
27

Chapter 4

The BTnut Operating System

4.1 Introduction

In this chapter, we introduce the BTnut operating system (OS). In comparison to the exercises of the previous
chapter, this has two main consequences:

• You do not have to read hardware schematics and spec sheets when you want to use resources, since we
are now able to use library functions. In this chapter you will use such functions for accessing the LEDs
and the terminal. Also the analog to digital converter that we have used in the last chapter would be
accessible through such library functions � see the btnut/btnode/include/dev/adc2.h header for a
description. There is even a function btn_bat_measure that does exactly what we have done manually
(see include/hardware/btn-bat.h).

• Complicated programs can be divided into a set of threads. Programming a single thread is often much
easier than programming the whole functionality in a single program. At the same time, however, pro-
gramming with multiple threads becomes more complicated. Even though the execution coordination
of these threads is done by the operating system, we still need to properly code concurrent threads,
especially when it comes to two or more threads using a common resource (e.g., the radio, or the ter-
minal). Threads will be described in the following chapter, where we introduce the API of the BTnut
OS for creating, executing and terminating threads, as well as for the communication and coordination
of such threads.

The following sections will explain the anatomy of a simple BTnut program using the example of LED
control (section 4.2). Section 4.3 will then explain how we can use BTnut to provide output over a terminal
connection (i.e., through the USB cable).

4.2 Anatomy of a BTnut Program

Recall from chapter 1 that BTnodes run an embedded systems OS from the open source domain, called
Nut/OS. Nut/OS is designed (among others) for the Atmel ATmega128 microcontroller (which is used on the
BTnodes), and is thus an excellent base on which the BTnut extensions provide additional device drivers to
access BTnode-speci�c hardware. The actual compilation of your programs (i.e., the translation of C-code
into machine-code) is done using gcc-avr (part of WinAVR on Windows), which is a freeware C compiler
(and assembler) for the Atmel processor platform. We thus have three parts to our BTnode OS-experience:
the rudimentary C-libaries as implemented by gcc-avr's avr-libc; the higher-level OS routines built on top
of avr-libc by Nut/OS; and the BTnode-speci�c device drivers provided by BTnut. In the following, we will
simply call this layered OS architecture �BTnut�, yet one should keep the di�erences in mind in order to
better understand the overall system operation.

We �rst look at a minimal BTnut program.

28 CHAPTER 4. THE BTNUT OPERATING SYSTEM

Explanation A minimal BTnut program: BTnut programs are written in C (though we don't have
access to all libraries that we are used from our PCs). Just as any other C-Program, they feature a main

function as the initial focus of control, i.e., this is the �rst function that gets executed after power-up of
your BTnode. However, in contrast to regular PC programs, our BTnut programs must always begin with
initializing the BTnode hardware:

#include <hardware/btn-hardware.h> // for btn_hardware_init

int main(void)

{

/* ALWAYS call this func at the beginning of main */

btn_hardware_init(); /* initialize SRAM */

for(;;)

{

// do something clever here

}

/* you should never reach this point */

return 0;

}

Another peculiarity of a BTnut program is that it should never actually �nish. In contrast to a PC program,
one cannot return to the command line after the execution of a particular application is done � BTnodes
are expected to continously execute their task! If their main program ends, the behavior of a BTnode is
unde�ned (it might simply restart, or stop altogether, or . . .).

Obviously, an empty program is not very exciting. Let's see how the LED control described in the previous
chapter can be implemented through BTnut OS function calls.

Explanation Using the on-board LEDs: BTnut OS o�ers through <led/btn-led.h> the functions
void btn_led_set (u_char nr) and void btn_led_clear (u_char nr), where nr denotes the LED in
question, namely 0 through 3. Before the LEDs can be controlled this way, we need to initialize them �rst:

#include <hardware/btn-hardware.h> // for btn_hardware_init

#include <led/btn-led.h> // for led-related functions

int main(void)

{

btn_hardware_init(); /* initialize SRAM */

btn_led_init(0); /* initialize LEDs */

btn_led_clear(LED0); btn_led_set(LED1);

btn_led_clear(LED2); btn_led_set(LED3);

for(;;); /* endless loop */

/* you should never reach this point */

return 0;

}

Notice the argument that btn_led_init takes � it indicates whether we want to activate an LED heartbeat,
i.e., the periodic blinking of one or more LEDs to indicate that our BTnode is �alive� (as we didn't want a
heartbeat in the above example, we used 0). For more information on LED heartbeats, see page 36.

