
81

Chapter 11

BTnodes and Sensors

While the BTnode has been designed for conducting research in Wireless Sensor Networks (WSNs), it does
not carry any onboard sensors. This is in contrast to other WSN-platforms, such as the Tmote Sky, which
(optionally) comes with three onboard sensors (temperature, light, and humidity). The reason for not
including a �xed set of sensors lies in its added �exibility: depending on the particular application, BTnodes
can be equipped with seperate �sensor-boards� that contain only the required set of sensors and which can
be directly connected to one of the external connector sockets on the BTnode.

Working with sensors on the BTnode thus requires us to choose either a pre-made sensor board, or to
connect our own set of sensors directly to one of the BTnode's connectors. In this tutorial, we will use the
BTsense sensor board, developed as part of the 2006 Wireless Sensor Network lecture at the ETH Zurich's
Inst. of Pervasive Computing. It has been speci�cally designed to contain both analog (light) and digital
(temperature and motion) sensors, as well as an actuator (buzzer). It is connected through the BTnode's
�Debug Connector� (called J2) on the side, and is designed to be attached (e.g., with some plaster material)
to the side of the BTnode. Figure 11.1 shows the top of the board. In particular, the BTsense board features
the following sensor and actuators (rev 1.1):

1. Microchip TC74 digital (I2C) temperature sensor [8]

2. Taos TSL252R analog light sensor [12]

3. Napion AMN1 digital (binary) motion sensor (passive IR) [14]

4. muRata 7BB-12-9 piezoelectric buzzer [9]

Figure 11.1: The BTsense rev1.1 sensor board.

Another popular alternative for connecting sensors to the BTnode is the set of boards developed at Teco
in Karlsruhe. These boards have an extension connector that �ts directly into the USB programming

82 CHAPTER 11. BTNODES AND SENSORS

board. They come in several sizes and di�er in the number of sensors they o�er. The largest board,
spart, additionally featured a separate microcontroller that would relieve the BTnode ATmega of any sensor
related management tasks, though making its usage somewhat more di�cult. The ssmall boards (without
microcontroller) are available in a �medium� and �large� size and feature:

• Microchip TC74 digital (I2C) temperature sensor

• Taos TSL2500 analog light sensor

• MAX8261 OP capacitive microphone

• ADXL210 2-axis acceleration sensor

• Second ADXL210 for combined 3-axis acceleration sensor (only on �full� version of the board)

• solder plates for optional pressure sensor, humidity sensor, second temp. sensor, speaker, etc.

• Two LEDs

In order to be able to gather sensor data on our BTnode, we �rst need to understand how its processor, the
ATmega128L, receives and processes external data, and then how we can use BTnut to use this information
in our program.

11.1 ATmega128L I/O-Ports and Registers

The ATmega128L microprocessor features 53 programmable I/O lines. It is through these lines that all
communication to and from the processor takes place. While all 53 lines can be used in a totally generic
fashion (i.e., they can both be used to output a bit, as well as reading input bits), all of them also have
at least one so-called �alternate function�, i.e., they are connected to a speci�c on-chip feature such as the
analog-digital converter, the UART, a hardware timer, or an external interrupt signal. It is up to the
programmer � either from within the OS, or as part of the application � to properly choose how a particular
I/O line should be used: as a generic output line, as part of an ADC conversion, to monitor an input line
and throw an interrupt whenever it changes, to control a set of digital sensors via a sensor-bus such as the
I2C-interface, etc.

Figure 11.2 shows all 64 pins of the ATmega128L. PA though PG are the seven available I/O ports, with
ports A through F having 8 pins each, while port G has only �ve pins. Each port is represented through
three registers each, which together provide � for each pin of each port � access to its I/O functionality:
the Data Direcion Register (DDRx) (where x stands for A through G) de�nes whether a particular pin on a
port will be used for input or output, while the Data Register (PORTx) and Port Input Pin (PINx) register
(among other features) provide access to output and input values of each pin, respectively. Page 84 of the
ATmega128L manual [1] gives an overview of all I/O port registers.

Additionally, more than one hundered registers can be used to enable or disable a certain �alternate function�
of each pin. For example, the ADCSRA register controls the analog-digital converting unit � like turning it on
and o�, and starting a conversion � while the ADMUX register controls which of the potential input pins (pins
0 through 7 of port F) are to be used during the conversion.

