pipeline

T-patterns and Working Spheres

(2) Media events with their temporal data (start, end times) for the **Monthly Status Report working sphere** are concatenated and piped into the T-pattern analysis program.

T-pattern Statistics

Routineness of a Working Sphere

(1)
$$N_T = 3$$

(2)
$$X_T = \frac{1+1+2}{3} = 1.\bar{3}$$

(3)
$$Ratio_T = \frac{\frac{1}{2} + \frac{1}{1} + \frac{2}{2}}{3} = 0.8\overline{3}$$

(4)
$$D_T = \frac{11 + 30 + 97 \times 2}{4} = 56.25 \text{ sec.}$$

(5)
$$VarD_T = sd(11, 30, 97, 97) \approx 44.84 \text{ sec.}$$

Features that should characterize routineness

Only (1) and (4) used in CHI 2009 paper

Correlations in CHI 2009 Paper

		Workload	Autonomy	Productivity
appw class	N _t	0.33 (0.10)	0.07 (0.73)	0.07 (0.72)
	minL	-0.06 (0.75)	-0.15 (0.47)	-0.16 (0.43)
pos	N _t	0.24 (0.25)	0.09 (0.67)	-0.01 (0.95)
	minL	-0.20 (0.33)	-0.03 (0.88)	-0.15 (0.46)
doc	N	0.45 (0.04)	0.35 (0.12)	0.35 (0.12)
	minL	0.13 (0.58)	0.18 (0.43)	0.12 (0.59)
email	N _t	-0.18 (0.39)	0.08 (0.70)	-0.03 (0.87)
	minL	-0.20 (0.33)	-0.34 (0.10)	-0.48 (0.02)

Correlati

More (repetitive)
application window
patterns – more

2009 Paper

		patterns – more workload my		Productivity
appw class	N _t	0.33 (0.10)	0.07 (0.73)	0.07 (0.72)
,	minL	-0.06 (0.75)	-0.15 (0.47)	-0.16 (0.43)
pos	N _t	0.24 (0.25)	0.09 (0.67)	-0.01 (0.95)
	minL	-0.20 (0.33)	-0.03 (0.88)	-0.15 (0.46)
doc	N	0.45 (0.04)	0.35 (0.12)	0.35 (0.12)
	minL	0.13 (0.58)	0.18 (0.43)	0.12 (0.59)
email	N _t	-0.18 (0.39)	0.08 (0.70)	-0.03 (0.87)
	minL	-0.20 (0.33)	-0.34 (0.10)	-0.48 (0.02)

Correlations in CHI 2009 Paper

		Workload	Autonomy	Productivity
appw class	N _t	<u>0.33 (0.10)</u> 0.07 (0.73)		0.07 (0.72)
	minL	-0.06 (0.75)	-0.15 (0.47)	-0.16 (0.43)
pos	N _t	More (repetitive) document usage patterns – more workload 88)		-0.01 (0.95)
	minL			-0.15 (0.46)
doc	N	0.45 (0.04)	0.35 (0.12)	0.35 (0.12)
	minL	0.13 (0.58)	0.18 (0.43)	0.12 (0.59)
email	N _t	-0.18 (0.39)	0.08 (0.70)	-0.03 (0.87)
	minL	-0.20 (0.33)	-0.34 (0.10)	-0.48 (0.02)

Correlations in CHI 2009 Paper

		Workload	Autonomy	Productivity
appw class	N _t	0.33 (0.10)	0.07 (0.73)	0.07 (0.72)
	minL	-0.06 (0.75)	-0.15 (0.47)	-0.16 (0.43)
pos	N _t	0.24 (0.25)	0.09 (0.67)	-0.01 (0.95)
	minL	-0.20 (0.33)	-0.03 (0.88)	-0.15 (0.46)
doc	N	0.45 (0.04)	0.35 (0.12)	0.35 (0.12)
	minL	0.13 (0.58)	0.18 (0.43)	Longer minimal length of sender-recipient patterns –
email	N _t	-0.18 (0.39)	0.08 (0.70)	less productivity
	minL	-0.20 (0.33)	-0.34 (0.10)	-0.48 (0.02)