Exercise 4.1. Write a program that endlessly rotates through the four LEDs (i.e., it turns one after another
on and o�). Observe the output. Use for statements to slow the rotation down until it becomes easily visible.

4.3. THE TERMINAL 29

Optional Exercise 4.2. Have your program from Ex. 4.1 terminate after a few rotations (you will need to
add return 0 to the end to get it to compile). What behavior do you observe?

4.3 The Terminal

In order to communicate back to the user (or programmer), we are not restricted to using the on-board
LEDs only. Through our USB-cable, we can setup our BTnode in such a way that printf statements
provide output that can be printed in a terminal program on our PC, and use fscanf to read user input
from within the terminal program and input it back into our BTnut program. This is where the ATmega128's
UART ports � Universal Asynchronous Receiver Transmitter � come into play. Actually, the ATmega128
supports USART ports � Universal Synchronous/Asynchronous Receiver/Transmitter. Consequently, you
will notice that some libaries and functions actually use usart in their names. However, as it does not make
much of a di�erence, and as UART is the much more common interface, we will continue to use that term.

The ATmega128 has two UART interfaces � UART0 and UART1. While UART0 is used to connect the
ATmega128 to the Bluetooth module, we can use UART1 to write ASCII text to the terminal, i.e., a program
running on the host computer that uses well-known communication protocols to send and receive text from
a remote computer. See the online documentation at http://www.btnode.ethz.ch for information on how
to setup a terminal program under Linux (e.g., minicom) or Windows (e.g., Hyperterm).

Explanation Setting up the terminal : The printf function writes a formatted string to the standard
output stream. But before using printf, we have to setup the standard output stream explicitly, i.e., we
have to de�ne that we want to link the standard output to the UART1. This can be done using a routine
like to following:

#include <hardware/btn-hardware.h> // always required

#include <stdio.h> // freopen, includes <io.h> for _ioctl

#include <dev/usartavr.h> // NutRegisterDevice, APP_UART, UART_SETSPEED

#include <terminal/btn-terminal.h> // also required

void init_stdout(void) {

u_long baud = 57600;

NutRegisterDevice(&APP_UART, 0, 0);

freopen(APP_UART.dev_name, "r+", stdout); // "r+": read+write

_ioctl(_fileno(stdout), UART_SETSPEED, &baud);

}

Once we have established a terminal connection, we can write text to it using the well-known printf function
(which is provided for the ATmega128 platform in avr-libc). Most standard conversion strings (e.g. %d for
signed integers) and special characters (e.g. \n) can be used, but not all. For example, the �oat conversion
(%f) is not implemented as the ATmega128 does not support �oating point operations. HINT: Exit the
terminal program again before trying to upload a new program to the BTnode, otherwise the bootloader's
upload replies will be caught by the terminal program, not your upload tool (i.e., the upload will fail).

int main(void)

{

btn_hardware_init(); /* initialize SRAM */

init_stdout();

int variable = 13;

printf("Hello world, ");

printf("my lucky number is %d\n",variable);

for (;;); /* main should never return */

return 0; /* required by gcc 4.x */

}

http://www.btnode.ethz.ch

30 CHAPTER 4. THE BTNUT OPERATING SYSTEM

To read data from the terminal, you can use the function fscanf. However, in order to read input from the
user, we can use an already de�ned library � <terminal/btn-terminal.h> � which o�ers convenient access
to user input. Speci�cally, through the use of btn-terminal, a programmer can de�ne a set of commands
and optional arguments that a user can execute from a terminal prompt. Upon hitting the Tab-key, the
BTnode terminal program lists all available commands.

Explanation The Interactive Terminal : The BTnode terminal is de�ned in
terminal/btn-terminal.h. After initializing it with the stream to use and prompt to display, the
programmer simply has to �run� it:

#include <hardware/btn-hardware.h>

#include <dev/usartavr.h> // NutRegisterDevice, APP_UART, UART_SETSPEED

#include <terminal/btn-terminal.h> // for interactive terminal, includes stdio.h and thus io.h

int main(void) {

btn_hardware_init();

init_stdout(); /* as defined above */

btn_terminal_init(stdout, "[btn3]> ");

printf("\nHowdy!\n");

btn_terminal_run(BTN_TERMINAL_NOFORK, 0); /* NOFORK never returns */

return 0; /* required by gcc 4.x */

}

After the usual initializations (for an explanation of init_stdout, see page 29), the terminal thread is
initialized with btn_terminal_init, the �rst argument links it with the UART of the standard output
stream, the second argument de�nes the prompt of the command line (you may use any string you like).
Finally, the command btn_terminal_run(BTN_TERMINAL_NOFORK, 0) starts the terminal. The function
never returns, unless you use BTN_TERMINAL_FORK as the �rst parameter, in which case the terminal is
started in a separate thread. We will explain threads in chapter 5.