Each of these registers (see the ATmega128L manual [1] on page 364 for a complete list) is provided to the
programmer as a so-called hardware register. While programmers typically understand the term �register�
to be a processor register � a small amount of very fast on-chip memory that is used to hold intermediate
values during a computation in a very e�cient manner � hardware registers are much more common in
embedded systems programming. They often look and feel like being just another memory value, yet they
physically control access to various devices. The avr-libc de�nes mnemonics1 identical to the ones used in
the ATmega128L manual as shorthands, in order to allow statements of the form �enable ADEN in the ADCSRA
register� instead of �set bit 7 of register 0x0026 to 1�.

1Actually: these are precompiler de�nitions, which can be found in avr/io.h.

11.2. SENSOR TYPES 83

Figure 11.2: Ports of the ATmega128L [1].

Exercise 11.1. Use the ATmega128L user manual [1] to �nd out which pins have the alternate function of
serving as the data (SDA) and clock (SCL) line of the so-called �two-wire interface� (TWI). Find out what
bit needs to be set in which hardware register in order to enable TWI support in the ATmega128L.

Exercise 11.2. Locate the schematic for the BTsense sensor board at www.btnode.ethz.ch (search under
Hardware Reference) and �nd out to what ports and pins each of the three sensors � the light, temperature,
and motion sensor � are connected.

When using any kind of sensor platform with a BTnode, we thus �rst need to know how an individual
sensor is connected to our microprocessor. Analog sensors will most certainly be connected (or have to be
connected) to one of the ADC input pins, while digital ones either use TWI or are connected to a generic
input pin. Knowing how and where a sensor is connected, we then need to understand the sensor's output,
i.e. what information is delivered from the sensor to the input pin. This can be found in each sensor's
datasheet. Last not least, we must then properly query these sensor values in our program: either by simply
polling a sensor value repeatedly; using a timer to do this repeated polling for us; or by setting an interrupt
to occur whenever a sensor value changes.

The following sections will describe each sensor type in turn, before outlining two possible ways of querying
sensor values: polling and interrupts.

11.2 Sensor Types

BTnodes support three types of sensors: digital bus (I2C) sensors, digital logic-level sensors, and analog
sensors. Each type needs to be connected to di�erent pins, each type needs a di�erent way to read out a
value. The sections below describe in detail how a generic sensor would need to be read out. However,
for certain sensor platforms such as the BTsense sensor board, higher-level support is available in form
of dedicated functions, alleviating the need for direct manipulations of the individual ATmega128L ports.
Nevertheless, knowing the general principle of sensor read out should certainly foster overall understanding.

11.2.1 Digital I2C-Bus Sensors

The I2C-bus2 was originally developed by Philips Semiconductors in the 1980s to simplify communication
among various chips within TV-sets. It is a simple Master-Slave-bus, with a 7-bit address space that supports

2I2C is pronounced �i-square-c�, sometimes also �i-two-c�.

file:www.btnode.ethz.ch

84 CHAPTER 11. BTNODES AND SENSORS

up to 112 slave devices (16 addresses of the possible 128 are reserved).3 The biggest advantage of the I2C-
protocol is its abilitiy to allow a single microcontroler the control of more than hundred devices with only
two I/O-pins. The ATmega128L used in the BTnode supports the I2C-protocol in hardware, which greatly
simpli�es control of I2C-compatible devices. However, as I2C is a registered trademark of Philips, Atmel
calls this TWI (�two wire interface�).

The two wires of the I2C-bus are called SDA (data) and SCL (clock). Communication is always initiated by
the master and is only between the master and a single slave. The clock is controlled by the master (this is
handled by the ATmega128L for us) � it tells the slave when it should read a value from SDA (i.e., when
SCL is high).4 This allows the use of the I2C-protocol also without �xed hardware or real-time clocks.

In order to poll an I2C-sensor in BTnut, we need to know its address on the I2C-bus. Addresses are de�ned
in the corresponding header �le (hopefully con�ict-free) � in btsense/btsense.h for the BTsense board, and
under extras/teco_ssmall for the ssmall board (both of which use the I2C-compatible TC74 temperature
sensor [8]).

Also, we need to know the corresponding I2C-command that needs to be issued through the TwMasterTransact-
function. This information can be found in the sensor's datasheet � for the TC74, the datasheet lists 0x00
as the command code for reading a temperature value.

Explanation TWI-Communication in BTnut :
NutOS comes with a simple two wire interface (TWI) library that works also on our ATmega128L. The
most important commands are TwInit to initialize the interface, and TwMasterTransact to send commands
to, and receive data from, the individual sensors.
TwInit takes a sole argument a 7-bit slave address, in order to allow (in theory) our master to also act as
a slave to other masters on the bus. However, as the current implementation does not support slave mode
for the ATmega128L, the parameter can safely be ignored (set it to 0, for example).
TwMasterTransact takes as a �rst argument the (slave) device address, followed by two variables each for
sending and receiving data: (the address of) the variable where the command can be found, followed by its
length, and the (address of the) variable where the received data should be put, followed by the maximum
number of bytes to receieve. A �nal argument indicates a timeout value, which is currently not supported
(will be ignored). It returns the number of bytes received, or -1 in case of error.

