Adaptive Decentralized Control of Underwater Sensor Networks for Modeling Underwater Phenomena

Authors: Carrick Detweiler, Marek Doniec, Mingshun Jiang, Mac Schwager, Robert Chen, Daniela Rus

Speaker: Pradeep Kumar Ratnala

Modeling underwater phenomena

- Detecting and measuring the tidal front
- Chromophoric Dissolved Organic Matter (CDOM)
- An understanding of CDOM dynamics important for:
 - □ Remote sensing
 - □ Estimating light penetration
- Improved understanding of CDOM dynamics possible using sensor networks

http://www.subsea-tech.com

Underwater sensor networks

Understanding the dynamics of bodies of water

Need for sensor measurements over the full volume of water

• Challenge :

High density placement

Current systems

Current systems:

- Static sensor buoys
- Ships/ROVs/AUVs
- Water column profilers
- Problems:
 - Cost
 - Not adaptive
 - No Communication

Solving this requires algorithms and systems that enable adaptive and decentralized sensing

Dynamic depth adjustment algorithm

- Decentralized
- Adaptive
- Neighbor communication
- Runs online
- Converges to a local minimum

Underwater sensor network platform

- Base sensor node hardware AQUANODE
 - □ ARM7TDMI processor
 - 40kB of RAM and 512kB on-chip flash
 - Pressure and Temperature sensors
 - □ 10W acoustic modem
 - Lithium-ion batteries(60 Whr of energy)

Underwater sensors - Depth adjustment

- AQUANODE extended with autonomous depth adjustment facility
- Anchored at bottom & float mid-water column
- Winch driven by a 1.5A motor controller
- Depth adjustment speed of 0.5 m/s

Decentralized control algorithm – Problem formulation

Given N sensors at locations $p_1...p_N$, and the set Q with all points in the region of interest, optimize their positions for providing the most information about the change in the values of all other positions $q \in Q$

Decentralized control algorithm – Objective function

 For the point of interest q₁, we want to position p₁ such that : Cov(p₁,q₁) is maximized

• For n sensors. $\arg \max_{p_i} \sum_{i=1}^{N} Cov(p_i, q_1)$

For M points of interest,

$$\arg\max_{p_i}\sum_{j=1}^M\sum_{i=1}^N Cov(p_i,q_j)$$

Objective function

Total Cost Function: $H(p_1...p_N) = \int g(q,p_1...p_N) dq + \sum_{i=1}^n \emptyset(p_i)$

General decentralized controller

Goal is to minimize the objective function

$$\begin{aligned} \frac{\partial \mathcal{H}}{\partial z_i} &= \frac{\partial}{\partial z_i} \int_Q g(q, p_1, \dots, p_N) \, dq + \frac{\partial}{\partial z_i} \sum_{j=1}^N \phi(p_j) \\ &= \int_Q -g(q, p_1, \dots, p_N)^2 \frac{\partial}{\partial z_i} f(p_i, q) \, dq + \frac{\partial}{\partial z_i} \phi(p_i) \end{aligned}$$

Control input for each sensor

$$\dot{p}_i = -k \frac{\partial \mathcal{H}}{\partial z_i}$$

where k is some scalar constant

Decentralized control algorithm: Covariance models

• Multivariate Gaussian Model $F(p_i,q) = Cov(p_i,q)$

$$\left(\frac{(x_i-x_q)^2+(y_i-y_q)^2}{2\sigma_s^2}+\frac{(z_i-z_q)^2}{2\sigma_d^2}\right)\right)$$

Model-based covariance:
 Boston Harbor Model

Pseudo code

```
Procedure UPDATEDEPTH(p_1...p_N)
    integral<- 0
    for x=xmin to xmax do
             for y=y_{min} to y_{max} do
                          for z=z_{min} to z_{max} do
                                       sum < -0
                                       for i = 1 to N do
                                                    sum + = F(p_i, x, y, z)
                                       end for
                                       integral += (-1/sum^2) * FD_z(p_i,x,y,z)
                          end for
             end for
    end for
    delta = K * integral
    if delta > maxspeed then
             delta = maxspeed
    end if
    If delta < -maxspeed then
             delta = -maxspeed
    end if
    changeDepth(delta)
end Procedure
```

Simulation & experiments

- Matlab simulation
- Lab & Pool hardware experiments
 Gaussian covariance model
 Numerical covariance model
- River hardware experiment
 Changing covariance

Results (lab & pool experiment)

	Node 0	Node 1	Node 2	Node 3
Bucket 1 Start	10.0m	10.0m	10.0m	10.0m
Bucket 1 Final	10.3m	24.1m	5.9m	19.7m
Bucket 2 Start	20.0m	20.0m	20.0m	20.0m
Bucket 2 Final	19.8m	5.9m	23.8m	10.2m
Bucket 3 Start	3.7m	7.8m	12.2m	15.9m
Bucket 3 Final	9.5m	22.9m	23.9m	9.6m
Pool 1 Start	10.2m	9.9m	10.1m	9.8m
Pool 1 End	20.6m	6.9m	24.1m	10.2m
Pool 2 Start	20.0m	20.1m	20.3m	20.1m
Pool 2 End	9.5m	23.9m	5.6m	18.8
Pool 3 Start	20.2m	19.9m	20.3m	20.1m
Pool 3 End	9.6m	24.0m	5.8m	19.7m

Results (lab & pool experiment) (II)

Communication performance

 Number of neighbors used to calculate the objective function

Results (River hardware experiment)

Parameter sensitivity

• Changing k

Changing neighbourhood size

Parameter sensitivity(II)

Changing grid size

Positioning sensitivity

Start positions(circles) and final positions of the nodes (dots)

Conclusions

- Understanding dynamics of bodies of water requires sensing over full volume of water
- Gradient based decentralized controller
- Two covariance models
 - □ Multivariate Gaussian
 - □ Physics based hydrodynamic model
- Simulation & experiments, verifying the functionality