Using a terminal program such as minicom or Hyperterm, we can now interact with our BTnode program.
However, except for a small message and a prompt, there isn't yet much we can do. Fortunately, BTnut
already comes with a few commands that we can readily make available in our terminal.

Explanation Prede�ned Terminal Commands: The BTnut OS o�ers sets of prede�ned terminal
commands. To use them, they have to be registered. Two of these sets, with the corresponding header �le
and the register function, are given below. Similar command sets also exist for the bluetooth radio (bt_*)
and the debug logger (log_*).

#include <terminal/btn-cmds.h>

btn_cmds_register_cmds();

#include <terminal/nut-cmds.h>

nut_cmds_register_cmds();

The register commands have to be called after btn_terminal_init and before btn_terminal_run. For
example, btn_cmds_register_cmds provides the led command, nut_cmds_register_cmds provides the
nut command, which has several sub-commands. Hit the Tab-key for a list of available commands.

Exercise 4.3. Incorporate the default BTnut commands into your small terminal application. Use the nut
threads command to show the currently running threads. Now include led/btn-led.h and add a call to
btn_led_init(1) right after initialization. Also, add NutSleep(1000) to the �nal for-loop so that it isn't
empty (this needs sys/timer.h). Observe the output of nut threads now.

Exercise 4.4. Change the call to btn_terminal_run to use BTN_TERMINAL_FORK as its �rst parameter (you
can leave the second argument �0� right now) and check the output of nut threads again.

4.4. TIMERS 31

Explanation Creating your own Terminal Commands: You can also register your own commands
with btn_terminal. You must provide a function with a standardized interface (a pointer to a single
argument of type char), which can then be registered under an arbitrary command name:

void _cmd_square(char* arg) {

int val;

if (sscanf(arg,"%d",&val)==1) {

printf("The square of %d is %d\n",val,val*val);

}

else { printf("USAGE: square <value>\n"); }

}

int main(void) {

...

btn_terminal_init(stdout, "[btn3]> ");

btn_terminal_register_cmd("square",_cmd_square);

btn_terminal_run(BTN_TERMINAL_NOFORK, 0);

for (;;); /* main should never return */

return 0; /* required by gcc 4.x */

}

The command square is registered with btn_terminal_register_cmd after the initialization of the ter-
minal. The �rst parameter is the string you will have to type to launch the function, whose identi�er is
given as the second argument. Note that functions that you want to register as a commands must have
the signature void <functionname>(char* arg).

Exercise 4.5. Write a program that registers the command echo, which simply echos all the given arguments.

Optional Exercise 4.6. Write a program that registers the commands myset and myclear, which will take
the numbers 0-3 as an argument, and set or clear the given LED.

4.4 Timers

Explanation Timers in BTnut : Instead of using for-loops or NutSleep calls, you can also use one
or more timers to schedule recurring function calls. Using timers, you can easily parallelize your program
without the need for explicit thread-management: simply create a function for each required aspect of your
program, and register di�erent timers for each of them. BTnut will then take care of calling these functions
in the given intervals.

#include <hardware/btn-hardware.h>

#include <sys/timer.h>

HANDLE hTimer;

static void _tm_callback(HANDLE h, void* a) { . . . }

int main (void)

{

btn_hardware_init();

hTimer = NutTimerStart(3000, _tm_callback, NULL, 0);

for (;;) { NutSleep (1000); } /* never end */

return 0; /* required by gcc 4.x */

}

You can use NutTimerStart and NutTimerStop to install or remove periodic timers. Using TM_ONESHOT

as the last parameter to NutTimerStart will automatically remove that timer after it has run once (i.e.,
after one interval) � using �0� instead installs a periodic timer.

32 CHAPTER 4. THE BTNUT OPERATING SYSTEM

Exercise 4.7. Write a program with two timed callback functions: one should repeatedly turn on the blue
LED (using btn_led_set(LED0)) and switch o� the red LED (using btn_led_clear(LED1)), the other shall
do the opposite, i.e. turn on the red LED and switch o� the blue LED.

Optional Exercise 4.8. Write a program that periodically calls a function to �shift� the current LED by
one position (after the last position, it should begin again with the �rst).