#include <dev/twif.h>

#define BTSENSE_I2C_TC74 0x48

void main(void) {

. . .

btn_hardware_io_power(1); // power up external hardware

NutSleep(200); // give time for initialization

// set TWI pins (Port D Pins 0 and 1) as Input w/ Pull-Up

cbi(DDRD, DDD0); cbi(DDRD, DDD1); sbi(PORTD, PD0); sbi(PORTD, PD1);

TwInit(0); // parameter currently ignored

. . .

u_char tw_cmd = 0x00; // "read temperature"-command

u_char t; // holds return value (temperature)

if (TwMasterTransact(BTSENSE_I2C_TC74, &tw_cmd, 1, &t, 1, 0) == -1) {

printf ("Error while reading sensor: %i\n", TwMasterError()); }

. . .

}

3The address space can optionally be extended to 10 bit and 1008 devices (1024-16), though this is not supported on the
BTnode.

4During a high SCL level, SDA levels must be stable. Level changes on SDA during a high SCL indicate special START
and STOP commands that a master uses to initiate or end a command.

11.2. SENSOR TYPES 85

The TwInit function simply initializes the software stack � it does not con�gure the corresponding AT-
mega128L ports for us. We therefor need to make sure that both of our TWI ports (i.e., pins 0 and 1 of Port
D) are both con�gured for input (using the DDRD register) and have pull-ups enabled (using the PORTD).5

Explanation Pull-ups:
Pull-ups are resistors in an electronic circuit that ensure that, given no other input, a circuit assumes a
default value. The I2C-protocol requires that when IDLE (i.e., when no devices use it), the bus remains in
a logic HIGH state. This is achieved by inserting so-called pull-up resistors into the circuitry, which have
the e�ect that as soon as at least one device puts a LOW value onto the bus, the whole circuit will be
pulled to a logic LOW state. This allows other devices to detect communication on the bus.
Each of the 53 I/O-pins of the ATmega128L can have pull-ups enabled or disabled, using the PORTx register.

Also notice that the TwMasterTransact function references both the command variable and the result
variable, i.e., it is not just for sending a command to a TWI-compliant device, but also for receiving its
result.

Exercise 11.3. Locate the TC74 datasheet o� the BTsense documentation page on the BTnode Web site
and �nd all supported I2C-commands (with their corresponding command codes).

11.2.2 Digital Logic-Level Sensors

Another type of digital sensor is that of the logic-level sensor. While also digital, it simply responds in a
binary fashion: logical 1 and 0 (VCC and GND) represent �on� or �o��, �detected� or �not detected�, �critical�
or �not critical�. Such sensors do not need (and do not support) special communication protocols such as
I2C. Instead, we can directly connect them to one of the available I/O pins of the ATmega128L, con�gure
the corresponding port-pin as �input� (using the DDRx register, cf. section 11.1) and read its value from the
PINx register.

Explanation Reading logic-level data in BTnut :
Knowing to which pin a particular binary input is connected, we can easily de�ne this pin as an input pin
and read out its value. BTnut o�ers the setbit and clearbit functions � sbi and cbi � that set and clear
individual bits of a selected register, respectively.
BTnut contains macros for all ATmega128L ports and pins, allowing for a convenient way of setting or
clearing individual bits in a register. These macros are identical to the identi�ers given in the ATmega128L
reference manual [1] � see page 364 for an overview of all registers and pins.

// define pin 6 of port E as an input pin in port E's DDR register

cbi(DDRE, PE6); // '0' means input pin

. . .

// check if pin 6 of port E is set

if ((PINE & (1<<PE6)) != 0) {

printf("Pin E6 is set!\n");

} else {

printf("Pin E6 is not set!\n");

}

In many situations, it is important not simply to know a logic-level sensor's current value, but instead to
know when it changes. The ATmega128L o�ers various interrupts that can be con�gured to observe an input
pin for change, and trigger a program interruption whenever the output of such a logic-level sensor changes.
More about such interrupts can be found in section 11.3.2 below.

Exercise 11.4. Write a program that continously reads out (and prints) the value from the BTsense (logic-
level) motion sensor. If you do not know to which port it is connected, see ex. 11.2 above.

5See page 65 of the ATmega128L user manual [1] for an overview of I/O-Port con�guration.