	Workload	Autonomy	Productivity
Intercept	61.30*** (5.61)	21.69 (13.91)	30.26** (12.25)
N_T	_	_	-0.87* (0.50) 31.84%
X_T	-2.74** (1.07) 42.37%	_	_
$Ratio_T$	_	34.69** (17.18) 32.13%	21.01 (13.94) 27.62%
D_T	_	_	_
$VarD_T$	$1.71 \times 10^{-4**} $ (7.52×10^{-5}) 37.37%	-0.0001*** (0.00004) 43.19%	_
R^2	0.30	0.34	0.24

		my	Productivity
Intercept	More reuse pattern insta		30.26** (12.25)
N_T	less worklo		-0.87* (0.50)
			31.84%
X_T	-2.74** (1.07) 42.37%	_	_
$Ratio_T$	_	34.69**	21.01
		(17.18)	(13.94)
		32.13%	27.62%
D_T	_	_	_
$VarD_T$	$1.71 \times 10^{-4**}$	-0.0001***	_
1	(7.52×10^{-5})	(0.00004)	
	37.37%	43.19%	
R^2	0.30	0.34	0.24

	Workload	Autonomy	Productivity
Intercept	61.30*** (5.61)	21.69 (13.91)	30.26** (12.25)
N_T	_	Higher signif	
X_T	-2.74** (1.07) 42.37%	pattern prop more auto	
$Ratio_T$	_	34.69** (17.18) 32.13%	21.01 (13.94) 27.62%
D_T	_	_	_
$VarD_T$	$1.71 \times 10^{-4**} $ (7.52×10^{-5}) 37.37%	-0.0001*** (0.00004) 43.19%	_
R^2	0.30	0.34	0.24

	Workload	Autonomy	Productivity	
Intercept	61.30*** (5.61)	21.69 (13.91)	30.26** (12.25)	
N_T	_	_	-0.87* (0.50) 31.84%	
X_T	-2.74** (1.07) 42.37%	_		More T-pattern
$Ratio_T$	_	34.69** (17.18) 32.13%	21.01 (13.9 27.62)	classes – less productivity
D_T	_	_	_	
VarD _T	1.71×10 ^{-4**} (7.52×10 ⁻⁵) 37.37%	-0.0001*** (0.00004) 43.19%	_	
R^2	0.30	0.34	0.24	

	Workload	Autonomy	Productivity
Intercept	61.30*** (5.61)	21.69 (13.91)	30.26** (12.25)
N_T	_	_	-0.87* (0.50) 31.84%
X_T	-2.74** (1.07) 42.37%	_	_
$Ratio_T$	_	34.69** (17.18) 32.13%	21.01 (13.94) 27.62%
D_T	_	_	_
$VarD_T$	$1.71 \times 10^{-4**} $ (7.52×10^{-5}) 37.37%	-0.0001*** (0.00004) 43.19%	_
R^2		e variability in oral distances –	0.24
	more more	workload, less autonomy	90%, 95%, 99%, The routineness

Interesting Differences

CHI 2009

- The more T-patterns detected, the higher the workload (and productivity for #docs)
- The lower the time between e-mails, the higher the productivity

Journal

 The more T-patterns detected, the lower the productivity

 No significant correlations with minimum temporal length

Causality?

"Thus, it seems that the reuse of routine temporal patterns reduces stress, but variability in the actual distance in events increases stress."

Causality?

"This might indicate that people who are able to use a variety of media with relatively stable temporal durations (e.g., productivity software vs. interruptions from interactions) have more control over how they work."

Journal Paper: Clustering

- Clustering of working spheres of participants
 - Based on T-pattern features
 - Authors chose 4 clusters

Cluster 1

- Typical routine tasks
- High number of T-pattern classes and instances, high variability in temporal distance
- Example:
 - Head of IT updating IT metrics
 - Various sources: browser, e-mail, calculator, Windows Explorer, Word as intermediate processing tool

Cluster 3

- High temporal distance and variability
- Example:
 - Research manager
 assembling status report to
 funding agency
 - Collect reports from subordinates

Cluster 4

 Average routineness, fewer significant instances, less variability in time

Example:

- Administrative assistant checking which computers are defunct
- Different sources (IT e-mail, own spreadsheet, IT inventory website)
- Location of data is not known with precision

Contributions

- Considering organization and routines from a temporal point of view
- Routineness measures based on media interaction (journal paper only)
- Exploring qualitative data about patterns
- Relationships between routineness features and psychological/mental state

Limitations

- Generalizability?
- Media interaction granularity
- Parameters?
 - Maximum pattern length = 4 "to filter only reasonable pattern sizes"
- Unclear how a measure of routineness could increase tools

Thank you for your Attention!