Optional Exercise 4.9. Create a terminal application that allows to control the LED shifting functionality
implemented in Ex. 4.8, i.e., use btn_terminal_register_cmd to create a command �toggle� that turns the
shifting on or o�.

4.5 Dynamic Memory Management

Typically there is no need for dynamic memory management in your BTnode program. Simply create global
or local variables, and the BTnut OS (together with gcc-avr) will take care for you to properly allocate the
ATmega128 SRAM (of which we have 64kBytes) for the stack and the global and/or static variables.

However, should the need arise (e.g., you might want to limit the stack size of your current thread, or you
have temporary data that is very large), BTnut also supports dynamic memory allocation using malloc and
free.

Explanation Dynamic Memory Allocation: If you need to allocate memory directly, you can use
Nut/OS's own malloc and free:

#include <hardware/btn-hardware.h>

#include <stdlib.h> // malloc, free

#include <string.h> // memset

u_int BUF_SIZE = 4096;

int main(void) {

char *buffer;

btn_hardware_init();

buffer = malloc(BUF_SIZE);

if (buffer != NULL) {

/* fill buffer with data */

memset(buffer, 0xFF, BUF_SIZE);

/* and free it again (really useful) */

free(buffer);

} else { /* out of memory */ }

for (;;); /* endless loop */

return 0; /* required by gcc 4.x */

}

In addition to the 64kBytes of directly accessible SRAM, the BTnode also features three banks of external
data cache � each having 60 kBytes � for a total of 180 kBytes of external storage. This memory cannot be
allocated directly from within our BTnut program, as our ATmega128 processor can only address 64 kBytes
of RAM. Instead, one has to brie�y switch the upper 60 kBytes of our �regular� SRAM with one of the three
available banks, in order to access data in there. This functionality is implemented in the cdist/xbankdata.h
and can be tested by including the terminal/xbank-cmds.h commands.

See the sources of terminal/xbank-cmds.c in the btnut-sourcetree if you want to learn more about banked
memory. In this tutorial, we will not further elaborate on this feature of the BTnut OS.

33

Chapter 5

Programming with Threads

5.1 Introduction

In this chapter, we introduce thread programming with BTnut. A thread is simply a function or a small
program that can run concurrently to another thread. Using threads, we can actually write BTnode programs
that listen to incoming commands over their radio, periodically measure sensor values, compute intermediate
results, and send data to other nodes. All (virtually) at the same time!

This multithreading is handled by Nut/OS, as obviously our ATmega128 microcontroller can only handle
one instruction at a time. In order to support multithreading (or multitasking) on a single core processor,
the operating system needs to repeatedly start and stop individual threads (i.e., schedule) � in a completely
transparent fashion. Two general approaches to multithreading exist:

• Preemptive: The OS has complete control over processes and can stop, pause, and restart them (al-
most) at will. Most modern PC operating systems (e.g., Linux, Windows 2000/XP) use preemptive
multitasking. This is because it allows for a more reliable distribution of resources.

• Cooperative: Processes need to manually give up control of the CPU to a central scheduler, which
then evaluates which thread or task should come next based on process priorities and queues. While
cooperative multithreading simpli�es resource sharing, and usually results in faster and smaller code
(making it thus more suited to embedded systems programming), it runs the risk that a poorly designed
or �hung� process can bring the entire system to a halt.

Nut/OS � and therefore also BTnut � employ cooperative multithreading. This means that in order to execute
two or more threads at the same time, each process needs to periodically give up control to the OS scheduler.
This will be described in more detail in section 5.3 below, right after we explain how to create our own threads
in section 5.2. Sections 5.4 and 5.5 �nally introduce the concepts of mutexes and events, respectively, which
are means of coordination and communication between threads.

5.2 Creating Threads

Using BTnut, we can easily de�ne and run our own threads. First we look at how threads are de�ned.

34 CHAPTER 5. PROGRAMMING WITH THREADS

Explanation Creating Threads: Threads are functions. As mentioned earlier, the main routine itself is
also a thread, which is started automatically after startup (fortunately, this is completely transparent to
the programmer, thanks to Nut/OS). Additional threads have to be declared using the THREAD macro. An
example de�ning the thread my_thread is shown below.

#include <sys/thread.h>

THREAD(my_thread, arg) {

for (;;) {

// do something

}

}

Functions that are used as threads are supposed to never return, thus to loop endlessly (if you want to
end a thread, you will need to manually call NutThreadExit). The second argument of the THREAD macro,
called arg here, is a void pointer and can be used to pass an argument of arbitrary type to the thread when
it is created (note that the actual declaration of arg as a void pointer is done by the macro). Don't forget
to include <sys/thread.h> for working with threads!