86 CHAPTER 11. BTNODES AND SENSORS

11.2.3 Analog Sensors

Analog sensors do not simply deliver an �o��/�on� value, but output a di�erent voltage level for each possible
sensor reading. In order to use this information in a program, this voltage level needs to be sampled into a
binary value, typically between 0-255 (i.e., 8 bit resolution), though up to 10 bits resolution are supported
on the ATmega128L.

Digitizing analog data on the ATmega128L is generally simple: its built-in Analog-Digital Converter (ADC)
supports up to 8 di�erent analog input channels (two of which optionally amplify the signal 10 or even 200
times), noise cancellation, and either single or continuous conversion modes. One only needs to properly
setup the various needed parameters, trigger a conversion, and subsequently read out the resulting digital
values. Each of these steps can be controlled through one or more ATmega128L registers.

Explanation Using the ATmega128L ADC :
ADC setup is performed through the ADC Control and Status Register (ADCSRA), where for example the
ADC can be enabled and disabled (bit 7, ADEN), and single conversions can be triggered (bit 6, ADSC). The
ADC Multiplexer Selection Register (ADMUX) allows the selection of input pins, as well as voltage reference
and input gain setup. Note that before con�guring the ADC, it should be turned o� (i.e., the ADEN bit in
ADCSRA should be cleared).
After starting a single conversion, the result is written to two registers, ADCL and ADCH. In order to know
when the conversion is �nished and these values can be read, one can simply check the value of the ADSC bit
in the ADCSRA register: as soon as it is cleared, the result of the single conversion can be read. Alternatively,
one can setup an ISR for the ADC interrupt (sig_ADC, see table 11.2 below) or wait for its corresponding
�ag (ADIF in the ADCSRA register) to be set. The default setup will put the LSB into ADCL and bits 8 and
9 into ADCH.

#include<sys/atom.h>

. . .

cbi(ADCSRA, ADEN); // disable ADC

ADCSRA = 0; // stop ADC & conv., no free-runn, no irq, def. prescaler

ADMUX = 0; // AREF, ADLAR cleared, ADC0 input

sbi(ADCSRA, ADEN); // enable ADC

sbi(ADCSRA, ADSC); // start single conversion

// wait until conversion is finished

while (bit_is_set(ADCSRA, ADSC));

// find result in ADCL and ADCH

NutEnterCritical();

u_short result = ADCL | (ADCH << 8);

NutExitCritical();

. . .

Note that its is important that reading out the �nal value is not temporarily suspended by a system interrupt
(see more on interrupts in section 11.3.2 below), otherwise we might get a skewed result.

Exercise 11.5. Use the above skeleton-code to write a program reading out the BTsense board's light sensor
(if you do not know to which port it is connected, see ex. 11.2 above).

In BTnut, the above ADC functions are encapsulated in the dev/adc.h library. All of the above mentioned
functions � disabling, enabling, and con�guring the ADC, as well as reading out converted values � can
be achieved with a set of dedicated functions and corresponding constants, thus increasing code legibility
and portability. However, the adc.h library is unable to cope with concurrent use, making it practically
unusable. This is because other threads might concurrently use the ADC for other purposes (e.g., to measure
the current battery level), thus recon�guring the ADC repeatedly. In order to get reliable measurements,
it is imperative to assert that the current ADC con�guration still matches the desired one, or change it if
otherwise. The dev/adc2.h-library o�ers the adc2_init and adc2_read functions, which are much more
robust than their dev/adc.h counterparts and also support con�guration validation.

11.3. READING SENSOR DATA 87

Explanation Using ADC in BTnut :
The functions adc2_init and adc2_read are de�ned in the library dev/adc2.h. In contrast to the regular
dev/adc.h-library, these functions also support ADC context switches, i.e., the concurrent use of the ADC
by other threads.

#include <dev/adc2.h>

static u_short my_adc_handle; // saves ADC context

int main (void) {

my_adc_handle = adc2_init(ADC2_MODE_SINGLE_CONVERSION,

ADC2_INTERRUPT_DISABLE,

ADC2_PRESCALE_DIV2,

ADC2_CHANNEL_0,

ADC2_REF_AREF);

for (;;) {

u_short val = adc2_read(my_adc_handle); // read from prev. saved context

printf("%d\n",val);

NutSleep(1000);

}

return 0; /* required by gcc 4.x */

}

Optional Exercise 11.6. Reimplement ex. 11.5 using the adc2.h library referenced above. How does the
library support ADC-context switches? Locate the source code of adc2.c and look it up.

11.3 Reading Sensor Data

Depending on the type of sensor that we want to read out, di�erent reading strategies might be appropriate.

11.3.1 Polling

Polling is the simplest yet least e�cient way of reading sensor values. The simplest way would be to wrap the
reading in a loop, potentially in a separate thread in order to allow the main program to continue executing
other tasks. However, this approach ties up a lot of processing power and uses up precious energy when
running under battery power. In most cases, one would want to at least include a NutSleep statement within
the loop, to ensure that sensor readings only happen seconds or minutes apart (not milliseconds), e.g., for
recording light or temperature values across several hours.

Instead of looping and repeatedly calling NutSleep, we can also let BTnut do the work for us, by using the
NutTimerStart function described in section 4.4 above. By utilizing BTnut timers, repeated requests for
sensor data can be scheduled over the course of hours, days, or even weeks. Given the 32-bit resolution of
the NutTimerStart function, both one-shot and periodic timers of up to 49 days can be installed.

11.3.2 Interrupts

BTnut timers are a less resource intensive way of �manually� polling (e.g., in a loop) a sensor value. They
are well suited for periodic measurement tasks, e.g., for documenting the temperature every 10 minutes over
the course of a day. Sometimes, however, it is necessary to quickly react to a change in the measured data.
Instead of increasing the polling frequency (and thus tying up CPU cycles), we can use an interrupt to get
automatically noti�ed of changing values.

The ATmega128L o�ers eight external interrupt request lines (i.e., pins that can automatically trigger the
execution of a particular code snippet) and several internal interrupts (i.e., for monitoring internal processes,

88 CHAPTER 11. BTNODES AND SENSORS

Mode Description
NUT_IRQMODE_LOWLEVEL Signal as long as level is low
NUT_IRQMODE_FALLINGEDGE Signal when level changes to low
NUT_IRQMODE_RISINGEDGE Signal when level changes to high
NUT_IRQMODE_EDGE Signal whenever level changes

Table 11.1: BTnut external interrupt modes

such as the above-mentioned counter over�ows). Table 11.2 lists selected signals in BTnut � for a complete list
of interrupts, see section Interrupt Vectors in the ATmega128L manual [1]. When interrupts are enabled,
the processor will automatically interrupt the normal program �ow and execute a previously registered
interrupt service routine (ISR), as soon as an interrupt occurs. As ATmega128L interrupts always have a
higher priority than regular program code, they will be executed almost immediately when their interrupt
condition holds true, allowing for almost real-time handling of events.

Explanation Using interrupts in BTnut :
In order to activate a particular interrupt in BTnut, we simply need to register an interrupt handler, a
so-called interrupt service routine, with the corresponding interrupt signal. The NutRegisterIrqHandler
function takes a signal, an ISR, and an optional argument to be passed to the ISR. Before assigning a new
ISR, the interrupt in question should be turned o� (using NutIrqDisable); afterwards it should of course
be turned on (usign NutIrqEnable).
For external interrupts, which allow monitoring the logical level of up to eight input pins (INT0 through
INT7), we need to additionally clear its DDRx port bit (to de�ne the pin as an input pin), and de�ne for
what kind of levels or level changes we want an interrupt. This is done with the NutIrqSetMode function,
which takes an external interrupt signal and a trigger mode as input (again, this should be set before the
input is enabled). Table 11.1 summarizes the various ways the pin level can be monitored.

#include <dev/irqreg.h>

. . .

void my_interrupt6_handler (void* arg) {

static u_char my_counter = 0; // static variables for persistance

my_counter++;

. . .

}

. . .

NutIrqDisable(&sig_INTERRUPT6);

cbi(DDRE, DDE6); // define pin E6 as input

NutRegisterIrqHandler(&sig_INTERRUPT6, my_interrupt6_handler, NULL);

NutIrqSetMode(&sig_INTERRUPT6, NUT_IRQMODE_EDGE);

NutIrqEnable(&sig_INTERRUPT6);

What happens if an interrupt occurs during such an ISR? BTnut does not support stacked interrupts, so the
current ISR will �rst be �nished. When the system exists an ISR and �nds another interrupt waiting (i.e.,
its corresponding interrupt bit is set) it will continue with executing the ISR of the next interrupt. However,
while the current ISR was still running, there might have actually been multiple identical interrupts � e.g. a
certain value crossed a threshold not only once (and threw an interrupt), but twice, or more often. As there
is only one �ag to indicate whether an interrupt has �red, there is no way to know how many interrupts
have been missed during the execution of the current ISR. It is therefor important to keep the code inside an
ISR as short as possible, in order to minimize the chances of missing out on important other interrupts, e.g.,
incoming packets on the Chipcon or Bluetooth radio. Another factor that should not be underestimated is
the time it takes the system to switch between the main program and an ISR � typically tens or hundreds
of CPU cycles, in order to save the current system state and switch to an ISR (and again back to the main
program).