The thread my_thread is now de�ned, but it has to be started before it becomes active.

Explanation Running Threads: A thread can be activated by any other thread, e.g. by the main
routine. This is done using the command NutThreadCreate.

#include <sys/thread.h>

int main(void) {

if (NutThreadCreate("My Thread", my_thread, 0, 192) == 0) {

// Creating the thread failed

}

for (;;) {

// do something

}

return 0; /* required by gcc 4.x */

}

The �rst parameter de�nes a name for the thread, the second parameter is the name of the function we
have de�ned before. The third argument is a pointer that is passed to the thread function (compare with
the second argument arg of the THREAD macro) � we do not use this feature here and thus an arbitrary
value can be used. The last argument is the size of the stack that is allocated for the thread. This stack
is used for local variables and for passing arguments when calling subroutines. If this value is chosen too
large, the system may run out of heap memory. If it is chosen too small, the thread overwrites memory
that is used otherwise, which results in unpredictable behavior. See page 30 for a method to check whether
your stack size is correctly chosen. For now, just use 192 and you will be �ne.

Exercise 5.1. Write a program that creates a thread as explained above. This thread shall repeatedly turn
on the blue LED (using btn_led_set(LED0)) and switch o� the red LED (using btn_led_clear(LED1))
(HINT: LED0 and LED1 are just macros for the numbers we were using before, i.e., �0� and �1�, respectively.
However, using symbolic names instead of numbers makes our programs more portable). The main routine,
after having created the thread, shall do the opposite, i.e. turn on the red LED and switch o� the blue LED.
Which LEDs are switched on? Why? Add a single NutThreadYield such that the other LED is switched
on. Add a second NutThreadYield, such that both LEDs are switched on by turns (you will see both LEDs
switched on, because the main routine and the thread alternate very quickly).

5.3. THREAD CONTROL 35

5.3 Thread Control

Exercise 5.1 has demonstrated the cooperative nature of the BTnut OS. In order to have two or more threads
running, they need to repeatedly and continously give up control of the CPU and other resources, so that
other threads may run.

In principle (we will see an exception later on), active (i.e., running) threads only yield the CPU to other
threads if this is explicitly coded. The most simple way to do this is NutThreadYield, a function that has
no parameters. This function causes the OS to check whether other threads with higher or equal priority are
ready to run (we will explain thread priorities below). If this is the case, the current thread is suspended,
i.e. NutThreadYield does not return and the thread with the highest priority among those that are ready
to run is given the CPU. Otherwise, NutThreadYield returns immediately.

Explanation Giving up Control : In order to support concurrent threads on the BTnode, each thread,
even the main() function, must periodically yield control. A call to NutThreadYield basically means �Is
there any process that is more important than myself? If so, feel free to take over control. Otherwise, I will
simply continue.� Once control has been given away and is returned at a later point in time, the thread
will continue to run right after the call of NutThreadYield.
If a thread has nothing to do, it can also force cease of control by calling NutSleep(time). This function
puts the current thread into SLEEPING mode and transfers control to any thread that is waiting for control
(i.e., is READY, see below). If no thread is waiting, the idle thread takes over, which is always ready-to-run
(but which has the lowest priority � see below).
Note that threads might also give up control involuntarily � in case of an interrupt. See the BTnut
documentation for details.

Explanation BTnut System Threads: We have already encountered a number of threads before,
created and run by the BTnut OS: the LED thread (see page 28 and excercise 4.3), the terminal thread
(see section 4.3 and excerise 4.4), as well as the idle thread and the main thread (again from exercises 4.3
and 4.4). We can visualize the currently active threads using the nut threads command (see Prede�ned
Terminal Commands on page 30):

[bt-cmd@00:d2]$ nut threads

Hndl Name Prio Sta QUE Timr StkP FreeMem

2057 T_TERMIN 150 RUN 0385 0000 200D 950 OK 2057 0D6A

14A4 LED 150 SLP 0000 2088 1481 989 OK

1087 main 64 SLP 0000 2074 1064 733 OK

0D6A idle 254 RDY 0385 0000 0D4E 356 OK 2057 0D6A

In order to have all of these �standard� threats running at the same time, we also need to make sure that
all of them repeatedly yield the CPU to other threats. As the idle, LED, and terminal threat are all coded
for us by the OS programmers (who thoughtfully made all of these threats yield every so often), we only
need to make sure that the main threat (which is under our control) does so as well!