This uninterruptability of ISRs is sometimes also needed within the main program. For example, certain
16-bit registers of the ATmega128L need to be written to in an atomic fashion, e.g., either both bytes get

11.3. READING SENSOR DATA 89

Signal Description
sig_ADC ADC conversion complete
sig_COMPARATOR Analog comparator
sig_INTERRUPT0 External interrupt 0
sig_INTERRUPT1 External interrupt 1
sig_INTERRUPT2 External interrupt 2
sig_INTERRUPT3 External interrupt 3
sig_INTERRUPT4 External interrupt 4
sig_INTERRUPT5 External interrupt 5
sig_INTERRUPT6 External interrupt 6
sig_INTERRUPT7 External interrupt 7
sig_SPI SPI interrupt entry
sig_INPUT_CAPTURE1 Timer 1 input capture
sig_INPUT_CAPTURE3 Timer 3 input capture
sig_OUTPUT_COMPARE0 Timer 0 output compare
sig_OUTPUT_COMPARE1A Timer 1A output compare
sig_OUTPUT_COMPARE1B Timer 1B output compare
sig_OUTPUT_COMPARE1C Timer 1C output compare
sig_OUTPUT_COMPARE2 Timer 2 output compare
sig_OUTPUT_COMPARE3A Timer 3A output compare
sig_OUTPUT_COMPARE3B Timer 3B output compare
sig_OUTPUT_COMPARE3C Timer 3C output compare
sig_OVERFLOW0 Timer 0 over�ow
sig_OVERFLOW1 Timer 1 over�ow
sig_OVERFLOW2 Timer 2 over�ow
sig_OVERFLOW3 Timer 3 over�ow
sig_UART0_RECV UART0 receive complete
sig_UART1_RECV UART1 receive complete
sig_UART0_TRANS UART0 transmit complete
sig_UART1_TRANS UART1 transmit complete
sig_UART0_DATA UART0 data register empty
sig_UART1_DATA UART1 data register empty

Table 11.2: Selected BTnut interrupt signals

written or none. If an interrupt occurs in the middle of such an assignment, the already written �rst byte
might not be the same anymore by the time program control returns to the main program. BTnut o�ers
the NutEnterCritical and NutExitCritical functions (in sys/atom.h) to allow main program code to
run uninterrupted. As with ISR code, these parts of code should be as short as possible, in order not to
loose any interrupt signals. Note that NutExitCritical does not simply re-enable interrupts. Instead,
NutEnterCritical saves the current interrupt state before disabling them, so that NutExitCritical can
restore whatever state previously existed. If interrupts were disabled before calling NutEnterCritical, they
still stay disabled even after calling NutExitCritical.

11.3.3 Hardware Timers and Actuators

While adequate for issuing periodic sensor readings, the use of NutTimerStart has two important drawbacks:
it only has a resolution of milliseconds, and actual code execution is thread-based, i.e., it might be delayed
(potentially inde�nitely) due to higher priority threads or non-yielding threads. In order to use more real-
time and �ne-grained timers, the integrated hardware timers of the ATmega128L can be used directly. This
becomes important when driving actuators, e.g., the buzzer of the BTsense sensor board, or controlling
motors based on pulse-width modulation (PWM).

90 CHAPTER 11. BTNODES AND SENSORS

The ATmega128L processor features two 8-bit and two 16-bit timers (Timer0 and Timer2, and Timer1 and
Timer3, respectively). These simply work as counters, i.e., they continuously count from 0 to 255 (or 65535)
and begin again from 0 afterwards. Whenever the counter over�ows (i.e., starts again at 0), an over�ow
interrupt can be triggered, which allows a program to periodically execute a certain command. While
Timer0 is already in use in BTnut to drive its timer functions (e.g., NutTimerStart, but also NutSleep),
the remaining timers are available for use in your BTnut program.

Using a number of processor registers, one can customize the behavior of these counters. For example, by
writing to the OCRx register (x being 0, 1, 2, or 3), we can set the so-called TOP value, i.e., the value at
which an interrupt should be triggered. One can also switch a timer to the so-called Clear Timer on Compare
(CTC) mode, where it restarts counting at zero whenever the counter reaches the TOP value (otherwise it
continues to the 8-bit or 16-bit maximum).6 Counters run at most with the speed of the main CPU � which
runs at about 7.37MHz in the case of the ATmega128L on the BTnode.7 Using a so-called prescaler, the
counter can be slowed by factors of 8, 64, 256, or 1024. This can be set in the Timer/Counter Control
Register TCCRxn (with x being 0, 1, 2, or 3, and n being A, B, or C for the two 16-bit counters only).

Explanation Using a hardware timer in BTnut :
The ATmega128L hardware timer/counter must be accessed directly through the corresponding hardware
registers. The four timers are started by setting their corresponding prescaler value to non-zero value (see
above). Also, one needs to set the count at which an interrupt and/or a reset to 0 should be triggered, as
well as indicate what counter mode should be used (normal, CTC, etc.).

#include <sys/atom.h>

. . .

u_char max = 128;

// set counter mode to CTC (see ATmega128L manual p.156) in

// Timer/Counter2 Control Register TCCR2

sbi (TCCR2, WGM21); cbi (TCCR2, WGM20);

// set prescaler to 1024 (slowest timer possible), see p.157

sbi (TCCR2, CS22); cbi (TCCR2, CS21); sbi (TCCR2, CS20);

// make sure interrupts are turned off

NutEnterCritical();

// register interrupt handler to be called for 8-bit counter0

NutRegisterIrqHandler(&sig_OUTPUT_COMPARE2, my_timer2_handler, NULL);

// set TOP value (i.e., when interrupt should be triggered)

OCR2 = max;

// reset current counter value to zero

TCNT2 = 0x00; // no need to start anything - counter runs continuosly

// enable interrupts again

NutExitCritical();

Exercise 11.7. What type of counter do you need to generate waveforms for the 7BB-12-9 buzzer of the
BTsense sensor board? You will have to take into account not only the desired signal frequency, but also
the speed of the processor and the possible values of the prescaler. Hint: The corresponding chapters in the
ATmega128L manual [1] contain a formula for computing a timer/counter's frequency.

When setting the OCx pins as output pins (using the corresponding port's DDRx register), one can easily
connect a waveform output to a peripheral device, such as a buzzer or a motor.8 The OCx pins can be used
in three di�erent modes: CTC, Fast PWM, and Phase Correct PWM. In the already mentioned CTC mode,
the OCx pin can be set to simply alternate (toggle) between 0 and 1 whenever the TOP values is reached

6Further counter modes can be found in the corresponding chapter of the ATmega128L manual [1].
7The exact processor speed can be obtained by calling u_long NutGetCpuClock(void).
8The two 8-bit counters 0 and 2 have only one such pin � OC0 and OC2, respectively � while the 16-bit counters 1 and 3

feature three such pins: OC1A, OC1B, OC1C and OC3A, OC3B, OC3C.

11.4. THE BTSENSE-LIBRARY 91

(see �gure 11.3 below). In Fast PWM mode9, the counter always counts from BOTTOM to MAX. The OCx
pin is cleared whenever the TOP value is reached, and set when the counter begins again at BOTTOM.
This ensures PWM-signals with constant periods (i.e., from BOTTOM to TOP) that have a pulse width of
exactly TOP (see �gure 11.4 below). Phase-correct PWM �nally creates the high pulse of the PWM signal
always in the center of the period, not at its beginning �ank, by counting from BOTTOM to TOP and back
again, and inverting the signal when reaching TOP (both upwards and downwards, see �gure 11.5 below).

When using a timer to drive an actuator connected to one of these pins, this has the advantage of not
needing a separate interrupt service routine to explicitly set a pin output to 1 or 0: the timer/counter's
corresponding OCx/OCxn will automatically alternate between 0 and 1 whenever the counter reaches its TOP
and/or BOTTOM value.

Explanation Putting a Waveform onto an I/O pin in BTnut :
By connecting a device to the output pin of a 8-bit or 16-bit counter, we can directly modulate a corre-
sponding signal onto the pin. This only requires that we set the data direction register of this pin (i.e., to
de�ne it as an �output� pin):

u_short max = 57535; // example

// set counter mode to CTC (see ATmega128L manual p. 131) in

// Timer/Counter1 Control Register TCCR1A

cbi (TCCR1A, WGM03); sbi (TCCR1A, WGM02);

cbi (TCCR1A, WGM01); cbi (TCCR1A, WGM00);

// set up output pin OCR1A to be toggled by counter

cbi (TCCR1A, COM1A1); sbi (TCCR1A, COM1A0);

// start counter with prescaler to 8 (example), see manual p. 135

cbi (TCCR1A, CS12); sbi (TCCR1A, CS11); cbi (TCCR1A, CS10);

// make sure interrupts are turned off

NutEnterCritical();

// no need for interrupt handler! simply set TOP value

OCR1 = max;

// reset current counter value to zero

TCNT1 = 0x0000;

// enable interrupts again

NutExitCritical();

// enable pin output for OC1A == PB5

sbi (DDRB, PB5);

Exercise 11.8. Describe the steps necessary to put a 440Hz signal onto an OCxn pin.