Exercise 5.2. Use the minimal BTnut program as described on page 28 and add a LED heartbeat (see page
28) and the prede�ned Nut/OS terminal commands (see page 30). Start the terminal in a new thread using
btn_terminal_run(BTN_TERMINAL_FORK, 0), but leave the main routine empty (i.e., use only for(;;)). Do
you see the LED heartbeat? Can you interact with the terminal? Fix your program so that both heartbeat-
and terminal-thread can be executed concurrently to your (empty) main program. HINT: See Ex. 4.3 and
4.4.

36 CHAPTER 5. PROGRAMMING WITH THREADS

Explanation Controlling the LED Thread : Initializing our LEDs with btn_led_init(1) also starts
a separate LED thread. The LED thread displays dynamic patterns on the LEDs, typically to indicate
that the program is still running (�heartbeat�). Its pattern can be set with a single command, i.e., using
btn_led_add_pattern or btn_led_heartbeat. See the BTnut system software reference for a detailed
description of these commands. By default, the LED thread starts to blink with the blue LED after
initialization.
Note that even when the heartbeat is active, we still can switch on and o� LEDs individually using the
commands btn_led_set and btn_led_clear. The LED thread will remember the pattern it was showing
before LEDs are switched on manually and restart displaying the pattern after all these LEDs are cleared
again manually.

Exercise 5.3. Write a program with a main routine and an additional thread. Both threads repeatedly write
a message to the terminal and then yield (using NutThreadYield). What do you observe? (HINT: you
can freeze terminal output in minicom using Ctrl-A) Do you have an explanation? HINT: Writing to the
terminal is done with the speed of the UART, e.g., 57600 bits per second, which is slow in comparison to the
speed of the CPU. HINT No. 2: printf does not directly write to the UART, instead it writes to a bu�er
with a limited capacity (default is 64 characters).

Explanation Thread Priorities and States: Each thread in BTnut has a priority � a value from 0�254.
The idle thread has the lowest possible priority, 254, while main, as well as all manually created threads,
have a default priority of 64.
Priorities become important if several threads are competing for control. Each thread can be in three
di�erent states: RUNNING, READY, or SLEEPING. While only one thread can be RUNNING at any moment
in time (this is managed by the BTnut OS), several can either be READY or SLEEPING. A sleeping
process has ceded control either by calling NutSleep(time) (and is woken up by the OS after at least
time milliseconds have passed) or is waiting for an event (e.g., an incoming radio signal, or a message from
another thread � more about this in section 5.5 below).
Once the running thread cedes control using NutThreadYield, its state becomes READY, and BTnut
transfers control to another ready-to-run thread � the one with the highest priority. If all other ready-to-
run threads have a lower priority, control is returned to the yielding thread immediately (otherwise some
unknown time later). Multiple threads with the same priority are executed in FIFO order.

Explanation Setting Thread Priorities: Remember that in the BTnut OS, threads have a priority in
the range of [0, 254], where a lower value means a higher priority. The default priority is 64. You may
assign the current thread a higher priority, e.g. 20, using

THREAD(my_thread, arg) {

NutThreadSetPriority(20);

for (;;) {

// do something

}

}

Note that changing the priority of a thread implies a NutThreadYield (i.e., setting its state to READY),
thus potentially yielding the CPU to another thread. This is the case if the running thread reduces its
priority, and is thus no longer the thread with the highest priority that is ready to run.

Exercise 5.4. Take the program from Ex. 5.1 and give the self-created threat a higher priority. Compare the
output with the original program from Ex. 5.1. Repeat the experiment giving the self-created thread a lower
priority. What do you observe?

Optional Exercise 5.5. Repeat Ex. 5.3 but give the additional thread a higher priority. Compare the output
with what you received in Ex. 5.3. Repeat the experiment giving the additional thread a lower priority. What
do you observe?

5.4. SHARING RESOURCES: MUTUAL EXCLUSION (MUTEX) 37

Optional Exercise 5.6. Repeat Ex. 5.3 but use NutSleep instead of NutThreadYield. Why is the output
di�erent from Ex. 5.3?

Explanation Terminating Threads: A thread can terminate itself as shown below.

THREAD(my_thread, arg) {

for (;;) {

// do something

if (some condition)

NutThreadExit()

}

}

There is no easy way for some thread A to kill another thread B. Nevertheless, you will implement this
functionality in Ex. 5.13.