Optional Exercise 11.9. Describe the steps necessary to put the same 440Hz signal onto an arbitrary I/O
pin of the ATmega128L (e.g., pin PB4). What is the di�erence to the solution in ex. 11.8?

11.4 The btsense-library

Many of the low-level details for querying sensor data o� the BTsense sensor board have already been
encapsulated in dedicated functions as part of the btsense-library. While it might still be necessary to use
BTnut timers, interrupts, or hardware timers to read out sensor values periodically and/or automatically,
these functions should greatly simplify the act of reading out each of the three sensors, as well as driving the
connected buzzer.

9PWM stands for Pulse Width Modulation.

92 CHAPTER 11. BTNODES AND SENSORS

Figure 11.3: Waveform generation in CTC mode [1]. Notice the variable signal periods due to varying TOP
values (horizontal bars).

Explanation Using the library for BTsense:
The btsense-library o�ers three functions for reading out each of the three sensors, as well as a function for
driving the buzzer with a particular frequency. It takes care to properly set all required hardware registers,
as well as con�gure both the ADC and any necessary timer/counters. Note that the btsense_init function
requires a board revision identi�er � typically this should be BTSENSE_REVSION_1_1A.

#include <btsense/btsense.h>

int main(void) {

btnode_init(); // init hardware, uart, network

btsense_init(BTSENSE_REVISION_1_1A);

u_short light = btsense_sample_light();

printf ("Light Level: %d\n", light);

u_char motion = btsense_sample_motion();

printf ("Motion Level: %d\n", motion);

char temp;

int err = btsense_sample_temp(&temp);

if (err != 0) {

// TWI error

printf ("TWI Error: %d\n", err);

} else {

printf ("Temperature Level: %d\n", temp);

}

// make a beep

btsense_sound (440); NutSleep (1000); btsense_sound (0);

for (;;) { NutSleep (5000); }

return 0; /* required by gcc 4.x */

}

In addition to the btsense-library, a number of helper functions are available via adc2/adc2.h � see the
source code for details.

Exercise 11.10. Write a program that converts the light levels detected by the light sensor into a corre-
sponding LED-meter, i.e., the brighter it is, the more LEDs light up.

Optional Exercise 11.11. Extend the program from ex. 11.10 to also sound the buzzer at di�erent frequency
levels, according to the detected light level.

Exercise 11.12. Write a program that indicates motion detection through LED or buzzer signaling. Instead
of repeatedly polling the current value of the motion sensor, you should set up an interrupt service routine
to get triggered whenever the motion sensor's signal changes. Describe the output you observe.

11.4. THE BTSENSE-LIBRARY 93

Figure 11.4: Waveform generation in Fast-PWM mode [1]. Periods are constant, signal width is according
to TOP value (horizontal bars).

Figure 11.5: Waveform generation in Phase-Correct-PWM mode [1]. Notice how signals are centered within
constant periods.

Exercise 11.13. Extend the program from ex. 11.12 above to send motion events via the radio to a receiving
node, which then prints out a corresponding line to the terminal.

Optional Exercise 11.14. Combine the motion sensors of several BTnodes in order to be able to detect
the direction of motion, e.g., along a corridor or on both sides of a door. Both nodes should send motion
events to a sink node, which then determines the direction of the motion and keeps an on-screen statistic
(e.g., how many people entered and exited a certain room). Tip: In order to limit the area that the motion
sensor covers, you can simply build a small paper cone and put it around the sensor.

Optional Exercise 11.15. Write a program that periodically reads out all available sensor values and sends
them wirelessly to a sink node, which is connected to a laptop or PC via USB. Try to save power by grouping
several measurements into a single transmission. The sink node should print out the comma-separated list
of values to STDOUT, which can then be easily captured into a �le by using the terminal's capture-to-�le
function and then displayed graphically in Excel, OpenO�ce Spreadsheet, or GNUplot.

Optional Exercise 11.16. Extend the program from ex. 11.15 to work with multiple BTnodes, i.e., pre�x
each nodes measurements with a node ID. Try to minimize packet loss, e.g., by sending packets repeatedly.
Use this setup to record one or two rooms over the course of an entire day. Prepare corresponding graphical
plots.

94 CHAPTER 11. BTNODES AND SENSORS