Combining thread creation with our means of writing command-line applications for the terminal (see section
4.3), we can experiment with thread creation and termination more conveniently:

Exercise 5.7. Write a program that registers the command create as a terminal command. This com-
mand takes a string argument and creates a thread with this name. This thread periodically prints its
name on the terminal and then sleeps for a second. HINT: A thread can access its own name using
runningThread->td_name, e.g., using printf("%s ready\n",runningThread->td_name).

Optional Exercise 5.8. Rewrite the program from Ex. 5.7 such that the �rst thread you start sleeps for
one second, the second thread sleeps for two seconds, etc. HINT: For this purpose, you may use the third
argument of the NutThreadCreate to pass the sleep time to the thread. Another alternative would be to use
a global data structure.

Optional Exercise 5.9. Rewrite the program from Ex. 5.7 so that the create command takes a second
parameter specifying the stack size of the thread that is created. Use this command and nut threads to �gure
out how much stack is actually used by the threads you create. Add some local variables to these threads
and/or call some dummy functions from these threads to see how this increases the amount of used stack.

5.4 Sharing Resources: Mutual Exclusion (Mutex)

Ex. 5.3 showed the problem of two or more threads trying to access the same resource (the terminal)
concurrently. As a result, their output was garbled. One way to coordinate shared resources is the use of a
mutex � a lock mechanism for mutual exclusive resource usage.

38 CHAPTER 5. PROGRAMMING WITH THREADS

Explanation Mutexes in BTnut OS : Shared resources can be used exclusively by a thread by signal-
ing current use over a mutex. After de�ning a mutex using NutMutexInit(&myMutex), threads can use
NutMutexLock and NutMutexUnlock to reserve the resource managed by the mutex:

#include <hardware/btn-hardware.h>

#include <dev/usartavr.h> // NutRegisterDevice, APP_UART, UART_SETSPEED

#include <stdio.h>

#include <io.h>

#include <sys/thread.h>

#include <sys/mutex.h>

MUTEX myTerminal;

THREAD(my_thread, arg) {

for (;;) {

NutMutexLock(&myTerminal);

printf ("This is Thread One\n");

NutMutexUnlock(&myTerminal);

NutThreadYield();

}

}

void init_stdout(void) { . . . }

int main(void) {

btn_hardware_init();

NutMutexInit (&myTerminal);

init_stdout(); /* as defined previously */

if (0 == NutThreadCreate("ThreadOne", my_thread, 0, 192)) {

printf ("Sorry, could not create ThreadOne. Stopping...\n");

for (;;);

}

for (;;) {

NutMutexLock(&myTerminal);

printf ("This is the Main Thread\n");

NutMutexUnlock(&myTerminal);

NutThreadYield();

}

return 0; /* required by gcc 4.x */

}

Exercise 5.10. Rewrite the program from Ex. 5.3 so that each thread �rst acquires a mutex lock before
printing to the terminal.

Exercise 5.11. Write your own little �thread-safe� printf function that uses mutexes in order to exclusively
acquire use of the terminal. HINT: You can either use a separate function call (e.g., my_printf) or a pre-
processor macro (e.g., PRINTF). Using a macro should simplify argument handling, as gcc supports so-called
variadic macros:

#define PRINTF(...) { \

/* acquire mutex */ \

printf (__VA_ARGS__) \

/* release mutex */ \

}

5.5. EVENTS 39

5.5 Events

Another important part of a multithreaded OS is communication between threads. This allows the coordinated
use of multiple processes, as threads can signal other threads when to wake up, or in general inform a number
of threads that they have �nished processing a particular data structure.

Explanation Sending and Receiving Events: The coordination (synchronization) of threads can be
done using BTnut events. Consider the example shown below:

#include <sys/event.h>

HANDLE my_event;

THREAD(thread_A, arg) {

for (;;) {

// some code

NutEventWait(&my_event, NUT_WAIT_INFINITE);

// some code

}

}

THREAD(thread_B, arg) {

for (;;) {

// some code

NutEventPost(&my_event);

// some code

}

}

Here we see two threads. Thread thread_A executes some code and then blocks in the NutEventWait

function. It only continues when either an event is posted or the timeout expires. The timeout is speci�ed
in milliseconds with the second parameter. In the example shown above, the timeout is disabled, i.e. an
in�nite time is speci�ed with the macro NUT_WAIT_INFINITE.

Exercise 5.12. Write a program with three threads (main and two additional threads) and a global variable
with initial value 2. The three threads shall execute in turns, which you implement with events. One thread
computes the square of the global variable, the second decrements it by one and the third multiplies it by two.
All threads print the result on the terminal. When the global value has reached a value greater than 10000,
all threads except the main routine terminate themselves. The main routine enters an endless loop.

Exercise 5.13. Extend the program from Ex. 5.7 with the terminal command kill that takes the name of
a previously created thread as an argument. The terminal thread shall use an event to inform the selected
thread that it is supposed to kill itself.

Optional Exercise 5.14. What happens if �rst an event is posted by some thread A and only afterwards
some thread B does a NutEventWait ? What happens if multiple events are posted before another thread is
ready to receive them? Are the events stored or lost? Write a program to �nd out.

Optional Exercise 5.15. What happens if two threads are waiting for the same event? Are both threads
woken up? Do thread priorities play a role? Write a program to �nd out.

Exercise 5.16. Modify the program from Ex. 5.13 so that each created thread mostly sleeps (e.g., using
NutSleep(15000)) and only brie�y listens for a kill signal (e.g., using NutEventWait(&killqueue, 125)).
Observe what happens if you send a process a kill signal. Does it eventually terminate? Try changing the
signal wait command to NutEventWaitNext(&killqueue, 125). Can you still terminate a thread with your
kill command? Why? Search the BTnut API for answers.

40 CHAPTER 5. PROGRAMMING WITH THREADS

Explanation Events Signaling in Nut/OS : When a signal is posted to an event queue (e.g., us-
ing NutEventPost), Nut/OS checks to see if any thread is waiting for a signal on this queue (using
NutEventWait). If there are threads waiting, Nut/OS takes the �rst thread only (i.e., the one with the
highest priority) and sets its status from SLEEPING to READY. Since posting events with NutEventPost

implies a NutThreadYield, the posting thread will also become READY. Depending on the priority of the
available ready-to-run-threads, Nut/OS might continue with the posting thread, switch to the signaled
thread (i.e., the one that was waiting), or even execute a completely di�erent ready-to-run-thread with an
even higher priority than those two.
If you want to �wake up� all threads waiting on a particular queue, not just the one with the highest
priority, you can use NutEventBroadcast instead.

Explanation Asynchronous Events: When a thread posts a signal to a particular event queue using
NutEventPost or NutEventBroadcast, Nut/OS might switch control to another thread as these two func-
tion calls also imply a NutThreadYield (and thus a switch from the RUNNING state to the READY state).
In order to continue running, a thread may use so-called asynchronous variants of those two functions �
NutEventPostAsync and NutEventBroadcastAsync, respectively � in order to continue being in the RUN-
NING state. Both routines perform exactly the same signaling as their regular counterparts, yet without
executing a context switch. This can be done later using, e.g., a NutThreadYield or NutSleep.

Exercise 5.17. In order to gain understanding of threads and thread coordination, we will now write a ping
pong game. We have two players standing at opposing ends of a table that hit a ball back and forth, and
every time a player misses the table, the other player scores. The player that �rst reaches 11 points wins.

In order to implement this, we will need two players (0 and 1), one ball, and one coordinator (referee) that
keeps track of points. The sequence of events will look as follows:

1. The current player will play the ball (initially player 0).

2. The ball will move across the table, and either hit or miss the table.

3. In case the ball misses the table, the referee scores one point for the opponent. If this player has reached
11 points, the referee ends the game and declares this player winner.

4. The sequence repeats at point 1, with player 0 and 1 alternating turns. If the last ball missed the table,
the next player will serve, otherwise the point just continues until one player misses the table.

Implement this algorithm on the BTnode. All the actors in the game will be implemented as a separate
thread, coordination among threads is achieved through events. The coordinator records the score and outputs
messages to the terminal. After the game �nishes, the program ends, but make sure the main method never
returns, otherwise the BTnode reboots and starts a new game!

HINT: The ball will be responsible for deciding whether or not it hits the table, i.e. whether the player
hits the ball well or not. In order to `decide' whether a ball hits the table, we will use a random number
generator. At the beginning of the program, you will need to include stdlib.h and initialise the random
number generator by calling srand(u_int seed). From then on, every call to rand() will give a number
between 0 and RAND_MAX, so in order to get a random number r number between a and b (a <= r < b), use
a + rand() % (b-a). Experiment with di�erent `player qualities', i.e. using a higher probability of playing
a good ball and see how it in�uences the result. Make ample use of NutSleep in order to make the game
�watchable� on the terminal window.

